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Motivation

• Challenges of simulation-based design

- High CFD expertise in mesh generation

‣ Long setup time

‣ High cost due to repeated flow solves on 
fine meshes or high uncertainty due to 
inappropriate meshes

• Success of error estimation and mesh 
adaptation in goal-oriented simulations
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Objectives
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Adaptive discretization
 of  aerodynamic shape optimization problems

Accuracy
• Improve design confidence

- Direct control over objective 
function discretization error

Automation
• Reduce level of CFD expertise

- Eliminate the need to handcraft a mesh 
appropriate for all candidate designs

- Shorten problem setup time

• Reduce cost by systematically increasing depth of refinement 
as designs improve

- Progressive optimization strategy

Progress toward improved efficiency



• Gradient-based optimization

Problem Formulation
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• Steady Euler equations

Spatial Discretization: JH(X,QH) RH(X,QH),

Cut cells

• Second-order finite-volume method
• Cartesian mesh with embedded boundaries

✓Complex geometry
✓Automation
✓h-refinement
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• Steady Euler equations

Spatial Discretization: JH(X,QH) RH(X,QH),

✓Complex geometry
✓Automation
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• Second-order finite-volume method
• Cartesian mesh with embedded boundaries

dJ

dX
0



Discretization Error
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Design Space Error Estimate (fixed X)

• Leverage adjoint method
‣ Error estimates via the method of adjoint weighted residuals
‣ Objective function gradient via the discrete adjoint method
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Approximate Functional

JH(QH)

Jh(Qh)

J(Q)

e

E

J



Dual Role of Adjoints
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H h 
e = |Jh � JH)|

Gradients Error Estimates

H 
JH = f(X,QH)

e.g. CD + (CL � C⇤
L)
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Dual Role of Adjoints
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Number of Cells
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Exact Solution

Approximate Functional
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Error Estimation Details
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Jc =Jh(QH)� T
H Rh(QH)

Jh(Qh) ⇡ Jh(QH)� T
h Rh(QH)
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Verification: Supersonic Vortex
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• No limiter, 
• Effectivity close to 1
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Optimization with Mesh Adaptation
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• Integration into existing, fixed mesh, 
optimization framework

- Build sequence of adapted meshes
- Pass values of objective and gradient 

from finest mesh to optimizer

Modify Geometry

Mesh

Evaluate Objective

Compute Gradient

Optimize

Flow Solve
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Optimization with Mesh Adaptation
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• Integration into existing, fixed mesh, 
optimization framework

- Build sequence of adapted meshes
- Pass values of objective and gradient 

from finest mesh to optimizer

• In each design iteration, perform fixed 
(user specified) number of adaptations

- Fixed depth strategy
- Robust and precise control over 

computational resources
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Optimization with Mesh Adaptation
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Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve
Adapt & Solve

Adapt & Solve

N Cycles

• In each design iteration:
- Start with same initial mesh
- Adapt until prescribed refinement 

level is attained
• May be inefficient

Design 1

Design 5

N=8

N=8



Progressive Optimization
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Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve N Cycles

• Increase mesh refinement in each optimization subproblem
- Converge a sequence of improving  discretizations 
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Progressive Optimization
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• Increase mesh refinement in each optimization subproblem
- Converge a sequence of improving  discretizations 

X ! X⇤ as E ! 0
Modify Geometry
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Progressive Optimization
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• Increase mesh refinement in each optimization subproblem
- Converge a sequence of improving  discretizations 
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Progressive Optimization
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• Stopping Criterion
1. Gradient or KKT norms, or stall
2. Specified  number of search directions
3. Diminishing changes in objective 

function 
4. Ratio of design improvement to error: 

refine when
Ji�1 � Ji < E

• Increase mesh refinement in each optimization subproblem
- Converge a sequence of improving  discretizations 
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Results
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Sonic-Boom Mitigation Inverse Design

Optimize aircraft shape by prescribing quieter near-field signals

1. Pressure-signature analysis
2. Shape optimization on a fixed mesh
3. Progressive optimization
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Free Polar G
raph Paper from

 http://incom
petech.com

/graphpaper/polar/

Pressure Signature of Delta-Wing Body
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c 

c/2

t t/2

t/c = 0.05
17.52 cm

17.52 cm

8.21 cm

3.45 cm69°

Freestream Conditions:
• M∞ = 1.68
• CL  = 0.15

Determine pressure signature 3.6 
body-lengths below the model 

h/L = 3.6
Φ = 0°



Mesh and Solution
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Initial Mesh:
879 cells

12 Adaptations:
4.5M cells

Isobars

Sensor

Near-field on symmetry plane
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Pressure Signature
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Experiment
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J =
1

p21

Z
(p� p1)2dS

• Error bars represent level of 
discretization error

E = 2 |Jc � JH |
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Inverse Design on Fixed Meshes
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M∞ = 1.6°
α = 0.612
h/L = 2.0

9.3 M Cells

Approach: use adaptation to guide construction of a fixed mesh 
for shape optimization runs

Full aircraft configuration: 
180 design variables 



Optimization Targets
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Optimization Results
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On-track, Φ = 0° Off-track, Φ = 15°

Free Polar G
raph Paper from

 http://incom
petech.com

/graphpaper/polar/

Free Polar G
raph Paper from

 http://incom
petech.com

/graphpaper/polar/

• 50 design iterations (SNOPT)
• Ground noise 76.7 PLdB, 9.6 dB reduction in perceived loudness



Optimization with Adaptation
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Model Problem Setup

• Prescribe a target signature from a known shape
• 10 design variables that control body radius
• M∞ = 1.5 and α = 0° 
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Optimization with Adaptation

28

Model Problem Setup

• Prescribe a target signature from a known shape
• 10 design variables that control body radius
• M∞ = 1.5 and α = 0° 



Optimization with Adaptation
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Consider two cases
1. Fixed-depth strategy: 7 refinements in each design iteration
2. Progressive optimization: Increment from 4 to 7 refinements (allow 

designs to advance as far as possible on each level)

Initial Shape Final Shape

7 Adaptations, ~650k cells



Optimization with Adaptation
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Progressive Optimization

Progressive optimization is about a factor of two faster 
than fixed-depth strategy



Summary and Outlook
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• Progress toward a gradient-based optimization framework 
with capability to perform adaptive meshing in each design 
iteration 

- Promising approach to enhance accuracy, efficiency and 
automation of simulation-based design

• Future work

- Use of error estimates to limit oversolving

- Transfer of Hessian matrix as the design moves from 
mesh to mesh

- Dynamic error control and mesh re-use



Questions
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