National Aeronautics and Space Administration

Single-Event Transient Testing of the Crane Aerospace & Electronics SMHF2812D Dual DC-DC Converter

Prepared by:

Megan Casey

May 12, 2015

Megan Casey
GSFC ICON Radiation Lead

Date
1. Purpose
The purpose of this testing was to characterize the Crane Aerospace & Electronics (Crane) Interpoint SMHF2812D for single-event transient (SET) susceptibility. These data shall be used for flight lot evaluation, as well as qualification by similarity of the SMHF family of converters, all of which use the same active components.

2. Test Samples
The Interpoint SMHF Series of 28 V DC-DC converters offers a wide input voltage range of 16 to 45 V and up to 15 W of output power. The SMHF converters are switching regulators that use a quasi-square wave, single-ended forward converter design with a constant switching frequency of 550 kHz. Isolation between input and output circuits is provided with a transformer in the forward path and a temperature compensated opto-coupler in the feedback control loop. The “R” at the end of the flight part number indicates that these parts have a guaranteed total ionizing dose hardness of 100 krad(Si).

Six (6) parts from two flight lots were provided to NASA/GSFC Code 561 Radiation Effects and Analysis Group for SET testing. There was a design change between the two lot date codes and the project will be flying both versions; hence, both were tested. All six parts were prepared for testing by mechanically delidding each device. They were then soldered to mechanically-milled copper clad test boards that were designed specifically for this testing. Since the number of overlayers and materials vary throughout this hybrid device, linear energy transfer calculations are determined based on the top-surface incident ion species and kinetic energy. More information can be found in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Part Identification Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Part Number</td>
</tr>
<tr>
<td>Generic Part Number</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Lot Date Codes and Quantities</td>
</tr>
<tr>
<td>Package Type</td>
</tr>
<tr>
<td>REAG ID #</td>
</tr>
</tbody>
</table>
Figure 1: Pin out for SMHF2812D 28 V DC-DC Converter.

Table 2: List of Pin Numbers and Their Functions

<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inhibit (No Connect)</td>
</tr>
<tr>
<td>2</td>
<td>Positive Output</td>
</tr>
<tr>
<td>3</td>
<td>Output Common</td>
</tr>
<tr>
<td>4</td>
<td>Negative Output</td>
</tr>
<tr>
<td>5</td>
<td>Sync (Connected to Input Common)</td>
</tr>
<tr>
<td>6</td>
<td>Case Ground</td>
</tr>
<tr>
<td>7</td>
<td>Input Common</td>
</tr>
<tr>
<td>8</td>
<td>Positive Input</td>
</tr>
</tbody>
</table>

3. Test Facility

Flux: Approximately 3×10^4 ions cm^-2 s^-1
Fluence: All tests run to a fluence of 1×10^6 cm^-2

Table 3 shows the ion used during irradiation. Note that energy, range, and LET values are calculated based on 1 mil aramica window and 50 mm of air prior to the target. All irradiations were performed at normal incidence.

Table 3: Ion Used during Irradiation

<table>
<thead>
<tr>
<th>Ion</th>
<th>Beam Energy (MeV/amu)</th>
<th>Energy (MeV)</th>
<th>Range in Si (μm)</th>
<th>Nominal LET in Si (MeV-cm^2/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{109}\text{Ag}</td>
<td>15</td>
<td>1170</td>
<td>107.2</td>
<td>43.6</td>
</tr>
</tbody>
</table>
4. Test Conditions and Error Modes

The conditions tested during irradiation are shown in Table 4. For all conditions tested, transients with amplitudes greater than ±1 V were captured. The converters were nominally irradiated at room temperature, but the case temperature was monitored and recorded during each run. The oscilloscope was set to AC coupling to preserve transient voltage resolution; as a result, when plotted, the transients appear to be centered on 0 V, rather than the 12 V output voltage.

Table 4: Test Conditions during Irradiation

<table>
<thead>
<tr>
<th>Test Temperature</th>
<th>Room Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Locations Irradiated</td>
<td>2 (Shown in Figure 2)</td>
</tr>
<tr>
<td>Input Bias</td>
<td>28 V, 35 V</td>
</tr>
<tr>
<td>Load Conditions (/load+/load-)</td>
<td>90 mA/60 mA, 188 mA/188 mA</td>
</tr>
</tbody>
</table>

5. Irradiation Locations

Figure 2 shows one of the converters with the lid removed and mounted on a daughtercard. Figure 3 shows four converters on the motherboard. Each converter is individually selected and moved in front of the beam. Figure 4 is a zoomed version of a single part with the irradiation locations indicated. The circles are roughly representative of the beam spot size and they are labeled location “A” and “B” to correspond with the beam run log, which can be found in Section 8. It should be noted that due to the mirror image layout of the motherboard, locations A and B will be on opposite sides of mirror image parts. The functional equivalents of each location are noted in the run log. Sections 9 and 10 show the motherboard and daughtercard schematics, respectively. Section 11 contains the strip tape of the supply current for each irradiation as described in the beam run log, as well as the corresponding case temperature.
Figure 3: Four Delidded SMHF2812D 28 V DC-DC Converters Mounted on Daughtercards and Connected to the Motherboard.

Figure 4: A Single Delidded SMHF2812D 28 V DC-DC Converter with Sample Irradiation Locations Indicated.

The test setup required a DC power supply for the input voltage, an electronic load, an oscilloscope for capturing the transients on the output, an data acquisition/switch unit for selecting the DUT, and two laptops equipped with LabView. Custom LabView code was written by Hak Kim, ASRC, for this testing. One program captured and saved the transients as they appeared on the oscilloscope. The other selected the DUT to be irradiated, set the input voltage, set the load conditions, and monitored the case voltage of the DUT. Table 4 lists the equipment used during these tests. Figure 5 shows the test set-up at the facility with the parts in the beam line and all the equipment behind.
Table 4: List of Equipment Used

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Serial Number</th>
<th>ECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent N6702A Four-Channel Power Supply</td>
<td>SG45000187</td>
<td>M161852</td>
</tr>
<tr>
<td>Tektronix TDS784C Digital Oscilloscope</td>
<td>B021226</td>
<td>1953620</td>
</tr>
<tr>
<td>Hewlett Packard 606B System DC Electronic Load</td>
<td>MY41002922</td>
<td>M16285</td>
</tr>
<tr>
<td>Dell Precision Laptop (Operated by A. Topper)</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Dell Precision Laptop (REAG Extra)</td>
<td>--------------</td>
<td>---------</td>
</tr>
</tbody>
</table>

Figure 5: Complete SMHF2812D 28 V DC-DC Converter Test Set Up. The Equipment Used Is Shown behind the Motherboard, which Is Populated with Four Converters Mounted on Daughtercards and Positioned in Front of the End of the Beam Line.

6. Test Results

There appeared to be no difference in the two lot date codes. As mentioned above, the oscilloscope was set up to capture all transients generated with amplitude greater than 1 V above or below the output. The oscilloscope was also set to AC coupling to allow for finer resolution in the transients. When plotted, this makes the output appear to be 0 V, when it is actually 12 V. Figure 6 shows how the output appears before the beam is turned on as a reference point. There is some noise that corresponds to the 550 kHz internal constant switching frequency. Figure 7 shows the amplitudes and pulsewidths generated in the four different test conditions (two supply voltages and two load conditions). Generally, the higher load resulted in transients with greater amplitude, but shorter duration. There was no major dependence on input voltage with the larger load. The amplitudes of the transients generated with the smaller load were approximately half that of the larger load, and again, with no real dependence on the input voltage. However, the duration was consistently longer at the lower supply voltage than at the higher with the smaller load. Figures 8a-d and show the sample
transients generated for each of the test conditions. The colors of each transient also correspond to the colors in the amplitude and pulsewidth scatterplot. In all of the example transients shown, the 550 kHz internal switching noise is superimposed over the SET.

Figure 6: 550 kHz Noise Observed on the Output of the SMHF2812D When the Beam is Shuttered

Figure 7: Amplitude and Pulsewidth Scatterplot for Transients Generated under the Four Different Input Voltage and Loading Conditions
Figure 8: Example Transient Generated with $V_{in} = 28 \text{ V}$ and $I_{load+} = 90 \text{ mA}$ and $I_{load-} = 60 \text{ mA}$

Figure 9: Example Transient Generated with $V_{in} = 35 \text{ V}$ and $I_{load+} = 90 \text{ mA}$ and $I_{load-} = 60 \text{ mA}$
7. URL for Device Datasheet

SMHF Series:
8. TAMU Beam Run Log

<table>
<thead>
<tr>
<th>Run Date</th>
<th>Time</th>
<th>DUT Position</th>
<th>Temperature</th>
<th>Energy (MeV)</th>
<th>Ion Species</th>
<th>Energy (..-..)</th>
<th>LET (MeV-cm^2/mg)</th>
<th>Range (cm)</th>
<th>Angle (°)</th>
<th>EFF. LET (..-..)</th>
<th>EFF. Range (cm)</th>
<th>Transients</th>
<th>Latchoff</th>
<th>Avg Max Flux (..-..)</th>
<th>Avg Max Flux (..-..)</th>
<th>Uptime (..-..)</th>
<th>Eff. Fluence (..-..)</th>
<th>Cross-Section (..-..)</th>
<th>Time (..-..)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7/9/2018</td>
<td>8:24:49 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>12</td>
<td>N</td>
<td>2.51e+04</td>
<td>2.51e+04</td>
<td>1.50e+00</td>
<td>1.50e+00</td>
<td>1.50e+00</td>
<td>1.50e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>2</td>
<td>7/9/2018</td>
<td>8:44:19 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>212</td>
<td>N</td>
<td>2.68e+04</td>
<td>2.68e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>3</td>
<td>7/9/2018</td>
<td>8:46:18 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>147</td>
<td>N</td>
<td>2.16e+04</td>
<td>2.16e+04</td>
<td>1.69e+00</td>
<td>1.69e+00</td>
<td>1.69e+00</td>
<td>1.69e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>4</td>
<td>7/9/2018</td>
<td>8:54:55 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>175</td>
<td>N</td>
<td>2.15e+04</td>
<td>2.15e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>5</td>
<td>7/9/2018</td>
<td>9:28:50 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>599</td>
<td>N</td>
<td>2.68e+04</td>
<td>2.68e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>6</td>
<td>7/9/2018</td>
<td>9:37:59 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>609</td>
<td>N</td>
<td>3.15e+04</td>
<td>3.15e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>7</td>
<td>7/9/2018</td>
<td>9:37:23 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>389</td>
<td>N</td>
<td>4.67e+04</td>
<td>4.67e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
<tr>
<td>8</td>
<td>7/9/2018</td>
<td>9:57:23 AM</td>
<td>TAMU</td>
<td>17.7</td>
<td>10.7</td>
<td>43.6</td>
<td>107.2</td>
<td>0</td>
<td>107.2</td>
<td>50</td>
<td>60</td>
<td>385</td>
<td>N</td>
<td>6.08e+04</td>
<td>6.08e+04</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>1.70e+00</td>
<td>7.15e+02</td>
</tr>
</tbody>
</table>

- **Notes**: DC power is off. Recovered up DUT in the middle of the run. Data isn’t real. Just wanted to show that the transients were at least 6000 mV due to the beam, and not just from the facility noise.

8.1 Additional Notes

- **1/30/2019**: SAW large drops in this voltage. Runnings with longer

8.2 Additional Notes

- **1/30/2019**: SAW large drops in this voltage. Runnings with longer

8.3 Additional Notes

- **1/30/2019**: SAW large drops in this voltage. Runnings with longer
9. Motherboard Schematic -- for Test Purposes Only
10. Daughtercard Schematic -- for Test Purposes Only
11. Power Supply and Temperature Strip Tapes for Each Beam Run

![Figure 12: The Pre-Rad Power Supply Current for DUT0993 and Case Temperature While Powered](image1)

Figure 12: The Pre-Rad Power Supply Current for DUT0993 and Case Temperature While Powered

![Figure 13: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 1](image2)

Figure 13: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 1
Figure 14: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 2

Figure 15: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 3

Figure 16: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 4
Figure 17: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 5

Figure 18: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 6

Figure 19: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 7
Figure 20: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 8

Figure 21: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 9

Figure 22: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 10
Figure 23: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 11

Figure 24: The Power Supply Current for DUT0993 and Case Temperature While Powered During Run 12

Figure 25: The Pre-Rad Power Supply Current for DUT0991 and Case Temperature While Powered
Figure 26: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 13

Figure 27: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 14

Figure 28: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 15
Figure 29: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 16

Figure 30: The Pre-Rad Power Supply Current for DUT0992 and Case Temperature While Powered

Figure 31: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 17
Figure 32: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 18

Figure 33: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 19

Figure 34: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 20
Figure 35: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 21

Figure 36: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 22

Figure 37: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 23
Figure 38: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 24

Figure 39: The Power Supply Current for DUT0992 and Case Temperature While Powered During Run 25

Figure 40: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 26
Figure 41: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 27

Figure 42: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 28

Figure 43: The Power Supply Current for DUT0991 and Case Temperature While Powered During Run 29
Figure 44: The Pre-Rad Power Supply Current for DUT0006 and Case Temperature While Powered

Figure 45: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 30

Figure 46: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 31
Figure 47: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 32

Figure 48: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 33

Figure 49: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 34
Figure 50: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 35

Figure 51: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 36

Figure 52: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 37
Figure 53: The Power Supply Current for DUT0006 and Case Temperature While Powered During Run 38

Figure 54: The Pre-Rad Power Supply Current for DUT0008 and Case Temperature While Powered

Figure 55: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 39
Figure 56: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 40

Figure 57: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 41

Figure 58: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 42
Figure 59: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 43

Figure 60: The Power Supply Current for DUT0008 and Case Temperature While Powered During Run 44

Figure 61: The Pre-Rad Power Supply Current for DUT0994 and Case Temperature While Powered
Figure 62: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 45

Figure 63: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 46

Figure 64: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 47
Figure 65: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 48

Figure 66: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 49

Figure 67: The Power Supply Current for DUT0994 and Case Temperature While Powered During Run 50