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Introduction:  Space weathering processes – driv-

en primarily by solar wind ion and micrometeorite 

bombardment, are constantly changing the surface 

regoliths of airless bodies, such as the Moon [1]. It is 

essential to study lunar soils in order to fully under-

stand the processes of space weathering, and how they 

alter the optical reflectance spectral properties of the 

lunar surface relative to bedrock [1, 2]. 

Lunar agglutinates are aggregates of regolith grains 

fused together in a glassy matrix of shock melt pro-

duced during micrometeorite impacts into the lunar 

regolith. The formation of the shock melt component 

in agglutinates involves reduction of Fe in the target 

material to generate nm-scale spherules of metallic Fe 

(nanophase Fe0 or npFe0) [3]. The ratio of elemental 

Fe, in the form of npFe0, to FeO in a given bulk soil 

indicates its maturity, which increases with length of 

surface exposure as well as being typically higher in 

the finer-size fraction of soils [2,4]. 

The melting and mixing process in agglutinate 

formation remain poorly understood. This includes 

incomplete knowledge regarding how the homogeneity 

and overall compositional trends of the agglutinate 

glass portions (agglutinitic glass) evolve with maturity. 

The aim of this study is to use sub-micrometer scale X-

ray compositional mapping and image analysis to 

quantify the chemical homogeneity of agglutinitic 

glass, correlate its homogeneity to its parent soil ma-

turity, and identify the principal chemical components 

contributing to the shock melt composition variations. 

An additional focus is to see if agglutinitic glass con-

tains anomalously high Fe sub-micron scale composi-

tional domains similar to those recently reported in 

glassy patina coatings on lunar rocks [5].  

Samples and Methods:  The lunar soil samples 

were obtained from the curation facilities at Johnson 

Space Center. A polished grain mount of Apollo 11 

soil, 10084, was used to develop and improve image 

analysis techniques. Data collection was done on pre-

polished grain mounts of Apollo 17 mare soil samples 

73241, 78501, 76281, and 78421, with approximately 

16-21% Al2O3 and varying maturity (respective IS/FeO 

ratios: 18, 36, 45, 92) [6]. Back scatter electron images 

of agglutinitic glass were collected using the JEOL 

JSM-7600F field-emission scanning electron micro-

scope at NASA JSC. Quantitative element maps were 

collected by compositional spectrum imaging. The 

map pixels were quantified into values of wt. % ox-

ides, with pixel values in agglutinitic vesicles removed 

from the dataset. Numerical methods were devised to 

plot the oxide compositions of each onto ternary dia-

grams to create large, highly spatially resolved datasets 

showing mixing trends and relationships of the glass. 

Soil samples 73241 and 78501 were also characterized 

using the JSA-8530 field-emission electron probe mi-

croanalyzer in order to test the accuracy of the SEM 

data.  

Results:  Our image-based compositional analysis 

technique using the SEM yielded ternary variation 

diagrams similar to those obtained by microprobe, but 

with a factor of 10 to 100 higher density of points. 

Removal of data contained in pixels associated with 

holes was very effective, but it was generally not pos-

sible to remove the composition of entrained minerals 

from the dataset. The microprobe readings of both 

73241 and 78501 showed plagioclase rich glass mix-

tures, with a Fe content above what was expected. 

These results are similar to those collected on the same 

areas using the SEM, which show that the SEM map-

ping technique can be used to accurately plot aggluti-

nitic glass composition. 

Agglutinates in the least mature soil, 73241 (Fig. 

1a,b), have dominantly Al2O3 rich glass, with a wide 

ranging TiO2 content. The FeO content lies primarily 

on or above the mixing line of ilmenite and pyroxene 

(Fig. 1b). The average glass composition of soil 78501 

is Al2O3 rich, with a relatively low TiO2 component (0-

40%). The bulk of the FeO data lies well above the 

ilmenite-pyroxene mixing line, with parts of the distri-

bution extending to 100% FeO ranges. Soil 76281 has 

an Al2O3 rich average glass composition. The TiO2 

composition ranges from 10-80% from grain to grain. 

The FeO composition spans both below and above the 

mixing line of ilmenite and pyroxene. 

The most mature soil, 78421 (Fig. 1c,d), has a 

composition that fluctuates primarily between Al2O3 

and MgO, with very little TiO2 content (typically 0-

30%). The FeO content plots on or above the ilmenite-

pyroxene mixing line (Fig. 1d). 

Discussion: The average melt composition across 

the samples is a plagioclase rich mixture with varying 

degrees of input from ilmenite and pyroxene. The pla-



gioclase enrichment could reflect the greater suscepti-

bility of this mineral to undergo shock melting, or 

modal variations in the regolith target [7]. 

Our results do not show a correlation between soil 

maturity and agglutinitic glass compositional homoge-

neity. There was too much variation between individu-

al agglutinate grains in the same soil. However, this 

could be a result of the small number of glassy areas 

that were mapped and analyzed. The mapped regions 

were also chosen by visual inspection, and are not nec-

essarily representative of the more intricate portions of 

agglutinitic glass in the grains. 

The agglutinitic glass FeO content was found to be 

consistently higher than the ilmenite-pyroxene mixing 

line in all samples (Fig. 1b,d) requiring a source of Fe 

other than from these mineral contributing to the glass. 

By using standard normative subtractive measures, it 

is possible to calculate and plot the residual FeO, MgO 

and SiO2 unassociated with either plagioclase or il-

menite, and contributed by pyroxene and olivine. 

These data (Fig. 2) show a unique compositional clus-

ter which could be interpreted as having an olivine and 

pyroxene source, but overall has a much higher Fe/Mg 

ratio than typical lunar mare pyroxene and olivine 

compositions. There are several possibilities to explain 

this excess FeO over MgO. The first is that it is being 

derived from previously produced agglutinitic glass, 

which is high in Fe. However, this does not explain 

where the high amounts of FeO in the original aggluti-

nitic glass came from initially. Another option is that 

the FeO is coming from Fe deposits in the micromete-

orite impactors. One final possibility is that these FeO 

anomalies are coming from Fe vapor rims, which are 

deposited around mineral grains during bombardment  

 

 
Figures 1a,b. Compositional ternary diagrams of ag-

glutinitic glass in least mature soil 73241. Figures 

3c,d. Compositional ternary diagrams of agglutinitic 

glass in most mature soil 78421. 

and loss of volatiles. These rims form primarily around 

grains in the finest fraction, which would support the 

fusion of the finest fraction theory [5,8,9]. The average 

Fe/Mg ratio of vapor rims found in patina is slightly 

higher than the residual values found in the aggluti-

nitic glass. The low volume of Fe rich vapor rims indi-

cates that there is most likely a combination of sources 

for the surprisingly large amounts of FeO. 

 

 
Figure 2. Plot of the residual FeO, MgO and SiO2 in 

the agglutinitic glass of sample 10084. 

 

Conclusion:  The chemical homogeneity of agglu-

tinitic glass is not tied to maturity. The composition 

and homogeneity of the glass is determined by the tar-

get material, and individual mixing events are too sto-

chastic to define parameters.  

The high FeO content of the glass indicates that il-

menite and pyroxene are not the only contributors to 

the composition. The residual FeO could be attributed 

to a combination of melting high Fe pyroxene and oli-

vine grains, and melting Fe vapor rim deposits around 

the finest fraction of soil grains.  
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