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Infroduction

¢ Guidance, Navigation, and Control (GNC) uses dispersed modes
with stability analysis
- Calculation of mode with some uncertainty = dispersed modes
» Used for control system analysis

¢ Historical development of dispersions has involved
- Overly simplified dispersions
-10%-20% frequency dispersions
— 2100 inches on node dispersions }Anecdo’rol rules
~-20%-50% on modal gain amplitudes
*Frequencies & mode shapes dispersed independently
—~Not physics-based or model-based

*Mode shapes may not be physically realizable
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Infroduction

¢ Three methods to calculate dispersions
- Top-down: tweak the mode frequencies and shapes as per the
historical methodology (10%-20%)
*Bottom-up: apply uncertainty factors to the properties of the individual
finite elements in the model (Property-Level dispersions)
~May no be possible if models are very large or using superelements
* Middle ground: apply uncertainty factors to the stiffness and mass
maftrices describing groups of elements (Substructure dispersions)
~Great if already using reduced substructures

- Taylor series approximations
—Builds on property-level or substructure dispersions

¢ Current Presentation

- Compare property-level and substructure dispersions

—~Beam
~TAURUS-T

* Analytical Sensitivities — In Work
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¢ Dispersion Calculations
« Substructure vs. Part-level

- Analytical Sensitivities k1 k2 k3 k4 k5
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Dispersion Calculations: Substructure

¢ Group together elements and treat as a single substructure
* Apply the model uncertainty to the stiffness and mass matrices of each
substructure
« Uncertainty factors (4, v) must be large enough to envelope potential
uncertainties in the model
*Beam - Young's modulus and density
* TAURUS-T — Young's modulus, density, spring rates

- Infegrated vehicle — mass and stiffness matrices of elements
—Core, boosters, LVSA, MPCYV, etfc
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Dispersion Calculations: Property-Level

¢ Treat dll finite elements independently
* Apply the model uncertainty to stiffness and mass matrices of each element
* May use uncertainty factors that reflect unknowns due to manufacturing or

material tolerances
—Will likely be smaller than prescribed using substructure uncertainty

*Beam - Young's modulus and density
* TAURUS-T — Young's modulus, density, spring rates, bar element dimensions
* Integrated vehicle — material stiffnesses, density, bar dimensions, beam

dimensions, shell thicknesses, etc.
—Core, boosters, LVSA, MPCV, etfc
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¢ Frequency Response Function

¢
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Evaluation of Dispersions: FRF

¢ Equation of motion
(1171} + 2w, )0} + [wi]{n} = [®]{F,}

¢ Transfer function between force at degree of freedom j and output at
degree of freedomii
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¢ Examples
» Cantilevered Beam
* TAURUS-T Model
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Beam Dispersions

Dispersion Substructure Part Level Part Level
Type
Variations +20% +10% +20%

Mode 1 29% 11.7% 16.3%
%Cchange

Mode 2 24% 11.6% 14.7%
%»Cchange

Mode 3 22% 9.3% 14.3%
%Change
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TAURUS-T Dispersions

o T_'—Q_TT T_'—Q_TT
Dispersion Substructure Part Level Part Level
Type
Variations +10% +5% on dim1 & dim?2 +10% Spring rates, E, p,
E, spring rates, p 50%-200% on springs beam dim1 & dim?2
E,0: Gaussian w/ 0=0.5%

Mode 1 25% 11% 16%
%»Cchange

Mode 2 25% 11% 17%
%Cchange

Mode 3 22% 16% 23%
%»Cchange
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Design Sensitivities

¢ Use the eigenvalue sensitivities to show why substructure dispersions are
more conservative

ddi _ (K _ ) MY

dx; ~ "t\dx;  "ldx;)"
k1 k2 k3 k4 kS I ke k7 k8 k9 k10
Al 0.1156 | 0.1045 | 0.0940 | 0.0840 | 0.0747 | 0.0659 | 0.0577 | 0.0501 | 0.0432
A2 0.1132 | 0.0775 | 0.0487 | 0.0268 | 0.0116 | 0.0030 | 0.0002 | 0.0026 | 0.0091 | 0.0185
A3 0.1015 | 0.0501 | 0.0173 | 0.0022 | 0.0022 | 0.0131 | 0.0292 | 0.0448 | 0.0551 | 0.0572
A4 0.0905 | 0.0289 | 0.0028 | 0.0060 | 0.0261 | 0.0475 | 0.0575 | 0.0509 | 0.0321 | 0.0116

Note: numbers shown are the absolute values of the sensitivities

¢ Substructure dispersions have the cumulative effect of the parts
¢ Part-level dispersions: some element stiffness values within a substructure
go up while some go down
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¢ Taylor Series side note
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Taylor Series Approximations

¢ One cost-reduction method is to approximate modes with Taylor series
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¢ The first and second derivative of the eigenvalues and eigenvectors are
easily calculated
¢ A pseudo-inverse method used to get eigenvector sensitivities
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¢ The approximation only for beam (TAURUS results within month)
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Taylor Series Approximations

Frequency response of beam mid-point displacement Frequency response of beam mid-point displacement
using directly-calculated modes using approximated modes
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¢ Taylor series approximation of FRF response
« Good for first two modes, poor for higher order modes
« Gains at the peaks are linear with respect to frequency, not so for exact FRF
¢ Compare exact and approximate PNy o
modes with modal assurance criteria RN WA mecrero) s
* With the =10% dispersion values, the AT T '
approximation breaks down
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¢ Discussion/Conclusions
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Discussion/ Conclusions

¢ Two(-ish) methods of calculating modal dispersions

¢ Substructure dispersions
- Group together elements that are spatially close
* Apply uncertainty factors to substructure stiffness and mass matrices
* Developed to be more model-realistic than 100 inch method
* Requires large uncertainty values to get to traditional levels of uncertainty
* Can be performed on reduced or full finite element models

¢ Part-level dispersions
* Apply uncertainty factors to element dimensions and material properties

» Realistic uncertainty values applied
—~Manufacturing tolerances
—Material quality control

* Provides most physically realistic modal dispersions
- Uses the full finite element model, thus costly

« Can provide an estimate of the model uncertainty
- Least conservative

¢ Taylor series dispersions
« Potential cost savings
* Quickly lose accuracy
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Beam Dispersions

¢ Substructure
- Each mass and stiffness allowed to vary £20%
- First three frequencies vary 29%, 24%, and 22%

¢ Partlevel - 10%
- Properties (E, p) varied £=10%
*Modes vary by 11.7%, 11.6%, and 9.3%

¢ Part level - 20%
- Properties varied =20%
*Modes vary by 16.3%, 14.7%, and 14.3%
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TAURUS-T Dispersions

Frequency response of TAURUS tip
with substructure dispersions

¢ Substructure

- Stiffness (E, spring rates) and mass varied =10%
- First three peaks vary 25%, 25%, 22%
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Frequency response of TAURUS tip
‘with property-level dispersions

¢ Part Level
* Vary spring rates, beam dimensions,
Young's modulus, and density =10%
- First three peaks vary 16%, 17%, and 23%
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* Cross-sectional dimensions varied 5% |

- Spring rates varied 50%-200%

*Young's modulus and density varied with
Gaussian distribution with 0=0.5%*nominal

« First three peaks vary 11%, 11%, 16%
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