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Reflected vs. Emitted Flux
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Particle Size

Increasing particle size decreases the reflectance/emittance and 
increases contrast of spectral features for both VNIR and TIR

Visible-NearIR Thermal IR

From RELAB

From Berlin 
Emissivity Database,
Maturilli et al. 2008

Reflected vs. Emitted Measurements
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Reflected vs. Emitted Measurements
Space Weathering

Simulated impact melting increases the spectral contrast in the TIR
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ASTER Library

Mixing

Contaminant has greater impact on VNIR versus TIR

Reflected vs. Emitted Measurements
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Multiple Phobos observations by Mariner 9 InfaRed Thermal Mapper (IRTM) 
were  used to derive minimum / maximum temperatures of 140 / 300 K 
(Lunine et al. 1982).

Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) 
measured from 1700 to 200 cm-1 (~6 to 50 µm) with spectral resolutions of 
6.25-12.5 cm-1 (Christensen et al., 1992, 1998).

Mars Express (MEX) Planetary Fourier Spectrometer (PFS) measured 
wavenumbers 8200-1700 cm−1 (SWC, 1.2-5.9 μm) and 1700-250 cm−1 (LWC 
5.9-40 μm) with a spectral resolution of ~ 2 cm−1 (Formisano et al. 2005) 
Today I only discuss data from LWC.

At these wavelengths, TES & PFS provide a sensitive means of determining 
mineralogy. They sample minerals fundamental vibrational modes whose 
number, position, intensity, and shape depend upon the atomic masses, 
inter-atomic force fields, and molecular geometry.

Thermal Emission Observations of Phobos
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Thermal Emission Observations of Phobos

• Both TES and PFS observed 
Phobos multiple times

• The spacecraft (SC)-Phobos
distances result in a relatively large 
coverage of the surface (panel a)

• During half of the encounters TES
and PFS viewed the unilluminated 
hemisphere of Phobos (above 
dashed line in panel b)

• The illuminated hemisphere of 
Phobos (below dashed line panel b) 
was observed with resolutions of a 
few to ≈ 25 km (panel c)

TES < > PFS

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

Range of
Phobos dimensions
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Emittance from Data
1) Three black bodies used to fit the data
2) Results used to create an upper hull fit to the radiance maxima
3) Emittance is produced by dividing the measured radiance by the hull

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

Inst-Orb # Solar 
dist.,  AU Avg. T1, K Avg. T2, K Avg. T3, K

TES-476 1.58587 218±15 149±30 114±40
TES-501 1.59916 194±15 139±20 102±25
TES-526 1.61140 190±20 146±27 102±25
TES-551 1.62260 271±51 206±44 143±51
PFS-756 1.66508 265±5 260±5 250±5

PFS-5851 1.64121 240±5 160±5 130±5
PFS-5870 1.6374 270±5 265±5 260±5
PFS-6906 1.38759 353±5 290±5 260±5

TES and PFS minimum, 130-140 K, and maximum, 270-353 K,  temperatures are 
consistent with Viking IRTM; night 140 K, day 300 K (Lunine et al. 1982)

The maximum temperature of PFS-6906, 353±5 K, ≈1.39 AU, is consistent with 
Earth-based observations, ≈1.38-1.39 AU, yielding 320-340 K (Lynch et al. 2007)
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PFS Emissivity
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PFS regions from the 4 encounters,
from Giuranna et al. 2011 

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

PFS Orbit 5870
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TES Emissivity
TES observations near 

Stickney (orbit 551)

Statistically distinct (K-means clustering) 
spectra exist within each box
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CF = Christiansen feature, RB = Reststhralen band, TF = transparency feature

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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PFS – TES Comparisons (Giuranna et al. 2011)
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TES compositional Analyses: CF of Terrestrial Samples

Christiansen frequency (CF) related to rock type 
(Salisbury and Walters, 1989). Created averages for 
igneous rocks from their Table 2 (points ±1σ).

4 Stickney classes CFs determined using quadratic 
fit (7.1-9.8 µm, letters) are similar to ultramafic rocks

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

from Giuranna et al. 2011

TES
Range

feldspathoids

after Giuranna et al. 2011

TES CF range is consistent with 
phyllosilicates (e.g., clays & 
micas), nesosilicates (e.g., 
olivines) & limited tectosilicates 
(e.g., feldspathoids).
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TES Compositional Analyses: Spectral Library Comparison

Library White Green Red Yellow
ASU, 8-35 µm PS PS PS PS

8-18 µm PS, IS, TS PS, IS, salts PS PS, salts
18-35 µm PS, IS PS, IS, salts PS, IS IS, TS

ASTER meteorites, 8-25 µm AC, CC AC AC, OC AC
8-18 µm AC, CC AC, CC AC, OC AC, OC

18-25 µm AC, CC AC AC, CC AC
ASTER Terrestrial Rocks, 8-14 µm Ba, Di, Ij Ba, Ij, No Ba, An Ba, Ij, No

ASTER Lunar Samples, 8-14 µm LM, LT LT LM, LT LM, LT

PS = phyllosilicates, IS = inosilicates, TS = tectosilicates
AC = achrondites, CC = carbonaceous chrondrites, OC = ordinary chondrites
Ba = basalt, Di = diorite, Ij = ijolite, No = norite, An = andesite
LM = lunar maria, LT = lunar transitional

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

1) Spectral Analysist (IDL-ENVI) spectral feature fitting for comparison to libraries
2) Evaluations of TES clusters over full and restricted ranges
3) Record top 10 matches
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TES Analyses of Glotch et al. 2014

from Glotch et al. 2014
TES-551

Short-wavelength “roll-off”, structure,
and 1590 cm-1 (6.3 μm) feature.

Suggestive of H2O associated 
with phyllosilicates.
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TES Analyses of Glotch et al. 2014

ASTER Library

Minimum-maximum-minimum
near 1340-1415-1522 cm-1

(7.5-7.07-6.6 µm).

Bandfield et al. 2003
Suggestive of carbonates

from Glotch et al. 2014
TES-551
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Phobos Composition via Different Wavelengths

ASTER Library

Suggested materials VNIR-SWIR Thermal
Phyllosilicates Y Y
Tectosilicates Y

Asteroids/Meteorites Y N?
Lunar, or basalt-like N? Y

Carbonates Y
Ultramafic Y
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Phobos Composition Summary

ASTER Library

• Presence of phyllosilicates via VNIR-SWIR and TIR 
data

• Presence of basaltic/lunar compositions, carbonates, 
and tectosilicates supported by TIR data

• Presence of asteroidal or meteorite compositions 
supported by VNIR data
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ASTER Library

Thank you for your attention
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Backup Slides

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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CRISM & OMEGA Phobos Observations

From Fraeman
et al. 2012
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Mariner 9 InfRared Thermal Mapper (IRTM) had multiple Phobos
observations used to create 11- and 20-µm thermal contour maps

minimum / maximum temperature 140 / 300 K

Thermal Emission Observations of Phobos

11 µm 20 µm
Equator

From Lunine et al. 1982

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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Emittance from Data
• A linear combination of 3 black bodies is used in a least squares fit (B)
• Using these results, an upper hull is fit to the radiance maxima (C)
• Emittance is produced by dividing the measured radiance by the hull (D)
• Same approach is used for PFS so derived temperatures can be compared

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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Emittance from Data
1) Three black bodies used to fit the data
2) Results used to create an upper hull fit to the radiance maxima
3) Emittance is produced by dividing the measured radiance by the hull

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

Inst-Orb # Solar 
dist.,  AU

Mars Heliocentric 
Longitude, (°) Avg. T1, K Avg. T2, K Avg. T3, K

TES-476 1.58587 12 218±15 149±30 114±40
TES-501 1.59916 17 194±15 139±20 102±25
TES-526 1.61140 23 190±20 146±27 102±25
TES-551 1.62260 29 271±51 206±44 143±51
PFS-756 1.66508 77.3 265±5 260±5 250±5

PFS-5851 1.64121 102.5 240±5 160±5 130±5
PFS-5870 1.6374 104.9 270±5 265±5 260±5
PFS-6906 1.38759 269.7 353±5 290±5 260±5

TES and PFS minimum, 130-140 K, and maximum, 270-353 K,  temperatures are 
consistent with Viking IRTM; night 140 K, day 300 K (Lunine et al. 1982)

The maximum temperature of PFS-6906, 353±5 K, ≈1.39 AU, is consistent with 
Earth-based observations, ≈1.38-1.39 AU, yielding 320-340 K (Lynch et al. 2007)
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Derived Versus Model Surface Temperatures

Phobos, Deimos, and Mars Workshop, Tokyo, Japan

Model
maximum

Model
minimum

TES

PFS

PFS

Kuzmin and Zabalueva (2003) 
used a numerical model of the 
thermal regime of Phobos’ 
surface regolith layer to predict 
minimum and maximum 
surface temperatures (black 
lines) as a function of season.

TES (×) and PFS (▲) derived 
values are mostly within the 
predicted diurnal temperature 
ranges for Phobos surface.

The seasonal temperature 
variability predicted by the 
model is also reproduced by 
TES and PFS results.

from Giuranna et al. 2011
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Thermal Emission Observations of Phobos

Inst-Orb #
SC-Phobos
range,km

Solar 
dist.,  AU

Phase 
anga (°)

km / 
pixel

# of 
Spect. Ls

b ,(°) Avg. T1, K Avg. T2, K Avg. T3, K

TES-476 1437 1.58587 105–107 12 6 12 218±15 149±30 114±40

TES-501 1081 1.59916 110–113 9 9 17 194±15 139±20 102±25

TES-526 1152–1269 1.61140 93–149 10 106 23 190±20 146±27 102±25

TES-551 275–785 1.62260 51–131 2–7 149 29 271±51 206±44 143±51

PFS-756 155 1.66508 64 7.5 2 77.3 265±5 260±5 250±5

PFS-5851 97 1.64121 99 4.7 1 102.5 240±5 160±5 130±5

PFS-5870 354 1.6374 53 17 1 104.9 270±5 265±5 260±5

PFS-6906 530 1.38759 35 26 2 269.7 353±5 290±5 260±5
a Sun-Phobos-Spacecraft,    b solar longitude

TES and PFS Phobos Observational Information

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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TES, Near Stickney Compared to Library Data
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TES Compared to Meteorites

Phobos, Deimos, and Mars Workshop, Tokyo, Japan
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PFS Compared to Library Data

ASTER Library
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TES + PFS Phobos Compositions

ASTER Library

1 2 3 4 Summary
Phyllosilicates Y Y Y Y
Tectosilicates Y Y Y

Meteorites N? N N
Lunar, or basalt-like Y Y Y? Y

Carbonates Y? Y Y
Ultramafic Y Y Y

1Roush and Hogan 2000 2Roush and Hogan 2001 
3Giuranna et al. 2011  4Glotch et al. 2014
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VNIR-SWIR Phobos Compositions

ASTER Library

1 2 3 4 5 6 7 8 9 10 Summary
Phyllosilicates ? N ? Y Y
Tectosilicates

Meteorites Y Y N Y Y Y Y Y
Lunar, or 

basalt-like
Y Y ? Y? N Y N N?

Carbonates
Ultramafic

1Pang et al. 1978 and Pollack et al. 1978 2Murchie et al. 1991 3Murchie and Erard 1996 
4Murchie et al. 1999 5Rivkin et al. 2002 6Gendrin et al. 2005 7Fraeman et al. 2012 
8Pajola et al. 2012 9Pajola et al. 2013 10Fraeman et al. 2014
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