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Abstract

The accuracy of Computational Fluid Dynamics predictions of subsonic capsule
aerodynamics is examined by comparison against recent NASA wind-tunnel data at
high-Reynolds-number flight conditions. Several aspects of numerical and physical
modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-
wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-
Eddy Simulations of the unsteady wake. All of these are considered in isolation against
relevant data where possible. The results indicate that an improved predictive capa-
bility is developed by considering physics-based approaches and validating the results
against flight-relevant experimental data.

1 Introduction
Accurate prediction of the aerodynamic loads on atmospheric-entry capsules is still a

challenge for Computational Fluid Dynamics (CFD) primarily due to the three-dimensional
separation and unsteady wake flow. At high supersonic speeds the combination of high
dynamic pressures and suppression of some of the wake unsteadiness makes the problem
tractable, and consistent predictions with common engineering Reynolds-averaged Navier-
Stokes (RANS) models is often possible. When peak dynamic pressure is passed during
the entry profile and the capsule enters the transonic and subsonic regimes, the unsteady
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(a) Subsonic (b) Supersonic

Figure 1: Contours of Mach number in an Orion capsule wake at supersonic and subsonic speeds

wake “opens up” and errors in turbulence modeling can have a much greater impact on
the prediction of aerodynamic performance (cf. Fig. 1). Unfortunately, this is often where
greatest accuracy is required for Earth-entry systems, as there is little margin in control
authority and complex parachute decelerator staging must be accomplished for targeted
landing. Within NASA, the Orion Multi-Purpose Crew Vehicle project (cf. Fig. 2) is
studying the requirements for consistent aerodynamic predictions using current “production”
engineering CFD solvers and turbulence models. Simulations of the Orion vehicle for human
exploration are further complicated by the existence of a rough ablated heatshield during
normal mission profiles, and a smooth heatshield during abort scenarios. As will be shown,
these two heatshield surfaces produce strongly differing aerodynamic environments.

While there are numerous examples of simulation predictions for the high-speed aero-
thermodynamic environment of a capsule entry, there are only a handful of publications in
the open literature that consider subsonic flow predictions[1–4]. These studies concentrate
on predicting the integrated loads for either Apollo test results[5] or data from a preliminary
Orion wind tunnel experiment[6]. Unfortunately, both of these validation datasets suffer from
undocumented transitional and partially tripped boundary layers on the capsule heatshield,
leading to inconsistent conclusions for validation purposes.

The current work details current “lessons learned” in prediction of aerodynamic loads for
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Figure 2: Artists rendition of the Orion Multi-Purpose Crew Vehicle.

the Orion capsule in the subsonic regime, in comparison to recent experimental data[7–9].
These experiments were specifically designed to overcome the limitations of previous efforts
and provide CFD validation data at flight Reynolds numbers in the subsonic and transonic
regime. Figure 3 presents computed integrated loads against the recent experimental data
at Mach 0.5, which is the flight condition that the current work will focus upon. This work
utilizes the OVERFLOW solver[10], and the predictions in Fig. 3 use (heretofore) standard
inputs for developing an aerodynamic database across all speed regimes, namely: roughly
30M grid points to resolve the capsule geometry and near wake, the upwind Harten-Lax-
van Leer-Contact (HLLC) method for robustness and accuracy in flows with shock waves,
and Menter’s Shear-Stress-Transport (SST) model[11] for the Reynolds-averaged Navier-
Stokes (RANS) equations. The CFD predictions are notably off in both drag and pitching
moment*. Further, two of the angles of attack develop unsteady RANS flowfields, while
the others remain steady. This inconsistency causes problems when using RANS methods
to develop increments to augment the experimental test results, as the flows which develop
unsteadiness are not known a priori, and are configuration dependent.

The current paper examines issues potentially leading to the mis-predictions outlined
in Fig. 3, including numerical methods, mesh resolution, and turbulence modeling. These
are investigated through comparisons against experimental data including integrated loads,
surface pressure distributions, boundary-layer profiles, and Particle Image Velocimetry (PIV)
measurements of the extended wake flowfield. A companion paper is available examining
similar issues using the OpenFOAM solver[12].

*The pitching moment is computed about the “theoretical” apex of the capsule geometry.
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Figure 3: Computed and experimental integrated loads for an Orion capsule geometry using standard
methods for constructing an aerodynamic database. M∞ = 0.5, ReD = 24M.

2 Wall Roughness
The majority of the current work uses a simplified capsule model developed for pub-

lic release in the experimental program described in [9](cf. Fig. 4). While the capsule is
a straightforward axisymmetric shape, the inclusion of the strut support adds significant
geometric complication. Further, an actual atmospheric-entry capsule geometry includes
cutouts, windows, reaction-control surfaces, etc. which make the geometry definition more
complex (cf. Fig. 2). In order to accommodate these complex geometries, while still main-
taining computational efficiency, a structured overset grid system is utilized with the OVER-
FLOW solver. The overset grid system corresponding to the wind tunnel configuration of
Fig. 4 is shown in Fig. 5. This baseline grid system has 42M points and can be further
adapted using the OVERFLOW solver[13, 14].

The AVCOAT honeycomb, which is the current Orion capsule heatshield design, ablates
to a hexagonal roughness pattern. This roughness pattern scaled to the experimental capsule
heatshield from [9] is shown in Fig. 6. OVERFLOW does not contain a standard wall rough-
ness model. The roughness model of Knopp et al. [15] was implemented in OVERFLOW and
verified using flat-plate boundary layer simulations. This model uses an equivalent sand-
grain approach which does not accurately capture the boundary layer response to discrete
roughness elements, as we have on the capsule heatshield. It is necessary to empirically
calibrate the model for discrete roughness, which is done here using a multiplicative scale
factor applied to the true roughness height. The model is calibrated at M∞ = 0.7, α = 150◦

against boundary layer profiles from [9], and then this calibration is tested against other
available experimental conditions. The probe is located on the lateral plane of symmetry,
just upstream of where the windward side boundary layer separates from the heatshield.
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Figure 4: Capsule and strut configuration in the NASA Ames 11 ft. transonic wind tunnel[9]. The model
is coated with PSP and the horizontal and vertical laser sheets cover the wake PIV planes.
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Figure 5: Overset grid system for the capsule and strut configuration in the NASA Ames 11 ft. transonic
wind tunnel[9].
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Figure 6: Hexagonal roughness from the experimental model in [9].

Figure 7 shows the experimental and computational boundary layer profiles on the heat-
shield at M∞ = 0.7, α = 150◦. Discrete roughness scaling factors of kSF = 1, 2, and 5 are
tested, with a value of kSF = 2 providing a good fit for the rough-wall profile. This value of
kSF = 2 is found to be a good fit at other flow conditions as well (Fig. 8), and all rough wall
simulations presented herein use this scaling factor.

Figure 9 presents the computed surface pressure coefficient on the experimental model
for a smooth and rough wall approximation. The presence of roughness reduces the “suc-
tion peak” near the heatshield shoulder associated with the attached boundary layer just
upstream of separation from the surface by over 25% at these conditions. This is consistent
with experimental observations, and is the motivation for including this roughness effect in
the current computational approach.

3 Detached Eddy Simulations
There are three main turbulence models currently supported by OVERFLOW: the Spalart-

Allmaras model[16], Wilcox’s k-ω model[17], and Menter’s Shear-Stress-Transport (SST)
model[11]. From experience in the Orion project, the SST model has provided the most
consistent predictions for capsule flowfields (cf. Childs et al. [18], Stremel et al. [3] for an
overview of the issues), and is the baseline model utilized in this work. Given this modeling
framework, several augmentations are available. In the current work we investigate the use
of hybrid-RANS/Detached-eddy Simulations (DES) to accurately capture the unsteady wake
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Figure 7: Calibration of the discrete roughness scale factor to the capsule heatshield boundary layer. The
experimental roughness height is 0.01 in. M∞ = 0.7, α = 150◦. Experimental data taken from [9].
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Figure 8: Test of the calibrated discrete roughness scale factor kSF = 2. The experimental roughness
height is 0.01 in. Experimental data taken from [9].
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(a) smooth (b) rough

Figure 9: Computed distribution of surface pressure coefficient M∞ = 0.5, α = 166◦, ReD = 8.7M.

and the rotation and curvature correction of Spalart and Shur[19] in the near-wall region.
The SST-DES simulations are first considered in this section.

Simulations of the experimental configuration from [9] using RANS and DES simulations
were performed using the rough wall model at M∞ = 0.5, α = 166◦, ReD = 8.7M. The
unsteady DES simulations are time averaged after reaching a stationary state. Fig. 10 shows
a typical unsteady load variation for a DES simulation after the initial transient, along with
the same data as a distribution function. The data is averaged over 1 second of physical time,
however this is still not sufficient to ensure statistical convergence, and hence there is still
some uncertainty in the time-averaged values. The simulations use a timestep which resolves
the primary vortex shedding frequency (computed using a Strouhal number of 0.2) with 50
steps per shedding cycle. The difference between the computed surface pressure and the
pressure measured by the experimental pressure-sensitive paint (PSP) system is presented
in Fig. 11. On the windward side of the capsule, the major discrepancy occurs near the
suction peak and separation region for both simulations. The location of the experimental
Kulite unsteady pressure transducers is visible from the increase in difference at the 12, 1,
and 3 o’clock positions. The region surrounding the Kulite installation is smooth in the
experiment, and this local change is not modeled in the computations. As expected, for the
attached boundary layer on the heatshield both RANS and DES simulations are essentially
identical. The largest difference in the simulations occurs in the aft base region, where
the RANS simulation overpredicts the pressure coefficient by roughly 30% of the freestream
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Figure 10: Unsteady variation of pitching moment for a DES simulation. The transient portion of the
simulation has been removed.

PSP RANS DES
CD 0.93 0.82 0.85
CL 0.03 0.023 0.019

Table 1: Computed aerodynamic loads. M∞ = 0.5, α = 166◦, ReD = 8.7M.

dynamic pressure, comparable to the magnitude of the difference near the suction peak.
As we will see in the next section, the wake velocity in this region is also difficult for the
RANS model to predict. The computed results consistently predict a delayed boundary-
layer separation on the heatshield, and this drives the differences in the computed suction
peak on the heatshield. Table 1 provides the computed lift and drag compared with the
integrated PSP value. Consistent with the predictions of surface pressure, the numerical
results under-predict the drag by roughly 10%.

3.1 Wake Velocity Predictions

The rough-wall RANS and DES simulations outlined in the previous section are com-
pared to the PIV wake velocity measurements in Fig. 12. Both the computations and exper-
imental data present time-averaged data. Qualitatively, the computations are in relatively
good agreement with the measurements, with the shear layer and reversed flow wake clearly
visible. To highlight the differences, the CFD predictions are subtracted from the PIV mea-
surements (Fig. 13). This shows relatively large error in the RANS far wake prediction,
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(c) RANS (d) DES

Figure 11: Difference in the surface pressure coefficient between simulation and PSP measurement (CFD-
PSP). The limits of the difference are ±0.3q∞, with green representing zero difference. M∞ = 0.5, α = 166◦,
ReD = 8.7M.
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# Grid Pts. RANS DES
1x 42M 0.079 0.06
2x 47M 0.085 0.056
4x 79M 0.086 0.074

Table 2: Relative r.m.s. difference in the computed wake velocity magnitude relative to the PIV measure-
ments. M∞ = 0.5, α = 166◦, ReD = 8.7M.

and in the prediction of the location of the separated shear layer for both simulations. This
is expected from the discrepancy in boundary layer separation location highlighted in the
previous section. The RANS near wake also contains a relatively large error near the aft
body of the capsule, consistent with the difference in surface pressure from Fig. 11.

An isotropic mesh refinement study was undertaken for the capsule wake region for both
RANS and DES simulations. The computed difference between the refined mesh results at 2x
and 4x the wake resolution for the DES simulations and the experimental data is presented in
Fig. 14. The near-wall body-conforming grids are unaltered. The r.m.s. difference in velocity
magnitude computed over all experimental points is tabulated for both the RANS and DES
simulations in Table 2. The average difference is between 5 and 10% of the freestream velocity
magnitude, with the DES results slightly lower. Mesh refinement does not significantly
reduce the difference between the computed results and the PIV measurements. This can be
due to errors in the CFD predictions, e.g. delayed prediction of the primary flow separation
on the capsule forebody which is roughly independent of wake resolution, or simply that
the uncertainty in the PIV measurements are of the same order as the differences being
computed.

4 Numerical Scheme
The current work investigates two choices for numerical scheme: central differencing of

the convective and acoustic terms, and the upwind HLLC flux in a Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) implementation. The upwind flux is often
preferred for capsule aerodynamic database development due to the improved performance
(robustness, shock-capturing) for high-speed flows, and the desire to maintain a single scheme
for all database computations, as in [18]. Further, when modeling reaction-control system
(RCS) jets chemistry of the plumes, or passive-scalar convection of thermodynamic quantities
to model the chemistry, is included. In these cases, the upwind schemes have proven nec-
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Figure 12: Measured and computed velocity magnitude in the wake. M∞ = 0.5, α = 166◦, ReD = 8.7M.
Experimental data taken from [9].
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(a) RANS (b) DES

Figure 13: Difference in the wake velocity magnitude between simulation and PIV measurement (PIV-
CFD), scaled by the freestream velocity magnitude. The limits of the difference are ±0.25M∞. Green
contours represent zero. M∞ = 0.5, α = 166◦, ReD = 8.7M.

(a) 2x (b) 4x

Figure 14: Difference in the wake velocity magnitude between simulation and PIV measurement (PIV-CFD)
for the refined DES simulations, scaled by the freestream velocity magnitude. The limits of the difference
are ±0.25M∞. Green contours represent zero. M∞ = 0.5, α = 166◦, ReD = 8.7M.
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Figure 15: Surface pressure distribution down the pitch plane of a generic isolated capsule configuration.
M∞ = 0.5, α = 160◦, ReD = 24M.

essary for robustness[18], and hence to achieve consistent increments in the subsonic regime
when modeling RCS, an upwind scheme may be necessary. The central-differencing schemes
are often preferred for low-speed separated flows due to their lower numerical dissipation,
especially when higher-order schemes are utilized, and due to the lower computational cost.

The two schemes are compared on the isolated capsule from the previous experimental
configuration for simplicity. The computed pressure distributions down the pitch plane of
the capsule are presented in Fig. 15*. Fig. 15a uses the baseline resolution from Fig. 3 (30M
grid points in the capsule region), while Fig. 15b is adapted and uses roughly 100M grid
points in the capsule region. The stagnation point on the heatshield produces the peak
pressure, and the suction near the primary boundary layer separation produces the lowest
pressure. The largest differences are seen in the aft-body region of the adapted case, though
the differences overall are relatively minor. Both schemes are consistent, and are expected to
converge to the same answer with further mesh refinement. In situations where robustness
is imperative, the HLLC is preferred, but the central differencing can be significantly lower
cost (5x-10x), which is important for unsteady DES simulations.

*The geometry in Fig. 15a is aligned with the x coordinate, while Fig. 15b is rotated by the angle of
attack, hence the difference in pressure distribution along the x axis.
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Figure 16: Surface pressure distribution down the pitch plane of a generic isolated capsule configuration.
M∞ = 0.5, α = 160◦, ReD = 24M.

5 Rotation and Curvature Correction
The attached flow on the capsule forebody curves around the constant radius of the

heatshield. It is well documented that streamline curvature in the plane of the mean shear
has a strong effect on the turbulent Reynolds stresses. To account for these effects, rotation
and curvature corrections for one- and two-equation turbulence models are common. Here
we examine the correction proposed by Spalart and Shur[19]. Unfortunately, this correction
adversely effects the flow predictions in the bluff-body wake. The approach used here is to
apply the rotation and curvature correction in a zonal manner, i.e. only in the boundary
layer region near the wall. This is easily accomplished in an overset approach by splitting
the body-conforming grids at a prescribed location. The result on the computed pressure
distribution is presented in Fig. 16. The rotation and curvature correction diminishes the
strength of the suction peak due to the primary separation, by reducing the turbulent eddy
viscosity and causing the boundary layer to separate earlier. This is consistent with available
experimental evidence for similar configurations, and the results of Fig. 11, which shows the
baseline model tends to overpredict the suction in the separation region.
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6 In Toto
The current work outlines several issues in numerical methods and physical modelling

related to the accuracy of aerodynamic predictions for capsule configurations. The validity of
remedying these issues is established by comparison with recent high-Reynolds-number ex-
perimental results. The results are summarized by applying them to the same configuration
outlined in the Introduction in Fig. 3. The use of wall roughness modeling, the SST tur-
bulence model with rotation and curvature corrections and DES model, and low-dissipation
central differencing schemes are combined with recent enhancements for near-wall and off-
body mesh adaptation in OVERFLOW. While a formal grid convergence study is not pre-
sented for the DES simulations, it is acknowledged that the baseline results presented in
Fig. 3 were a practical necessity and are not considered sufficient to resolve all scales of the
complex flowfield. To improve upon this approach, while still restricting the computational
cost to a practical level, mesh adaptation is utilized.

Figure 17 presents feature-based mesh adaptation around the capsule at three increasing
angles of attack. The solver automatically adapts to the separated shear-layer and aft-
body region resulting in a mesh in the capsule region of approximately 100M points. The
resulting integrated loads, shown in Fig. 18, are averaged over a statistically stationary
state of the DES simulations which covers roughly 1 second. While there is still room for
improvement, the CFD simulations are now largely within the experimental uncertainty.
The sigmoidal shape of the pitching moment curve is captured, and the normal force is well
predicted at all angles of attack. The drag predictions are now consistent and closer to the
experimental data. These improvements do come at a cost of greater resolution, however
in this case this is offset by the reduced computational cost from central differencing. The
computed configuration does not include all of the geometric features on the heatshield of
the experimental configuration, which does account for some of the observed increments in
drag and pitching moment. Further, both the experiment and CFD simulations are corrected
using the local pressure around the base of the sting, which may be part of the discrepancies.

7 Summary
Recent high-Reynolds-number wind tunnel data for capsule aerodynamics has removed

much of the uncertainty associated with previous experimental validation datasets. The state
of the boundary layer on the capsule heatshield is well characterized and correctly accounts
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(a) α = 160◦ (b) α = 172◦ (c) α = 184◦

Figure 17: Adapted body-conforming overset grids in the lateral plane of symmetry.
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Figure 18: Computed and experimental integrated loads for an Orion capsule geometry using methods
described in the current work. M∞ = 0.5, ReD = 24M.
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for the surface roughness expected after ablation for the Orion configuration. Using this
data, several aspects of the numerical predictions of CFD methods were investigated, and
the results indicate that methods which improve the accuracy of the physical modeling -
wall roughness, DES unsteady wake, streamline curvature - do produce improvements in
the predictive capability of the simulations. Combined with improved mesh resolution and
adaptive methods, computations in the subsonic regime using these approaches demonstrate
noticeable improvements.
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