Sports Injuries and Space Injuries: Prevention and Treatment

Rick Scheuring, DO, MS, RMSK, FAsMA
Team Lead, Musculoskeletal Medicine and Rehabilitation
ISS Expedition 35/36 and 467/47 Deputy Crew Surgeon
ISS Expedition 54/55 Crew Surgeon
NASA- Johnson Space Center
Comparable Populations?

STS-132 EVA NBL training, March, 2010

Mark Buerhle, 23-Jul-2009
Background

♦ Unique aspects of astronaut training for space missions
♦ Musculoskeletal changes in microgravity
 ● Clinical manifestations
♦ In-flight countermeasures and post-mission reconditioning
♦ Injuries
 ● Mission phases
 – Pre-flight (training-related injuries)
 – In-flight
 – Post-flight
♦ Injury treatment and Prevention Program
Muscle and Bone in Space
Effects of Spaceflight on Muscle

- Decrease in body mass
- Decrease in leg volume
- Atrophy of the antigravity muscles (thigh, calf)
 - decrease in leg strength (approx 20-30%)
 - extensor muscles more affected than flexor muscles
- Data in flown rats showed an increase in number of Type II, “fast twitch” muscle fibers (those which are useful for quick body movements but more prone to fatigue)
Muscle/Bone Loss during Spaceflight

- Decrease in weight bearing causes bone demineralization, 1% - 2.4% per month in lower extremities and spine
 - Skeletal changes and loss of total body calcium have been noted in both humans and animals exposed to microgravity from 7 to 237 days.

 Nicogossian AE. *Space Physiology and Medicine*, 1989. Lea and Febiger, Philadelphia
Perturbations in bone remodeling result in osteoporosis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Bone Formation</th>
<th>Bone Resorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spaceflight* (“Skeletal unloading”)</td>
<td>\downarrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Aging</td>
<td>\downarrow</td>
<td>$-$</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>\downarrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>Estrogen Deficiency (Menopause is not a disease)</td>
<td>$\uparrow\uparrow$</td>
<td>$\uparrow\uparrow$</td>
</tr>
<tr>
<td>Alcohol</td>
<td>\downarrow</td>
<td>$-$</td>
</tr>
<tr>
<td>Metabolic diseases of High Bone Turnover</td>
<td>$\uparrow\uparrow$</td>
<td>$\uparrow\uparrow$</td>
</tr>
</tbody>
</table>
Bone Health assessments

Bone Ca Balance ($V_{o+} - V_{o-}$)

Bone Ca Loss ~ 250 mg/d
Bone Ca Gain ~ 100 mg/d
Recovery: 2-3 x mission

Smith et al., 1999

NASA EPDC 2016
DXA: BMD losses are specific to weight-bearing bones*, rapid, not necessarily linear.

<table>
<thead>
<tr>
<th>Areal BMD</th>
<th>%/Month Change ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar Spine</td>
<td>-1.06±0.63*</td>
</tr>
<tr>
<td>Femoral Neck</td>
<td>-1.15±0.84*</td>
</tr>
<tr>
<td>Trochanter</td>
<td>-1.56±0.99*</td>
</tr>
<tr>
<td>Total Body</td>
<td>-0.35±0.25*</td>
</tr>
<tr>
<td>Pelvis</td>
<td>-1.35±0.54*</td>
</tr>
<tr>
<td>Arm</td>
<td>-0.04±0.88</td>
</tr>
<tr>
<td>Leg</td>
<td>-0.34±0.33*</td>
</tr>
</tbody>
</table>

*Significant at p<0.01, n=16-18

LeBlanc et al, 2000
Recovery of BMD with return to gravity

\[L_t = L_0 \times \exp^{\ln(0.5)\times t/\text{HL}} \]

Trochanter BMD of ISS & Mir Crewmembers
Loss 0 = 7.4%
Recovery Half-life = 276 days
Musculoskeletal Changes

Clinical manifestations

Acute

• Symptoms-
 • Back pain (53-68% incidence on orbit to some degree)
 • Fatigue (less flexibility and endurance)
Musculoskeletal Changes

Back Pain

- Postural change with stretching of tendons and ligaments.
 - Increase in on-orbit height by 2-6 cm
- Etiology?
 - IVD/VEP changes
 - Thoracolumbar myofascial changes
 - Facet
 - Anterior longitudinal ligament
 - Cranio-sacral alterations
Musculoskeletal Changes

“Chronic” changes

- Tendinosis/tendonopathies
 - Knee, Achilles, elbow
- Intervertebral disc changes and HNP
Effects of Long duration space flight on calcium metabolism

- Kidney Stones
- Possible planetary surface operations or post-flight fractures

“Wait a minute here, Mr. Crumbley... Maybe it isn’t kidney stones after all.”
Musculoskeletal System Loss and Potential Complications/ Countermeasures

♦ Countermeasures in Practice
 • For Muscular strength and endurance preservation
 1) Aerobic (TVIS, CEVIS) and resistive exercise (ARED)
 2) Nutritional supplements
 • For Reduced bone strength/ Increased Injury or Fracture Risk:
 1) Resistive exercise hardware (ARED)
 2) Pharmacologic- e.g. High dose Vitamin D, Bisphosphonates
 • For Urinary Calcium Excretion- Risk of Calculi
 1) Increased Fluid Intake (2-3L/day)
 2) Pharmacologic- e.g. inhibitor K⁺ Citrate or K⁺Mg⁺ Citrate
 3) Contingency Management Strategy

♦ Countermeasures under consideration/ preparation
 1) Artificial gravity in transit
 2) PTH, Peptides
Exercise Program Objectives

- Minimize adverse health outcomes associated with spaceflight
- Guarantee effective in-flight performance and safety
- Provide a functional return to a terrestrial environment
- Promote an optimal rate of post-flight recovery
- Minimize lifetime health risks
Potential Operational Implications of Reduced Muscle Strength and Endurance

- Landing proficiency
- Egress capability
- IVA/EVA work capacity
Exercise Countermeasures: In-Flight

- T2: Treadmill
 - Neurovestibular
 - Cardiovascular
 - Musculoskeletal
- CEVIS: Cycle Ergometer
 - Cardiovascular
- Advanced Resistive Exercise Device: ARED
 - Musculoskeletal
Countermeasures cont’d…

• Other exercise options
 • Traction on “bungee cords”
 • Historically the “Exer-Genie” was used during the Apollo missions
In-flight ISS Exercise Plan

2.5 hrs/d; 6d/wk

- **Treadmill**
 - Intensity: 60% to 85% HR_{max} (continuous and interval training)
 - Duration: 30 min
 - Frequency: 2 to 6x/wk -↑ frequency the last month of flight

- **Cycle**
 - Intensity: 60% to 80% HR_{max} (continuous and interval training)
 - Duration: 30 min
 - Frequency: 3 to 4x/wk

- **Resistance Exercise**
 - Intensity: Varies per crewmember and exercise
 - Frequency:
 - 2x/wk upper body exercise (curls, presses)
 - 2 to 3x/wk lower body exercise (squats, heel raises, dead lifts)
Post-flight Reconditioning

Objective
- To optimize rate of recovery
- To reduce incidence of injury

Description
- Massage
- Flexibility
- Progressive resistance exercises
- Cardiovascular conditioning

Schedule
- 2 hours daily
- R+0 through R+45

NASA EPDC 2016
Post-flight reconditioning cont’d…

- Dynamic stretching and warm-up: R+0d
- **Mobialanception**: R+0d
- Medicine ball: R+0d
- Ladder and cone drills: R+7d
- Jumping drills: R+21d
- Core exercises: R+1d
- Static stretching: R+0d
Musculoskeletal Injuries

♦ Known

• US Astronauts suffer musculoskeletal injuries during **pre-flight** and **post-flight** phases

• A review of astronaut injuries published in the longitudinal study of astronaut health (LSAH) for shuttle astronauts between STS-1 and STS-89 revealed a greater **in-flight** injury rate among crewmembers than their age and sex-matched cohorts

 Wear M. *Injury rate of shuttle astronauts*. The Longitudinal Study of Astronaut Health Newsletter, December 1999, 8(2): 1,4

♦ Unknown

• The incidence of **in-flight** injuries for astronauts in the US space program across all programs

 – How much of the increase noted in the LSAH study was attributed to pre-flight training, post-flight injury due to deconditioning, or in-flight injury as a result of mission activities?
EVA Suit Trauma

- Existing Space Suits cause significant trauma to crew members
 - Oncholysis - Finger nail damage
 - Shoulder and other orthopedic injuries
 - Bruising, abrasions, parathesias

- Potential causes
 - Restricted scapulo-thoracic movement and point loading within suit
 - Altered suit kinematics resulting human biomechanical considerations
Pre-flight Training-Related Injuries

♦ Shoulder
 • Rotator cuff injuries
 • SLAP lesions

♦ Elbow
 • Lateral epicondylitis

♦ Finger
 • Fingernail delamination
Shoulder Injuries
In-Flight Medical Conditions Incidence Comparisons (events/person-year)

- Sleep Disturbance: 3.80
- Sprain/Strain/Contusion: 3.34
- Skin rash: 3.29
- Skin abrasion/laceration: 3.11
- Eye foreign body abrasion: 2.60
- Cough (URI): 1.35
- UTI (females): 1.29
- Diarrhea: 1.21
To examine in-flight musculoskeletal injuries and minor trauma, our results included:

- Abrasions
- Contusions
- Lacerations
- Sprains
- Strains
- Dislocations.
Results

- A total of 369 in-flight musculoskeletal conditions were found, from which 219 in-flight musculoskeletal injuries were identified
 - 21 in women and 198 in men.
 - Incidence over the course of the space program was 0.021 per flight day for men and 0.015 for women.
 - Hand injuries represented the most common location of injuries throughout the U.S. space program, with abrasions and small lacerations representing common manifestations of these injuries.
 - Exercise-related injuries accounted for an incidence rate of 0.003 per day.
Crew activity in the spacecraft cabin such as translating between modules, exercise, and injuries caused by the extravehicular activity (EVA) suit components were the leading causes of musculoskeletal injuries throughout the space program.
Results

Number of injuries

Crew activity

- Shaving
- Dressing
- Using scissors
- Waiting on launchpad
- Clipping nails
- Reaching while seated
- Eating
- Handling checklist
- Donning suit
- Restraint
- Transferring equipment
- Abnormal positioning
- Repairing equipment
- Translating through spacecraft
- Stowing equipment
- Impacting structures
- Unknown

0 2 4 6 8 10 12 14 16 18
The EVA injuries incidence from all sources was 0.05 per hour in 1087.8 hours of EVA activity during the space program to date. This equates to a per day incidence of 1.21 in-flight musculoskeletal injuries.
Results

- EVA accounted for an incidence rate of 0.26 injuries per EVA.
 - EVA injuries occurred primarily in the hands and feet
 - These injuries may represent an exacerbation of pre-flight injury during training in the Neutral Buoyancy Laboratory
Results

Apollo Lunar Surface Musculoskeletal Events or Minor Trauma

- 9 Events were reported on the lunar surface related to EVA
 - 5 events located in the hand
 - Muscle fatigue during lunar EVA related to activities in the glove (unscrewing core tubes, etc.)
 - Finger soreness attributed to high work load
 - MCP, distal phalanx pain, swelling and abrasions after lunar 3/3 EVA
 - “Completing a subsequent EVA would have been very difficult on account of how sore and swollen my hands were”
- 2 events occurred in the wrist
 - Wrist laceration due to suit wrist ring cutting into skin
 - Wrist soreness where suit sleeve repetitively rubbed on surface
- 1 event resulted in shoulder strain after EVA 2/3
 - Crewmember injured shoulder during surface drilling activity
 - Required large doses of aspirin to relieve pain
- 1 event described as general muscle fatigue while covering large distances by foot on the lunar surface

Post-flight Injuries
Risk Factors for Shoulder Injury during ISS EVA

- Don-doffing
- Airlock ingress/egress
- Overhead tasks
EVA Fitness Program

- A well rounded exercise plan allows the crew to attain greater overall strength through functional movement patterns
- Prescribe multiple joint/multiple muscle exercise movements
EVA Fitness Program

♦ Triple Extension & Lower Extremity Based Exercises – Squats, Deadlifts, RDL’s, Hamstring Curls, Kettlebell Swings, etc.

♦ Pushing Exercises – Bench Press, Shoulder Press, Push-Ups, etc.

♦ Pulling Exercise – Cable Row, Lat Pulldown, Pull-Ups, etc.

♦ Accessory Exercises – Shoulder Rotator Cuff Maintenance Program, Wrist/Forearm Exercises
Acknowledgements

Jean Sibonga, PhD- NASA Bone & Muscle Physiology Lab
Lori Putz-Synder, PhD- NASA Exercise Physiology Lab
Jim Loehr, MS- NASA Astronaut Strength, Conditioning and Rehabilitation (ASCRs)
Greg Shaskan, MD- UTMB/Wyle Laboratories
Questions?
QCT After Flight: Greater percentage loss vBMD in trabecular bone compartment (n=16 ISS)

*NOT detectable by DXA

<table>
<thead>
<tr>
<th>Index</th>
<th>%/Month Change ± SD</th>
<th>Index</th>
<th>%/Month Change ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>aBMD Lumbar Spine</td>
<td>1.06±0.63*</td>
<td>Integral vBMD Lumbar Spine</td>
<td>0.9±0.5</td>
</tr>
<tr>
<td>aBMD Femoral Neck</td>
<td>1.15±0.84*</td>
<td>Integral vBMD Femoral Neck</td>
<td>1.2±0.7</td>
</tr>
<tr>
<td>aBMD Trochanter</td>
<td>1.56±0.99*</td>
<td>Integral vBMD Trochanter</td>
<td>1.5±0.9</td>
</tr>
<tr>
<td>*p<0.01, n=16-18</td>
<td>*Trabecular vBMD Femoral Neck</td>
<td>2.7±1.9</td>
<td></td>
</tr>
<tr>
<td>*Trabecular vBMD Trochanter</td>
<td>2.2±0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LeBlanc, J M Neuron Interact, 2000;
Lang, J Bone Miner Res, 2004;
Vico, The Lancet 2000
Results

Exercise

- High number of minor back injuries occurred while using the exercise equipment on the International Space Station
 - Treadmill with Vibration and Isolation System (TVIS) was associated with 2 injuries
 - Interim Resistive Exercise Device (IRED) accounted for 7 injuries
 - Use of both devices was blamed for the remaining 3 injuries

- Exercise activity or use of exercise equipment was associated with an injury rate of 0.003 injuries per day
The real power of the in-flight musculoskeletal database is evident when analyzing specific scenarios leading to these injuries.

- Crew activity, such as stowing equipment, translating through and impacting structures within the spacecraft cabin caused most of the injuries in-flight
 - This might be of interest to space vehicle design engineers as the interiors of spacecraft such as Skylab and ISS allow for more freedom of movement.
- EVA places astronauts in situations of high physical demand, and tests the capability of equipment as it does the men and women performing the activity. We found a relatively large number of injuries that occurred during EVA throughout the space program.
Discussion

In our initial search for all musculoskeletal conditions in the space program, we found that many Apollo crewmembers who performed EVA on the moon noted problems with their hands. For example, one astronaut remarked, “EVA 1 was clearly the hardest…particularly in the hands. Our fingers were very sore.” Another commented that his hands were “very sore after each EVA.”

- **Apollo conducted 2-3 EVA’s for 3-7 hours per EVA**
 - The Constellation program (CxP) will start out with 7 day lunar missions and progress to 6 month stays over the period of 3-4 years
Discussion

♦ Limitations

- Though the database contains detailed information on mechanism of injury, the post-flight mission debriefs did not always discuss the other parameters examined, such as exercise, treatment, and post-flight outcome. Thus, the database is incomplete as many entries lack information in these areas.

- Information about musculoskeletal problems was not always elicited from flight crews, and the manner in which it was collected changed over the course of the space program. In addition, certain entries needed refining as to the accuracy of the diagnosis.
The in-flight musculoskeletal database provides the foundation for directing operationally-relevant research in space medicine.

- This effort will enable medical operations to develop medical kits, training programs, and preventive medicine strategies for future CxP missions
 - Quantify medications and medical supplies for next-generation spacecraft
 - Objective data for engineers to determine weight requirements
Conclusion

- Flight surgeons can make specific recommendations to astronauts based on injury data, such as emphasizing hand protection while in-flight.

- EVA and spacecraft engineers can examine evidence-based data on injuries and design countermeasures to help prevent them.