STELLAR ORIGINS OF 13C- AND 15N-ENRICHED PRESOLAR SiC GRAINS

Nan Liu¹, Larry R. Nittler¹, Conel M. O’D. Alexander¹, Jianhua Wang¹, Marco Pignatari²,³, Jordi Josè⁴ & Ann Nguyen⁵
¹ Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC, USA;
² E. A. Milne Centre for Astrophysics, Department of Physics & Mathematics, University of Hull, UK;
³ Konkoly Observatory, Hungarian Academy of Science, Budapest, Hungary;
⁴ Department de Fisica, EUETIB, Universitat Politècnica de Catalunva, Barcelona, Spain;
⁵ Jacobs, NASA Johnson Space Center, Houston, TX, USA.

Extreme excesses of 13C (12C/13C<10) and 15N (14N/15N<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae [1], though an origin in core-collapse supernovae (CCSNe) has also been proposed [2]. We report multi-element isotopic data for 19 13C- and 15N-enriched presolar SiC grains (12C/13C<16 and 14N/15N<~150) from an acid-resistant residue of the Murchison meteorite. These grains are enriched in 13C and 15N, but with quite diverse Si isotopic signatures. Four grains with 29,30Si excesses similar to those of type C SiC grains likely came from CCSNe that experienced explosive H burning occurred during their explosions [3]. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in at least some pre-supernova massive stars. Also, we found that seven 15N-enriched AB grains (~25<14N/15N<~150) have distinctive isotopic signatures compared to eight putative nova grains with 30Si excesses and 28Si depletions, such as higher 14N/15N, lower 26Al/27Al, and lack of 30Si excess, indicating weaker proton-capture nucleosynthetic environments. Interestingly, two of the eight putative nova grains and four of the seven 14N-enriched AB grains show lower-than-solar 34S/32S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario.