Almost as soon as the International Space Station was habitable, researchers began using it to study the impact of microgravity and other space effects on several aspects of our daily lives.

This unique scientific platform continues to enable researchers from all over the world to put their talents to work on innovative experiments that could not be done anywhere else.
“... there is a significant demand from the scientific community for NASA-funded research opportunities on the ISS that cannot be met using traditional management tactics based on single Principal Investigator (PI)-led investigations. Given the factors that limit the scientific output required to address the significant biological problems required for human exploration beyond low-earth orbit, NASA will develop and implement a new multi-investigator approach based on high content bioinformatics analytics and with open science and data.”

-GeneLab Strategic Plan, 2014
The GeneLab Goals

1. “Develop an integrated repository and bioinformatics data system for analysis and modeling “

2. “Enable the discovery and validation of molecular networks that are influenced by space conditions through ground-based and flight research using next-generation omics technologies”

3. “Engage the broadest possible community of researchers, industry, and the general public to foster innovation”

4. “Strengthen international partnerships by leveraging existing capabilities and data sharing “

-GeneLab Strategic Plan, 2014
Motivations

• **Maximize ROI for ISS Utilization**: Open-access, systems-biology spaceflight experiments will provide foundational science that maximizes return-on-investment for rare and costly spaceflight opportunities and remove research “bottleneck”

• **Create a PI Multiplier Effect**: Open access greatly expands the community of researchers using ISS derived data for investigations – ISS research investments will yield numerous follow-up investigations and next generation hypothesis-driven research

• **Leverage NASA and External Partner Strengths**: Brings together NASA’s strengths in Space Biology and “big data” analysis with commercial, government and international partners through a scaled and iterative approach that capitalizes on existing databases, analytical tools and biotech capabilities

• **Maximize Utilization of Cutting Edge Bioanalytical Tools and Techniques**: Multiple omics datasets and integrated data system allows scientists to interrogate ISS derived samples using state-of-the-art high throughput genomics, proteomics, metabolomics and bioinformatics tools

• **Speed the Pathway to Translation**: Allows researchers to discover emergent properties in data to identify and understand pathways/macromolecules influenced by space stressors

• Directly responsive to [2011 Decadal Survey Recommendations](#) and [OSTP Open Data Initiative](#).

• Similar goals and efforts NASA ARMD and SMD to increase ROI and PI Multiplier effect and engage broad communities. ARMD/AvS/DashLink, SMD/SS/PDS, SMD/ES/EOS-EOSDIS & NEExchange.
ISS Research

- The unique conditions and workflows aboard the ISS are captured for a flight experiment and associated with the results.
- This information is ingested, stored, indexed and distributed from NASA’s Life Science Data Archive.
- NASA GeneLab is expected to capture and distribute ‘omics’ data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASA’s omics data.

NASA astronaut Barry "Butch" Wilmore setting up the Rodent Research-1 Hardware in the Microgravity Science Glovebox aboard the International Space Station
Background: GeneLab Vision

Vision: A centralized collaboration space for data deposition, retrieval, analysis and modeling to develop next generation science related to spaceflight
GeneLab Organization

Space Life and Physical Sciences
NASA HQ
Nicki Rayl

ISS Program
Sharon Conover/JSC

Space Biology Project
PM – Jeff Smith

GeneLab
Project Office
PM – Joe Coughlan
DPM – Yung Nguyen

Key:
- HQ and SLPS
- ARC
- JSC

Data Systems
Design, planning, implementation, testing, verification, and deployment of data systems.

Science & Outreach
Terri Thompson
Managing, directing, and controlling of GeneLab science investigation aspects.

Payload Planning
L Timucin
Development and execution of GeneLab payload plans, timelines, schedules and missions

Sample Processing & Analysis
K. Chakravarty
Designing QC on spaceflight ground samples, cataloging payload samples

Data Processing /Operations
H. Fogle
Quality assessment, processing pipelines, analysis, modeling, algorithm development
GeneLab Users

- **Traditional Space Biology PI Community** – zoologists, botanists, microbiologists, cellular and molecular biologists

- **Non-Traditional Genomics and Systems Biology Communities**

- **NASA Human Research Program Omics Data** – GeneLab *potential* host for One Year Twins Study Data – Pilot Study for Human Omics Data. *Potential* repository for ground radiation studies using model organisms

- **CASIS** – Opportunity for data mining to identify targets for drug development, personalized medicine and systems biology of model organisms and humans yielding knowledge for terrestrial applications and acceleration of translation pathway
 - CASIS funded investigators encouraged to submit raw data to GeneLab
 - CASIS participated in 2013 GeneLab RFI
 - CASIS representation at September 2013 Omics Workshop
 - CASIS representation on continuing GeneLab Steering Committee and planning efforts
Concept of Operations

Launch
Experiment is prepared and launched according to approved NRA.

Experiment on ISS
Crew performs experimental protocol and harvests tissues.

Return to Earth
Material sent back to earth for processing in investigators lab. Controls (ground and/or flight) processed at the same time.

Process Samples
Extracted DNA, RNA and/or protein sent to validated omics center to generate sequence, transcript or protein expression data.

Data Sharing
Data shared with larger scientific community. Results feedback to GeneLab and other databases accelerating scientific discovery by leveraging a bigger community.

Next Generation Research
Iterative research solicitations for experiments utilizing GeneLab data for ground validation and next generation flight research.

Data Collection & Hosting
Data returned to investigator or GeneLab for analysis. Raw data uploaded into GeneLab database for public viewing.

Modeling and Validation
Wet lab validation and computational modeling.
Mission Types

<table>
<thead>
<tr>
<th>Mission</th>
<th>Type</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated</td>
<td>Reference Data</td>
<td>Mission is entirely dedicated to GeneLab objectives; the Science Definition Team (SDT) defines the experiment and requirements; SDT is selected through the NASA Research Announcement Process</td>
<td>Micro-16 (tissue TBD)</td>
</tr>
<tr>
<td>Collaborative</td>
<td>Sample Sharing</td>
<td>GeneLab obtains specimens/samples from the existing PI space flight and ground control experiment</td>
<td>Rodent Research (Mouse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioculture System Validation (Mouse cells)</td>
</tr>
<tr>
<td></td>
<td>Augmentation</td>
<td>GeneLab provides supplemental funding to a PI experiment to increase the quantity and/or type of specimens to obtain dedicated sample; augmentation requires NASA SLPS experiment review approval process</td>
<td>BRIC-19 (plant), BRIC-20 (plant)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(BRIC=Biological Research in Canisters)</td>
</tr>
</tbody>
</table>
Launch – Flight Experiment Selection

Flight experiment solicitation and selection follows the NASA SLPS peer review process.

- NASA HQ through SLPS Program
- Space Biology Project Office
- Follow Decadal Survey recommendations
- Science Definition Team Solicitation Plan

http://www.nasa.gov/sites/default/files/files/NACRS_SLPSResearch_022414T.pdf
Collaborative Datasets

<table>
<thead>
<tr>
<th>Year</th>
<th>Payload</th>
<th>University/Institution</th>
<th>Mission Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>BRIC-19</td>
<td>University of Wisconsin</td>
<td>Augmentation, plant</td>
</tr>
<tr>
<td></td>
<td>BRIC-20</td>
<td>Ohio University</td>
<td>Augmentation, Plant</td>
</tr>
<tr>
<td></td>
<td>RR-1*</td>
<td>NASA/CASIS</td>
<td>Sample Sharing, Rodent</td>
</tr>
<tr>
<td></td>
<td>RR-2*</td>
<td>Loma Linda University; Florida State University</td>
<td>Sample Sharing, Rodent</td>
</tr>
<tr>
<td></td>
<td>Bioculture*</td>
<td>NASA</td>
<td>Sample Sharing, mouse cells</td>
</tr>
<tr>
<td></td>
<td>Micro-9*</td>
<td></td>
<td>PI data only</td>
</tr>
</tbody>
</table>

Additional work proposed for 2015 current out of scope
Process Samples

- Flight and/or ground samples received in Laboratory
- Researcher extracts DNA, RNA and/or Protein
- Extracted material sent to center for data generation
- Data is sent back to researcher from center
Concept of Operations

Overview of the flow of data through the system

- **Experiment on ISS**
 - Crew performing experimental protocol and harvests tissues.

- **Data Collection & Hosting**
 - Sample to data
 - Information sharing
 - Reuse of data

- **Launch**
 - Experiment is prepared and launched according to approved NRA.

- **Return to Earth**
 - Material sent back to earth for processing in investigators lab.
 - Controls (ground and/or flight) processed at the same time.

- **Data Collection & Hosting**
 - Data returned to investigator or GeneLab for analysis. Raw data uploaded into GeneLab database for public viewing.

- **Data Sharing**
 - Data shared with larger scientific community. Results feedback to GeneLab and other databases accelerating scientific discovery by leveraging a bigger community.

- **Modeling and Validation**
 - Wet lab validation and computational modeling.

- **Next Generation Research**
 - Iterative research solicitations for experiments utilizing GeneLab data for ground validation and next generation flight research.

- **Process Samples**
 - Extracted DNA, RNA and/or protein sent to validated omics center to generate sequence, transcript or protein expression data.
Process Samples

- Flight and/or ground samples received in Laboratory
- Researcher extracts DNA, RNA and/or Protein
- Extracted material sent to center for data generation
- Data is sent back to researcher from center
"Life's Complexity Pyramid"

(from Oltvai-Barabasi, Science, Oct 02)
Data Collection and Hosting

- Flight and/or ground samples are processed to generate Omic data
- Raw and metadata are assessed for completeness and quality by GeneLab personnel
- Completed data is uploaded into data system
- Datasets are published in the system and available to the public
Data Sharing

- Space biology research data hosted by GeneLab is freely available to all
- Researchers can download datasets for analysis, modeling, validation
- Researchers can publish data, methods, results and thoughts
Modeling and Validation

Wet lab validation and computational modeling

Biological Network
Iterative research solicitations for experiments utilizing GeneLab data for ground validation and next generation flight research.
New Grant Opportunities and Missions

- Next generation of grant proposal
- New flight missions

Launch
Experiment is prepared and launched according to approved NRA.

- Computational modeling
- New hypothesis
GeneLab Phased Implementation

Phased Implementation 2014-2020

Phase 1
Searchable Data
FY2014 –2015

- **IT Systems**
 - **System Requirements & Architecture**
 - **Public Website**
 - **Searchable Data Repository**
 - **Requirements level 1**
- **Science**
 - **Omics Center Solicitation**
 - **Protocol Development**
 - **Data analysis validation**
 - **Initiate ground controls**
 - **Collaborate with two manifested flight experiments**
 - **SDT Solicitation for Dedicated Flight**

Phase 2
Data Acquisition
FY2015-2016

- **IT Systems**
 - **Link to Public Databases**
 - **Beta Space**
 - **Bioinformatics system**
 - **Science**
 - **Omics Center Selection**
 - **Data analysis from initial ground studies**
 - **Science Definition Teams Identified**
 - **Outreach Program Plan**

Phase 3
System Integration
FY2017 – 2018

- **IT Systems**
 - **Integrated Platform across model organisms**
 - **Build Community via collaborative science**
 - **Science**
 - **Continue ground controls and process enhancement**
 - **Engage with Scientists external to NASA as part of Outreach Program**
 - **Dedicated flight experiments**

Phase 4
Implementation
FY2019 – 2020

- **IT Systems**
 - **System Requirements & Architecture**
 - **Public Website**
 - **Searchable Data Repository**
 - **Requirements level 1**
- **Science**
 - **Omics Center Solicitation**
 - **Protocol Development**
 - **Data analysis validation**
 - **Initiate ground controls**
 - **Collaborate with two manifested flight experiments**
 - **SDT Solicitation for Dedicated Flight**
- **Full science community engagement**
- **Development of analytical and Modeling tools**
- **Ongoing dedicated flight experiments**
- **Website and platform sustaining activities**
- **Continuous improvement**

Begin Implementation

Full Implementation

4/1/2015
2015 NRC CBPSS Cte Mtg
Salient Questions / Science

• How should the current state of analytics for proteomics and metabolomics influence choice of global profiling design vs. more focused experiments?
• How to use resources wisely to generate longitudinal datasets and support experiment (organism/tissue/assay) diversity?
Salient Questions / Data Systems

• What is the value of providing biocomputing capabilities in terms of increasing scientific throughput?
 – Access to high performance computing resources
 – Biocomputing tools repository
 – Is there analogy to collaborating teams of scientists in Earth Science
Salient Questions / Science

• What are the data boundaries of scientific relevance vis-a-vis the environment of spaceflight experiments?
 – 60K+ ISS parameters
 – Selections by PIs may overlook parameters
 – Data archived approx. every 2 years, after which retrieval is much more difficult
Salient Questions / Science

- How can the SDT maximize relevance of flight experiment data to ground-based experiments?
- How can we expand the user-base of the flight experiment data to include more researchers performing ground-based experimentation?
Salient Questions / Data Systems

- How can GeneLab best support biological model development, analysis, validation? Best leverage distributed scientific knowledge?
 - Data Discovery/Federation
 - Data annotation/Knowledge Capture
 - Data visualization
 - Develop in-house capabilities
 - Integrate externally-developed capabilities
 - Direct users to external systems and tools
Salient Questions / Data Systems

• How best to represent Omics metadata?
 – Myriad, rapidly evolving metadata standards
 – Newer Omics data types have no metadata standards yet
 • Data formats
 • metadata, protocols and analyses
 – How to capture the unique aspects of space biology experiments as metadata and related data?
GeneLab Staff

Project Manager – Joe Coughlan
Deputy Project Manager – Yung Nguyen
Project Scientist – Terri Thompson
Outreach Lead – Jon Rask
Payload Lead – Linda Timucin
Data Systems Lead/Architect – Daniel Berrios
Lead Developer – Chris Middour
Database System/Web Engineer – Jon Welch
Bioinformatics Scientist – Homer Fogle
Ground Lab Science R&D Lead – Kaushik Chakravarty
Lab Manager – Sam San-Huei Lan
Lab Technician – Rick Chen
Project Analyst/Configuration Manager – Nikita Gilkerson
Project Coordinator – Desireemoi Bridges
Backup Slides