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HYBRID DIFFERENTIAL DYNAMIC PROGRAMMING WITH
STOCHASTIC SEARCH

Jonathan D. Aziz∗, Jeffrey S. Parker† and Jacob A. Englander‡

Differential dynamic programming (DDP) has been demonstrated as a viable ap-
proach to low-thrust trajectory optimization, namely with the recent success of
NASA’s Dawn mission. The Dawn trajectory was designed with the DDP-based
Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another
recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3

is a variant of the standard DDP formulation that leverages both first-order and
second-order state transition matrices in addition to nonlinear programming (NLP)
techniques. Areas of improvement over standard DDP include constraint handling,
convergence properties, continuous dynamics, and multi-phase capability. DDP is
a gradient based method and will converge to a solution nearby an initial guess.
In this study, monotonic basin hopping (MBH) is employed as a stochastic search
method to overcome this limitation, by augmenting the HDDP algorithm for a
wider search of the solution space.

INTRODUCTION

DDP is a trajectory optimization algorithm that relies on quadratic expansions of the cost func-
tion nearby a nominal trajectory.4 Iterates therefore only exhibit local improvements to the nominal
trajectory within a region determined by the validity of the quadratic approximation. After converg-
ing on a solution it is difficult to claim anything more than local optimality, as is the case for any
nonlinear optimization algorithm. Furthermore, for trajectory optimization in the context of space-
craft mission design it is often desirable to optimize decision variables that span a large trade space.
Pairing trajectory optimization with a stochastic search method allows for the selection of the best
design from many locally optimal solutions, while leveraging the full space of design variables.

The addition of stochastic search to trajectory optimization algorithms is not new to spacecraft
mission design, but past applications have been augmentations to NLP solvers.5, 6 This work instead
implements HDDP as an inner loop to compute the spacecraft trajectory. MBH is chosen as the
stochastic search method in an outer loop.

The HDDP and MBH algorithms are detailed in the following sections, and implementation of
HDDP is verified with a fixed time of flight Earth-Mars rendezvous transfer. The procedure for
including variable departure and arrival times is discussed in the context of multi-phase HDDP and
applied to the Earth-Mars rendezvous example. MBH is then applied to encourage larger steps in
the time variables, including shifts in synodic period.
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HYBRID DIFFERENTIAL DYNAMIC PROGRAMMING

The fundamental DDP iteration consists of a backward sweep and a forward pass. During the
backward sweep, a quadratic model of the objective function about a nominal trajectory is mini-
mized with respect to deviations in the control variables. A new trajectory is computed following
the updated control law in the forward pass. If the cost improves then the new iterate is accepted as
the nominal trajectory, otherwise the step size of the control update is reduced.

Backward Sweep

According to Bellman’s principle of optimality, any sub-arc of an optimal trajectory is also op-
timal. This gives rise to the backward sweep in DDP, where optimal sub-arcs are computed re-
cursively, proceeding backwards from the final state. For a trajectory discretized into N stages, a
sequence of subproblems is solved from stage k = N − 1, ..., 0. The first optimization finds the
control update δuN−1 that minimizes JN−1, the cost-to-go at stage k = N −1, yielding the optimal
cost-to-go J∗k . Solving the subproblem at stage k then minimizes the local stage cost Lk, given that
the optimization downstream has already been performed.

Jk = Lk + J∗k+1 (1)

J∗k = min
δuk

[Jk] = min
δuk

[Lk + J∗k+1] = min
δuk

[Lk] + J∗k+1 (2)

Here the appeal of DDP over popular NLP methods is made evident. For m-dimensional control,
the DDP iteration solves N subproblems of size m, as opposed to a single optimization problem of
size mN . This produces a stark contrast when solving a system of linear equations, as is typically
the case. Inverting the mN ×mN Hessian matrix, and populating it with the necessary derivatives
across all stages, becomes increasingly difficult with larger problem sizes. The DDP subproblem
size remains fixed, albeit there are more of them to solve.

A feasible subproblem is formed in DDP by quadratic expansions of the cost-to-go at each stage,
accomplished by a second-order Taylor series expansion of both sides of Eq. (1).

δJk ≈ ERk + JTx,kδxk + JTu,kδuk +
1

2
δxTk Jxx,kδxk +

1

2
δuTk Juu,kδu+ δxTk Jxu,kδuk (3a)

δLk ≈ LTx,kδxk + LTu,kδuk +
1

2
δxTkLxx,kδxk +

1

2
δuTkLuu,kδu+ δxTkLxu,kδuk (3b)

δJ∗k+1 ≈ ERk+1 + J∗Tx,k+1δxk+1 +
1

2
δxTk+1J

∗
xx,k+1δxk+1 (3c)

ERk+1 represents the expected reduction as a result of downstream optimization. Subscripts imply
differentiation with respect to state x or control u at stage k. Because optimization at stage k + 1
has already been performed, no δu terms are present in Eq. (3c) and ERk+1, J∗x,k+1 and J∗xx,k+1

are known.

In order to match terms in Eq. (3), downstream deviations need to be known as a function of
deviations in state and control upstream, δxk+1 = f(δxk, δuk) In the standard DDP formulation,
sensitivities and deviations at stage k + 1 are integrated backwards in time to stage k. HDDP
distinguishes itself by using the first-order state transition matrix Φ (STM) and second-order state
transition tensor Φ2 (STT) to perform this mapping.

δxk+1 = Φkδxk +
1

2
δxTk ·Φ2

kδxk (4)
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It is useful to proceed with the augmented state Xk = [xk uk]
T and to partition the STM and STT

into submatrices.

Φ =

Φx Φu

0 0

 , Φ2 =

Φ2
xx Φ2

xu

Φ2
ux Φ2

uu

0

(5)

Now derivatives of the cost-to-go at the current stage k are available by using Eq. (4) in Eq. (3) and
matching terms.

Jx,k = Lx,k + ΦT
x,kJ

∗
x,k+1 (6a)

Ju,k = Lu,k + ΦT
u,kJ

∗
x,k+1 (6b)

Jxx,k = Lxx,k + ΦT
x,kJ

∗
xx,k+1Φx,k + J∗Tx,k+1·Φ2

xx (6c)

Juu,k = Luu,k + ΦT
u,kJ

∗
xx,k+1Φu,k + J∗Tx,k+1·Φ2

uu (6d)

Jux,k = Lux,k + ΦT
u,kJ

∗
xx,k+1Φx,k + J∗Tx,k+1·Φ2

ux (6e)

Stage derivatives are used in the minimizing control law, that is straightforward to obtain by setting
the derivative of Eq. (3a) with respect to δuk equal to zero.

δuk = −J−1uu,k(Ju,k + Jux,kδxk) (7)

This unconstrained feedback control law is otherwise written as

δuk = Ak +Bkδxk

Ak = −J−1uu,kJu,k
Bk = −J−1uu,kJux,k

(8)

Ak and Bk are stored in memory for application in the forward pass. Before proceeding to stage
k− 1, the expected reduction and derivatives of the cost-to-go are updated to reflect the new control
law.

ERk = ERk+1 + JTu,kAk +
1

2
ATk Juu,kAk (9a)

J∗x,k = Jx,k + JTu,kBk +ATk Juu,kBk +ATk Jux,k (9b)

J∗xx,k = Jxx,k +BT
k Juu,kBk +BT

k Jux,k + JTux,kBk (9c)

Everything is in place for an unconstrained backward sweep. STMs and STTs are integrated and
stored alongside the nominal trajectory, or preferably computed analytically if possible, as this is
the most expensive part of the algorithm. The expected reduction and derivatives are initialized at
the final state, ERN = 0, J∗x,N = Jx,N , J∗xx,N = Jxx,N . Repeated application of Eqs. (6), (8) and
(9) from stage N − 1, ..., 0 yields a trial control law for the forward pass and an estimate of the
expected reduction in the objective function.

3



Trust-Region Quadratic Subproblem

The unconstrained control update in Eq. (8) is likely to step beyond the valid region of the
quadratic approximation. For nonlinear problems like spacecraft trajectory optimization, an un-
constrained backward sweep and subsequent application of the new control law is likely to lead to
divergence or infeasible iterates. Eq. (8) also requires Juu,k to be invertible, and positive definite so
that δuk is along a descent direction. HDDP overcomes these challenges by solving a trust-region
quadratic subproblem (TRQP) at each stage. Now when minimizing Eq. (3a), δuk is required to lie
within the trust-region radius ∆.

min
δuk

[Ju,kδuk +
1

2
δuTk Juu,kδuk]

s.t. ‖Dδuk‖ ≤ ∆

(10)

The methods of Reference 7 have proven robust in solving this subproblem in HDDP, yielding
a positive definite J̃uu,k and constrained δuk. However, the HDDP algorithm is sensitive to the
selection of a scaling matrix D that determines the shape of the trust-region. For simple problems,
setting D to the identity matrix is sufficient. When components of Ju and Juu vary by orders of
magnitude, a robust heuristic for selecting D becomes necessary. Reference 3 suggests several
scaling methods and provides a performance comparison.

Performance of HDDP is also sensitive to the procedure for updating the trust-region radius with
each iteration. If an iteration is unsuccessful, then the quadratic model is poor and the trust-region
radius should be reduced. With an otherwise successful iteration, the trust-region radius is appropri-
ate and could possibly be increased. Evaluating the ratio between the actual cost improvement and
the expected reduction ρ = δJ/ER qualifies the validity of the model. Clearly, ρ < 0 is an unsuc-
cessful iteration, and ∆ should be reduced. For ρ ∈ (0, 1) the model overpredicts the improvement,
but underpredicts for ρ > 1. The model is accurate if ρ is close to one, i.e. ρ ∈ [1 − ε, 1 + ε]
for small ε. Ideally, ∆ should be selected to keep ρ close to one, but such update rules have been
found to prohibit convergence, where the trust-region collapses to ∆min before terminal constraints
are satisfied. In this study, all ρ > 0 are accepted as successful iterates, and the update for iteration
p+ 1 is selected to favor frequent increases in ∆.

∆p+1 =

{
min((1 + κ)∆p,∆max), ρ > C, C ∈ (0, 1)

max((1− κ)∆p,∆min), otherwise
(11)

Selection of an initial trust-region radius ∆0 and the limits [∆min, ∆max] is straightforward as they
typically represent physical quantities like thrust. Tuning the parameters κ and C can prove tedious.

The trust-region step δuk ≤ ∆ still might violate stage constraints. Here the only stage constraint
considered is maximum thrust Tmax with control variables u as components of the thrust vector. Dur-
ing the backward pass it is easy to check for active thrust magnitude constraints, uk +Ak ≤ Tmax.
If the constraint is active then Ak is reduced and the feedback is zeroed. Challenging stage con-
straints warrant a more sophisticated approach. Success has been found with Fletcher’s quadratic
programming method as suggested for HDDP.2, 8

Augmented Lagrangian Method

Terminal constraints are enforced in HDDP with the augmented Lagrangian method (ALM). Con-
straints on the final state of the form ψ(xN ) = 0 are introduced to the original objective function h
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with Lagrange multipliers λ and penalty parameter σ.

J = h+ λTψ + σf2 (12)

The quadratic term is f2 = ψTψ, the square of the norm of the constraint violations. An initial
penalty parameter σ0 is selected sufficiently large to compete with the contributions from h. Then σ
must be continually increased to push the iterates towards feasibility. The HDDP update rule from
Equation (13) is designed to prevent σ from becoming so large that it causes numerical difficulties.

σp+1 = max(min(0.5
|h|
f2
, kσσp), σp) (13)

The rule is applied when an iterate fails to reduce the norm of the constraint violations, fp+1 > fp.
Selecting σ0 and the factor kσ > 1 has been the most tedious part of tuning HDDP. Values that
are too small will lead to slow convergence or trust-region collapse, while large values effectively
neglect h or cause numerical difficulties. Furthermore, these tuning parameters are largely problem
dependent, so it is difficult to form a reliable heuristic. This challenge motivates the search for a
penalty-free DDP method that will be the subject of future investigations.

The Lagrange multipliers serve to smooth the objective function and permit convergence proofs
that do not require σ →∞.9 HDDP is robust to initial guesses for λ, and λ = 0 has been sufficient
thus far. The updates δλ maximize the cost-to-go, and are computed by TRQP(−Jλ,−Jλλ,∆)
after all stages have been minimized in the backward sweep. Here the trust-region radius is less
intuitive, and sometimes it has helped to scale the multiplier trust-region radius to some factor of
the control variable trust-region radius. The backward sweep equations must be reformed to account
for sensitivities with respect to the multipliers, but the procedure is unchanged. A feedback term
Ckδλ is added to the control, Ck = −J−1uu,kJuλ,k, and new stage equations arise for first, second,
and cross-derivatives in λ. See Reference 2 for the complete treatment.

HDDP Acknowledgement

The body of this work results from efforts to implement HDDP as introduced by Lantoine and
Russell.2, 3, 10, 11, 12 The two part journal series2, 3 is a complete description of the algorithm with
comprehensive theoretical discussion and example applications. Reference 10 is earlier work that
first solves for controls in an inner loop, and then multipliers in an outer loop. This methodol-
ogy has proven useful when struggling to update controls, multipliers and the penalty parameter
simultaneously. Reference 11 dramatically reduces the computational effort required of HDDP by
implementing analytic STMs and STTs. The preceding discussion should be consistent with their
nomenclature, aside from neglecting to address multi-phase trajectories. Brief attention to multi-
phase trajectories in HDDP will be given in a later next section. The implementation here differs by
integrating a continuous thrust control, aggressive increases to the trust-region radius, and a naive
approach to thrust magnitude constraints.

MONOTONIC BASIN HOPPING

The stochastic search method implemented here is based off of the MBH algorithm. MBH is a
global optimization heuristic that seeks to explore the entire solution space and exploit local optima
to find improvements in nearby solutions. MBH has been successfully coupled with NLP solvers
by the European Space Agency’s Advanced Concepts Team5 and in NASA Goddard’s Evolutionary
Mission Trajectory Generator (EMTG).6 Pseudocode in Algorithm (1) details the procedure.
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First, an initial guess is provided to HDDP to generate a nominal solution. In this study all initial
guesses are ballistic, i.e. all thrust vectors are zero magnitude. If the nominal solution is a feasible
trajectory it is stored in memory. MBH then proceeds until meeting a prescribed stopping criteria
such as computation time or Nhop, an MBH iteration limit.

The MBH iteration begins by introducing random perturbations to the decision variables of the
nominal solution, and then HDDP is reinitialized. Small perturbations are expected to fall within
the quadratic trust-region and HDDP will return the previous nominal trajectory. Thus, a global
HDDP method benefits from drawing the random perturbations from long-tailed Cauchy and Pareto
distributions as suggested by Englander and Englander.6 The results presented here correspond to
Pareto distribution sampling.

Introduction of departure and arrival times as decision variables adds many local minima to the
trajectory optimization problem. Furthermore, if in the initial and final orbits lie in different orbital
planes, then opportunities across different synodic periods are not equivalent. MBH tries different
synodic periods with some percent likelihood ρtime−hop. If a sample from the standard uniform
distribution is below that value, the time variables are shifted forward or backward one synodic
period.

With HDDP filling the role of the NLP solver, special consideration must be given to the penalty
parameter σ that has been increased to some large value to produce the first nominal solution. It
must be reset so that MBH iterations do not take σ to a large enough value to produce numerical
instability. The initial parameter σ0 is tied to an initial guess and likely insufficient, as the perturbed
solution should be close to feasibility. The penalty parameter is reset at each MBH iteration so that
HDDP restarts with more weight given to constraint violations than the objective in the ALM cost
function. The Lagrange multipliers are carried through each hop.

σi,hop = max(σ0, 1.1
|h|
f2

) (14)

To clarify, a forward pass is first computed with the perturbed decision variables. A subsequent cost
function evaluation yields the current objective h and constraint violation f . Then σ is reset and the
cost is again evaluated before beginning the backward sweep.

Finally, if the iterate improves the objective on a feasible solution, or reduces the constraint
violations of an infeasible solution, the iterate is accepted and stored. The next MBH iteration
proceeds by perturbing this new nominal solution.

EXAMPLE EARTH-MARS RENDEZVOUS

Implementation of HDDP is validated by reproducing the Earth-Mars rendezvous transfer from
Reference 3. However, here the control variable is continuous low-thrust in the velocity, normal, and
co-normal directions, as opposed to approximating the low-thrust by impulsive maneuvers separated
by Keplerian arcs in HDDP standard.3 The equations of motion reflect two-body dynamics with
continuous low-thrust to be consistent with the finite burn low-thrust model (FBLT) in EMTG.13

ẍ = −µx/r3 + ux/m

ÿ = −µy/r3 + uy/m

z̈ = −µz/r3 + uz/m

ṁ = −‖u‖ /(Ispg0)

(15)
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Algorithm 1 Monotonic Basin Hopping (MBH)
generate random point x
run NLP solver to find point x∗ using initial guess x
xcurrent = x∗

if x∗ is a feasible point then
save x∗ to archive

end if
while not hit stop criterion do

generate x′ by randomly perturbing xcurrent
for each time of flight variable ti in x′ do

if rand (0, 1) < ρtime−hop then
shift ti forward or backward one synodic period

end if
end for
run NLP solver to find locally optimal point x∗ from x′

if x∗ is feasible and f (x∗) < f (xcurrent) then
xcurrent = x∗

save x∗ to archive
else if x∗ is infeasible and ‖c (x∗)‖ < ‖c (xcurrent)‖)

xcurrent = x∗

end if
end while
return best x∗ in archive

Note that the augmented state vector consists of the three position components, three velocity com-
ponents, spacecraft mass, and three thrust components, X = [r, v,m, u]T . Numerical integration of
Equation (15) is performed with the adaptive step eight-stage Dormand-Prince method.14

A 1000 kg spacecraft with a .5 N, 2000 Isp thruster departs Earth on April 10th, 2007 with a
fixed time of flight of 348.79 days. The trajectory is discretized into 40 stages of equal time. The
augmented Lagrangian is formed to maximize the final mass with a penalty on the position and
velocity errors at Mars arrival.

h = −mf

ψ =

rf − rM
vf − vM

 (16)

The resulting transfer is shown in Figure 1 with corresponding thrust profile in Figure 2. The
trajectory is also computed in the EMTG – FBLT model for validation. HDDP obtains the expected
bang-bang control profile, but differs slightly from EMTG at the switching points. Table 1 shows
how final mass increases with the improved accuracy of a continuous low-thrust model. Lagrange
multipliers from the continuous low-thrust solution and the reference HDDP standard in Table 2
differ but are seemingly related.

ALM Tuning

Successfully converging on a solution requires that the penalty weight and its rate of increase
are appropriately selected. An additional benefit of the stochastic step is that MBH can cover for
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Figure 1: Ecliptic view of an example Earth-Mars rendezvous transfer with thrust vectors shown.

Figure 2: Thrust profiles from the FBLT implementation of HDDP and the EMTG FBLT model.
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Table 1: Comparison of Spacecraft Final Mass

HDDP standard mf = 598.66 kg

HDDP – FBLT mf = 603.29 kg

EMTG – FBLT mf = 603.45 kg

Table 2: Comparison of Lagrange multipliers

HDDP standard λ = [0.5095,−1.2700,−0.2665, 0.1178, 2.0701, 0.13404]T

HDDP – FBLT λ = [1.0793,−2.3127,−0.5920,−0.1125, 2.9337, 0.0463]T

an improperly tuned HDDP setup. Table 3 presents a survey of HDDP results for different ALM
parameters on the previous Earth-Mars rendezvous example, and the improvement after applying
MBH. Time variables are fixed in this example so perturbations are applied to thrust variables only.
MBH adds robustness to HDDP by both improving on current solutions and finding solutions when
HDDP fails to converge. This added utility removes the very tedious task for the mission designer
to obtain the proper parameters by trial and error. All of the failures indicated correspond to trust-
region collapse before obtaining a feasible solution. When this occurs, it is often possible to drive
HDDP toward feasibility with parameter resets alone, absent of perturbations.

VARIABLE TIME OF FLIGHT

Time of flight variables can be handled as static parameters in HDDP, w = [t0, tf ]T . Alterna-
tively, the time of flight variable can be included in the augmented state vector.11 Static parameters
enable a multi-phase HDDP formulation.

xi,0 = Γi(wi) (17)

The initial state of phase i is determined by the initial function Γi. Dynamics and constraints may
be functions of w, and those static parameters may be subject to additional constraints, e.g. upper
and lower bounds on the time of flight.

A spacecraft trajectory may then be described by any number of phases, further discretized into
stages. This multi-phase formulation is especially useful for discontinuities like impulsive maneu-
vers or planetary flybys. Static parameters might then be ∆V or flyby altitude. An additional use for
static parameters might be spacecraft design variables like solar panel size, initial mass, or specific
impulse. The backward sweep equations are again reformed, now to account for sensitivities with
respect to the static parameters. The new feedback control term is Dkδw, Dk = −J−1uu,kJuw,k. Fur-
thermore, inter-phase constraints might require phase dependent ALM terms, λi, ψi. The backward
sweep begins with the subproblem at the final stage of the final phase and proceeds recursively
through the first stage of the final phase. Inter-phase subproblems TRQP(−Jλ,i,−Jλλ,i,∆) and
TRQP(Jw,i, Jww,i,∆) are then solved before proceeding to the upstream stage. After solving sub-
problems of all of the stages of all the phases, the inter-phase subproblems at i = 0 complete the
backward sweep.

Earth-Mars Rendezvous With Time Variables

Variable time of flight is introduced to the example Earth-Mars rendezvous problem by a two-
phase representation of the trajectory. However, the second phase contains solely an initial function
with zero stages, x1,0 = Γ1(w1) = xM (tf ). In other words, the second phase is the moment of Mars
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Table 3: Survey of ALM tuning and improvements with MBH

σ0 κs Iterations mf (kg) mf , Nhop = 30

10

1.1 123 failed 603.29∗

1.5 541 failed 603.04

2.0 643 601.87 602.80

100

1.1 231 failed 603.07

1.5 181 602.93 603.17

2.0 892 601.67 602.04

1000

1.1 352 failed 602.95

1.5 1119 602.50 603.14

2.0 940 601.75 602.21

*Solution in Figures 1- 2.

Table 4: Variable Time of Flight Results

δt0 -23.89 days

δtf 43.78 days

mf 674.95 kg

λ [1.5042,−2.1115,−0.9008,−0.3042, 3.2379, 0.1306]T

arrival, and its initial function is simply a lookup of the state of Mars at the final time. Similarly, the
initial function of the first phase is Earth’s position and velocity at the time of departure. The inter-
phase subproblems are then 1-dimensional and inexpensive to compute, for w0 = t0, and w1 = tf ,
and there are no additional ALM terms. Time derivatives for these subproblems are available from
the equations of motion and application of the chain rule.

Jt = ẋTJx (18a)

Jtt = ẋTJxxẋ (18b)

Jtx = ẋTJxx (18c)

Jtλ = ẋTJxλ (18d)

In the context of this example problem, Eqs. (18) are evaluated at tf and δtf is computed. The same
cannot be done for the initial time, as the sensitivities must be carried through the backward sweep
as stage minimizations are performed. Of course, this mapping is accomplished by the parameter
STM, Φw,k = ẋk.

The Earth-Mars rendezvous is again solved in HDDP, now with unbounded time variables. The
resulting transfer is presented for ALM parameters σ0 = 100 and κσ = 1.5 without applying MBH.

The new trajectory departs Earth 23.89 days earlier and arrive at 43.78 days Mars later, for a
new time of flight of 416.46 days. Changing these mission dates saves 71.66 kg of propellant, for
a new final mass of 674.95 kg. The thrust profile in Figure 4 suggests that the trajectory could be
improved further. The mid-trajectory thrust arc has been shifted backwards in time but the switch
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Figure 3: Resulting trajectory when time variables are included in the Earth-Mars rendezvous
example. Triangle markers indicate departure and arrival corresponding to the fixed time of flight
case.

Figure 4: Thrust profile for the variable time example with reference dates from the fixed time of
flight case.
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Table 5: Results for Nhop = 100

δt0 836.85 days

δtf 894.95 days

mf 745.57 kg

λ [4.3679,−1.1893,−2.1915,−4.2577, 6.0110, 1.5276]T

from max-thrust to coast is imperfect, with small thrust magnitudes from mission days 200-250.
Restarting HDDP with this trajectory as an initial guess for fixed time of flight on the new mission
dates should improve the result. This result is still nearby the fixed time of flight trajectory, so MBH
is applied next to explore other local minima in the time variables, including the following synodic
period.

APPLICATION OF THE STOCHASTIC STEP

Introduction of departure and arrival times as decision variables adds many local minima to the
trajectory optimization problem, but HDDP iterates are constrained by the trust-region radius where
the quadratic approximation is valid. MBH is now applied to the variable time Earth-Mars ren-
dezvous example. Perturbations are applied to the initial and final time variables only, not control
variables. Mars orbit lies outside of the ecliptic plane, so mission opportunities across different syn-
odic periods are not equivalent. MBH hops are allowed to sample both the initial 2007 opportunity,
and the following synodic period in 2009. A 20% likelihood of the synodic period hop is selected,
ρtime−hop = 0.2 and the best solution is accepted after 100 hops. HDDP is applied with first-order
STMs only to quickly generate the results.

The new trajectory departs and arrives Earth and Mars in distinctly different phases of their re-
spective orbits, and departs Earth during the 2009 opportunity. MBH reduces the time of flight to
392.86 days and improves the final mass to 745.57 kg. The resulting thrust profile is a Hohmann-
like two burn solution. Like before, the thrust profile in Figure 6 suggest the trajectory could likely
be improved further, as the first thrust arc ramps up and down instead of exhibiting a discrete on/off
control switch. Furthermore, there is room for improvement in the discretization procedure, as the
thrust profile only represents the final 28 of 40 stages. HDDP reduced the first 12 stages to coast
arcs, effectively not departing Earth until the stage 13. Figure 7 tracks the progress of successful
MBH iterations, and notes hops in synodic period. Those hops in synodic period are very successful,
while the more local hops offer incremental improvement.

CONCLUSION

The HDDP and MBH algorithms have been described and paired as a two-loop procedure to
spacecraft trajectory optimization, where HDDP computes trajectories in an inner loop and MBH
works as a stochastic search step in an outer loop. Implementation of HDDP successfully repro-
duced the previous results for an example Earth-Mars rendezvous and was verified by EMTG. MBH
was shown to overcome the limitations of poor tuning of the ALM parameters within HDDP.

Next, the inclusion of variable times of departure and arrival were presented as a multi-phase
HDDP problem. An improved trajectory for the Earth-Mars rendezvous was computed for variable
departure and arrival but nearby the initial dates. Stochastic search via MBH was then applied. MBH
successfully guided HDDP through larger steps in the time variables and across synodic periods.
The final solution departed in a later synodic period, with different phases of Earth and Mars. The
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Figure 5: Resulting Earth-Mars rendezvous transfer, now departing in 2009 after applying MBH as
a stochastic search step.

Figure 6: Thrust profile from the final MBH solution.
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Figure 7: Progress of MBH iterations with indication of hops in synodic period.

three-bang structure of the original thrust profile was reduced to a two-bang Hohmann-like transfer
that yielded significant propellant mass savings.

Future work intends to refine the HDDP implementation with several areas of improvement noted
in the discussion. The primary challenges to address are premature trust-region collapse and ALM
tuning. The addition of the stochastic step has been presented as an outerloop augmentation to
HDDP, so inclusion of stochastic search within the HDDP algorithm will be considered. Lastly, the
Earth-Mars rendezvous is a relatively simple example. Sophisticated transfers in complex dynamic
environments will be the subject of later investigations.

ACKNOWLEDGMENT

Special thanks is extended to Gregory Lantoine for his initial help with HDDP, and to the low-
thrust research group at the Colorado Center for Astrodynamics Research for their lively discus-
sions. This work was funded by NASA Grant NNX14AM35H.

REFERENCES

[1] G. J. Whiffen, “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-
Fidelity, Low-Thrust Trajectory Design,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit,
August 2006.

[2] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming Algorithm for Con-
strained Optimal Control Problems. Part 1: Theory,” Journal of Optimization Theory and Applications,
Vol. 154, No. 2, 2012, pp. 382–417.

[3] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming Algorithm for Con-
strained Optimal Control Problems. Part 2: Application,” Journal of Optimization Theory and Applica-
tions, Vol. 154, No. 2, 2012, pp. 418–442.

[4] D. H. Jacobson and D. Q. Maybe, “Differential Dynamic Programming,” American Elsevier Publishing
Company, Inc.

14



[5] C. H. Yam, D. D. Lorenzo, and D. Izzo, “Low-thrust trajectory design as a constrained global optimiza-
tion problem,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, Vol. 225, 2011, pp. 1243–1251.

[6] J. A. Englander and A. C. Englander, “Tuning Monotonic Basin Hopping: Improving the Efficiency of
Stochastic Search as Applied to Low-Thrust Trajectory Optimization,” 24th International Symposium
on Space Flight Dynamics, May 2014.

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint, “Trust-Region Methods,” MPS/SIAM, 2000.
[8] R. Fletcher, “Practical Methods of Optimization,” 2nd edn. Wiley,.
[9] D. P. Bertsekas, “Dynamic Programming and Optimal Control,” Athena Scientific.

[10] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming Algorithm for Robust
Low-Thrust Optimization,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August 2008.

[11] G. Lantoine and R. P. Russell, “A Fast Second-Order Algorithm for Preliminary Design of Low-Thrust
Trajectories,” 59th International Astronautical Congress, September 2008.

[12] G. Lantoine and R. P. Russell, “A Methodology for Robust Optimization of Low-Thrust Trajectories in
Multi-Body Environments,” Ph.D. Thesis, 2010.

[13] J. A. Englander, D. H. Ellison, and B. A. Conway, “Global Optimization of Low-Thrust Multiple-Flyby
Trajectories at Medium and Medium-High Fidelity,” AIAA/AAS Astrodynamics Space Flight Mechanics
Meeting, 2014.

[14] P. Prince and J. Dormand, “High order embedded Runge-Kutta formulae,” Journal of Computational
and Applied Mathematics, Vol. 7, Issue 1, March 1981, pp. 67–75.

15


	Introduction
	Hybrid Differential Dynamic Programming
	Backward Sweep
	Trust-Region Quadratic Subproblem
	Augmented Lagrangian Method
	HDDP Acknowledgement

	Monotonic Basin Hopping
	Example Earth-Mars Rendezvous
	ALM Tuning

	Variable Time of Flight
	Earth-Mars Rendezvous With Time Variables

	Application of the Stochastic Step
	Conclusion
	Acknowledgment

