Exploration Laboratory Analysis

M. Krihak,1 K. Ronzano2 and T. Shaw3

1University of California Santa Cruz, NASA Ames Research Center, Moffett Field, CA
2Wyle Laboratories, NASA Ames Research Center, Moffett Field, CA
3NASA Ames Research Center, Moffett Field, CA

2016 NASA Human Research Program Investigators’ Workshop

09 February 2016
Exploration Laboratory Analysis (ELA) – FY15 Project Overview

• Background
 – ExMC Risk and Gap
 – ELA Objective
• ELA Downselect
 – Criteria
 – Technology Selections
• Summary & FY16 Plans
Exploration Medical Capability (ExMC)
Risk and Gap

Risk –

Risk of Adverse Health Outcomes & Decrement in Performance due to Inflight Medical Conditions

Med 13:

We do not have the capability to implement medical resources that enhance operational innovation for medical needs.

Research Approach for ELA:

Develop the capability to measure clinically significant laboratory analytes in a minimally invasive manner during exploration missions.
ELA Objective

Demonstrate the feasibility of emerging ELA operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions.
Exploration Laboratory Analysis

TECHNOLOGY DOWNSELECT
ELA Operational Measurements

<table>
<thead>
<tr>
<th>Basic Metabolic Panel</th>
<th>Blood Gases Panel</th>
<th>Hematology Panel</th>
<th>Cardiac Panel</th>
<th>Liver Panel</th>
<th>Urinalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose Calcium Sodium Potassium CO₂ Total Chloride BUN Creatinine Lactate</td>
<td>PaO₂ PaCO₂ SaO₂ HCO₃ pH</td>
<td>WBC Count RBC Count HCT Hgb Neutrophils Abs. Neutrophils Count Lymphocytes Monocytes Monocytes Eosinophils PLT</td>
<td>Troponin I</td>
<td>Albumin ALP AST ALT</td>
<td>Specific Gravity pH Leukocytes Nitrites Proteins Glucose Ketones Urobilirubin Bilirubin Blood</td>
</tr>
</tbody>
</table>
Technology Status

Point-of-Care (POC) Devices

• For more than a decade, POC devices have emerged for:
 – Bedside care; doctor’s office.
 – Care in remote locations (e.g. 3rd World, developing nations).
 – Military operations in forward combat locations.

• POC technologies are generally compact instruments.
 – However, often limited in the breadth of measurements
 – Typically offer a subset of the ExMC operational analyte

• Clinically validated, commercial-off-the-shelf (COTS) instruments are emerging that can provide all measurements.
 – Mass, volume, power and space readiness do not align with exploration mission restrictions.
ELA Technology Downselect Criteria

<table>
<thead>
<tr>
<th>Decision Factors</th>
<th>Criteria</th>
<th>Criteria Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Analysis</td>
<td>Validated Measurements</td>
<td>Number of validated, operational measurements demonstrated by the analytical platform.</td>
</tr>
<tr>
<td></td>
<td>Assay Capability (Technology Limitations)</td>
<td>Technological capability to provide additional operational measurements beyond current menu.</td>
</tr>
<tr>
<td></td>
<td>Multiplexing</td>
<td>Multiplexed measurements capable on the analytical platform.</td>
</tr>
<tr>
<td></td>
<td>Reagent/Cartridge Shelf-Life</td>
<td>Demonstrated ambient storage</td>
</tr>
<tr>
<td>Engineering</td>
<td>Mass/Volume</td>
<td>Instrument mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrument volume</td>
</tr>
<tr>
<td></td>
<td>Fluidics</td>
<td>Microfluidics transport and control</td>
</tr>
<tr>
<td></td>
<td>Reagent/Cartridge Waste</td>
<td>Volume of disposables per run</td>
</tr>
<tr>
<td></td>
<td>Space Readiness (Hardware maturity)</td>
<td>Device complexity; space readiness</td>
</tr>
<tr>
<td>Cost & Schedule</td>
<td>Instrument Cost</td>
<td>Cost to acquire an instrument</td>
</tr>
<tr>
<td></td>
<td>Ability to Work with Manufacturer</td>
<td>Responsiveness to NASA</td>
</tr>
</tbody>
</table>
Downselect Technology #1
Cell Phone-Based Lateral Flow Assay for Blood Biomarker Detection
Intelligent Optical Systems (IOS) & Holomic LLC

IOS: LFA Development for Blood-Based Testing

Target Assay Panels:
- Cardiac Biomarkers:
 - Troponin I (TnI)
- Liver Function Panel:
 - Alanine Aminotransferase (ALT)
 - Aspartate Aminotransferase (AST)
 - Alkaline Phosphatase (ALP)
- Blood Chemistry Panel
 - Creatinine, Glucose, Na, K, BUN
- Dissolved Blood Gas Panel
 - Dissolved Oxygen, CO2, pH
Holomic, LLC: Development of a Prototype Fluorescent Reader and Data Processing Software for On-cell Phone

Reader Dimensions
- Designed with limited space consideration.
- Reader weight (including phone) is 10.8 oz.; reader volume is ~420 cm³
- At the cost of a smaller imaging field-of-view, the height may be reduced to <5 cm by substituting an imaging lens with a shorter focal length.

Reader application screenshots of recently added features

On Going Development:
- Design and deliver a fully automated reader for various fluorescent assays.
- Automated mechanical switching of band-pass filters will enhance automation for measuring multiple panels.
Downselect Technology #2
rHEALTH Technology – DNA Medicine Institute

Spiral Vortexer
Optical Block

Nanostrip
Vitals Patch
C.H.A.S.
Microgravity
Small Sample
rHEALTH X Capabilities

Optical Block Performance

- 3-part counts
- Differential antibody staining

Optical block
405 nm, 532 nm lasers
3 single photon counters

WBC 3-Part Diff

Chan, E. et al. rHEALTH Sensor: Universal In-Flight Biomedical Analysis Technology. in 2013 NASA Human Research Program Investigators’ Workshop (Galveston, Texas, 2013)
Summary & FY16 Plans

• ELA Downselect technologies identified.
 – Intelligent Optical Systems/Holomic, LLC
 • Lateral flow strip assays read by smartphone analyzer.
 – DNA Medicine Institute
 • Handheld rHEALTH flow through analyzer.

• Delivered the ExMC Exploration Laboratory Analysis Downselect Recommendation Report (ARC Document No. 6973).

• FY16 objectives
 – Develop strategy that identifies roadmap to guide project completion.
 – Identify ELA integration points with an exploration medical system.