Corrosion Protection for Increased Resiliency of NASA’s Launch and Ground Support Equipment

2015 International Workshop on Environment and Alternative Energy
European Space Agency (ESA)
European Space Astronomy Centre (ESAC) Madrid, Spain
November 10-13, 2015

Luz Marina Calle, Ph.D.
NASA's Corrosion Technology Laboratory
Kennedy Space Center, FL, 32899, USA
Outline

Introduction

Corrosion
- Corrosion protection for increased resiliency of NASA’s launch and ground support equipment timeline
- Corrosion grand challenges
- Natural and Launch environments at KSC
- Qualifying coatings for NASA’s launch facilities
- NASA’s Corrosion Technology Laboratory Website

Corrosion evaluation
- Atmospheric exposure testing
- Accelerated tests
- Electrochemical measurements
- Surface analysis

Corrosion Engineering Projects
- Environmentally driven projects
- Environmentally friendly corrosion protective compounds (CPCs)

Technology Development
- Smart coatings
- New accelerated corrosion test method
Introduction

- NASA has been dealing with corrosion since the inception of the Space Program in 1962 because it launches from the most naturally corrosive environment in North America.
- The beachside atmospheric exposure test site was established in 1966 to test materials, coatings, and maintenance procedures near the launch pads.
- In 1981, corrosion conditions at the launch pads became even more severe due to solid rocket booster (SRB) exhaust products from the Space Shuttle.
- In 1985, accelerated corrosion testing began (salt fog and electrochemical).
- In 2000, The Corrosion Technology Laboratory was created to achieve KSC’s goal of increased participation in research and development.
- In 2000 a computerized corrosion data management system was implemented.
- In 2004, the corrosion technology laboratory started developing smart coatings, based on microencapsulation technology, specifically designed for corrosion control applications (U.S. Patents Nos. 7,790,225, 2010; 8,859,288, 2014; 9,108,174, 2015 and several pending).
Introduction

In 2011, NASA-STD-5008B revision updated the standard and added a paragraph on environmental stewardship:

- Environmental, health, and safety impacts of processes and materials shall be taken into account when employing protective coating methods and techniques.

- Alternative, environmentally friendly materials that do not contain hexavalent chromium, lead, cadmium, or hazardous air pollutants (HAPs), such as methyl ethyl ketone, toluene, and xylene, shall be considered when determining the correct coating method/technique for each protective coating application.

In 2014, NASA’s Space Technology Roadmap included corrosion control technologies as one of the areas needed to lower the cost and improve the sustainability and efficiency of its ground operations in support of future launch activities.

This presentation provides a chronological overview of corrosion protection for increased resiliency of NASA’s launch and ground support equipment throughout the history of NASA’s Space Program.
Corrosion Protection for Increased Resiliency of NASA’s Launch and Ground Support Equipment Timeline

1962
- Space Program starts
- Corrosion failures begin

1966
- Atmospheric exposure testing begins near the launch pads

1981
- Space Shuttle introduces acid deposition products that make corrosion worse

1985-1987
- Accelerated corrosion testing (salt fog and electrochemical) begins

2000
- Corrosion Technology Laboratory is created

2004
- The Corrosion Technology Laboratory starts developing new corrosion protection technologies and test methods

Corrosion testing and failure analysis

Corrosion testing and technical innovation
America is beginning an exciting new chapter in space exploration. To enable the future, NASA has developed a set of roadmaps to define the key new technologies required for our human and robotic explorers to safely venture into deep space, to better understand how our own solar system evolved, and to unravel the mysteries of our universe.

The map you see here is a graphical representation of the NASA Space Technology Roadmaps, serving as a portal to the various technologies that NASA is developing. Let this technology portal serve as a starting point for your adventures beyond the bounds of Earth...

To learn more visit www.nasa.gov/oct

13.2.1 Corrosion Prevention, Detection and Mitigation
Corrosion Grand Challenges*

- Development of cost-effective, environment-friendly, corrosion-resistant materials and coatings.
- High-fidelity modeling for the prediction of corrosion degradation in actual service environments.
- Accelerated corrosion testing under controlled laboratory conditions. Such testing would quantitatively correlate with the long-term behavior observed in service environments.
- Accurate forecasting of remaining service time until major repair, replacement, or overhaul becomes necessary. i.e., corrosion prognosis.

*Research Opportunities in Corrosion Science and Engineering, Committee on Research Opportunities in Corrosion Science and Engineering; National Research Council (2010)
Where Are We?

Kennedy Space Center

Orlando

Miami

Kennedy Space Center
The Kennedy Space Center in Florida, USA, is a special place where we launch rockets from a wild life refuge in one of the most corrosive areas in the world.
KSC Natural Environment
Positioned within 1,000 ft (305 m) of the Atlantic Ocean, KSC’s launch facilities are exposed to salty air that blows from the ocean, high ambient air temperatures, and an extensive amount of UV Light. The high temperature of the engine exhaust is up to nearly 5,000 F (2,760 °C). Close to 70 tons of hydrochloric acid (HCl) are generated by the combustion products of a rocket’s solid propellant.
In 1981 the Space Shuttle introduced acidic deposition products
Natural Salt Fog Chamber
Corrosion Rates of Carbon Steel

<table>
<thead>
<tr>
<th>Location</th>
<th>Type Of Environment</th>
<th>Corrosion Rate<sup>a</sup> µm/yr</th>
<th>Corrosion Rate<sup>a</sup> mils/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquimalt, Vancouver Island, BC, Canada</td>
<td>Rural marine</td>
<td>13</td>
<td>0.5</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Industrial</td>
<td>30</td>
<td>1.2</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>Industrial</td>
<td>38</td>
<td>1.5</td>
</tr>
<tr>
<td>Limon Bay, Panama, CZ</td>
<td>Tropical marine</td>
<td>61</td>
<td>2.4</td>
</tr>
<tr>
<td>East Chicago, IL</td>
<td>Industrial</td>
<td>84</td>
<td>3.3</td>
</tr>
<tr>
<td>Brazos River, TX</td>
<td>Industrial marine</td>
<td>94</td>
<td>3.7</td>
</tr>
<tr>
<td>Daytona Beach, FL</td>
<td>Marine</td>
<td>295</td>
<td>11.6</td>
</tr>
<tr>
<td>Pont Reyes, CA</td>
<td>Marine</td>
<td>500</td>
<td>19.7</td>
</tr>
<tr>
<td>Kure Beach, NC (80 ft. from ocean)</td>
<td>Marine</td>
<td>533</td>
<td>21.0</td>
</tr>
<tr>
<td>Galeta Point Beach, Panama CZ</td>
<td>Marine</td>
<td>686</td>
<td>27.0</td>
</tr>
<tr>
<td>Kennedy Space Center, FL (beach)</td>
<td>Marine</td>
<td>1070</td>
<td>42.0</td>
</tr>
</tbody>
</table>

^aTwo-year average

¹A mil = one thousandth of an inch = 0.0254 mm
Changes In Corrosion Rate with Distance from the Ocean

Comparison of Average Corrosion Rate (Weight Loss) of UNS G10080 and Atmospheric Salt Content at Various Distances from Seacoast

- Weight Loss, UNS G10080
- Salt Collection Rate (Funnel Samples)
Examples of Launch Pad Corrosion

- Enclosed / Inaccessible Areas
- Dissimilar Metals
- KSC Launch tower structural steel corrosion
- Hidden corrosion
Corrosion evaluation studies began at KSC in 1966 during the Gemini/Apollo Programs.

The KSC Beachside Corrosion Test Site was established at that time to conduct controlled corrosion studies for protective coatings.
Qualifying Coatings for NASA Launch Facilities

Over the years, the Corrosion Technology Laboratory has developed proven methodologies to evaluate and test materials and coatings for use in NASA’s unique corrosive environments.

Based upon this knowledge, experience and expertise, NASA-STD-5008B, “Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment” was developed to test and evaluate protective coatings to control corrosion of these assets.
In order for a coating system to be used at NASA it must be listed on the NASA-STD-5008B Approved Products List. Coating systems on this list are qualified according to the requirements of NASA-STD-5008B by the Corrosion Technology Laboratory.

Typical protocol requires laboratory adhesion tests, color measurements, gloss measurements, and corrosion evaluations on the coatings exposed at the NASA KSC Beachside Corrosion Test Site.
Atmospheric Exposure

Real world exposure at a site that mimics actual performance requirements

NASA Technical Standard for Protective Coatings (NASA-STD-5008B) requires 18 months of good performance for preliminary approval and continued good performance for 5 years for final approval of a coating system.
KSC Beachside Corrosion Test Site

Launch Complex 39A
Launch Complex 39B

KSC Beachside Corrosion Test Site

• Full Seawater Immersion Exposure
• Tidal Exposure
• Seawater Spray/Splash (Splash Zone) Exposure

On-site laboratory

Atmospheric exposure racks

Atlantic Ocean
NASA’s Corrosion Technology Laboratory

The Corrosion Technology Laboratory at NASA’s Kennedy Space Center provides technical innovations and engineering services in all areas of corrosion/materials degradation for NASA and external customers.

Capabilities

- Beachside Atmospheric Exposure
- Full Seawater Immersion Exposure
- Tidal Exposure
- Seawater Spray/Splash (Splash Zone) Exposure
- Corrosion Engineering Services
- Accelerated Corrosion Testing
- Concrete Testing
- Cathodic Protection
- Coating Development
- Electrochemistry
- Surface Analysis
- Coating Application and Evaluation
- Website: http://corrosion.ksc.nasa.gov/

Beachside Corrosion Test Site

Accelerated testing

Electrochemical testing

Seawater Spray/Splash Exposure
(Simulated Shipboard Testing)
Computerized Corrosion Management*

Since 2000, a computerized corrosion management program has been used to keep track of corrosion in more than 3,600 critical components and about 1 million m² of surface area.

- Launch complex components
 - Launch towers and structures
 - Sound suppression water systems
 - Cryogenic fuel tanks and associated piping
 - Access towers
 - High-pressure gas tanks
 - Camera towers
 - Lighting protection
 - Mobile launch platforms
- Metallic structures outside launch area

*October 2010 issue of Materials Performance (MP)
Information stored in the database includes the location of the structure, the type of structure, the surface area of the structure, the substrate material, and the current condition of the coating system. Photos visually document condition ratings.
Environmentally Driven Projects

NASA has been facing environmentally driven challenges in corrosion control since the inception of the Space Program. Many projects throughout the years have been aimed at finding alternate coatings to replace high VOC and hexavalent chromium coatings for launch pad structures and ground support equipment.

Current environmentally driven projects include:

- Alternative to Nitric Acid Passivation
- Hexavalent Chrome alternative Coatings Systems
- Environmentally Friendly Corrosion Protective Compounds (CPCs)
- Smart and Multifunctional Corrosion Protective Coating Development
- Improved Accelerated Corrosion Testing Development
Alternative to Nitric Acid Passivation

Expected Results

Provide the data necessary to verify that citric acid can be used as an environmentally preferable alternative to nitric acid for passivation of stainless steel.

Benefits of Citric Acid

- Citric acid does not remove nickel, chromium, and other heavy metals from alloy surfaces.
- Reduced risk associated with worker health and safety.
- Reduced hazardous waste generation resulting in reduced waste disposal costs.
- Reduced Nitrogen Oxide (NOx) emissions that are a greenhouse gas, contribute to acid rain and smog, and increased nitrogen loading (oxygen depletion) in bodies of water.

Image: Master isolated images / FreeDigitalPhotos.net
Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventative Compounds (CPCs)

- Progressively stricter environmental regulations are driving the coating industry to abolish many corrosion protective coatings and corrosion preventative compounds (CPCs) that are not environmentally friendly.

- The objective of this project is to identify, test, and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPCs) for flight hardware and ground support equipment.

Dead tree/fish label warnings required in Europe for zinc primers

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. (Europe MSDS)

Keep out of waterways. (US MSDS)
The use of "smart coatings" for corrosion sensing and control relies on the changes that occur when a material degrades as a result of its interaction with a corrosive environment.

Such transformations can be used for detecting and repairing corrosion damage.

The Corrosion Technology Laboratory is developing a coating that can detect and repair corrosion at an early stage.

This coating is being developed using pH sensitive microcontainers that deliver their contents when corrosion starts to:

- Detect and indicate the corrosion location
- Deliver environmentally friendly corrosion inhibitors
- Deliver healing agents to repair mechanical coating damage.
Feedback-Active Micro-containers for Corrosion Detection and Control

- Containers with an active ingredient-rich core and stimuli-responsive shell (microcapsules)

- Containers with an active ingredient incorporated into a stimuli-responsive matrix (micro-particles). Matrix can be organic (pH sensitive polymer) or inorganic (porous silica)

pH-sensitive microcapsules pH-sensitive micro-particles Inorganic micro-containers
pH-triggered Release Microcapsules

Microcapsule containing pH indicator (inhibitor, self healing agents)

The shell of the microcapsule breaks down under basic pH (corrosion) conditions

pH indicator changes color and is released from the microcapsule when corrosion starts
Smart Coating Response to Corrosion and Mechanical Damage

Corrosion indicators

Corrosion inhibitors

Self-healing agents

Microcapsules are incorporated into smart coating

Mechanical damage causes capsule to rupture

Corrosion (basic pH) causes capsule to rupture

Indication of hidden corrosion by color change
Improved Accelerated Corrosion Testing

- Long-term prediction of corrosion performance from accelerated tests.

1010 steel (UNS 10100) panels after prolonged exposure

1 mile (1.6 km) from launch pad to test racks

~100 feet (30 m) from high tide line to test racks

Correlation?
Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

Alternating Seawater Spray System with exposure panels and modification for panels used for surface analysis (left). Wet candles exposed to KSC beachside atmospheric conditions and used to measure chloride concentration per month (right).
Summary

NASA has been dealing with corrosion problems since the inception of the Space Program.

Acidic exhaust from SRBs exacerbate natural corrosive conditions at the launch pads.

NASA’s Corrosion Technology Laboratory has been actively engaged in anticipating, managing, and preventing corrosion of launch and ground support equipment.

NASA is engaged in projects aimed at identifying more environmentally friendly corrosion protection coatings and technologies.

Current technology development efforts target the development of smart coatings for corrosion detection and control, the development of a new accelerated corrosion test method that correlates with long-term corrosion test methods, and the development of an environmentally friendly metal passivation method.

Website: http://corrosion.ksc.nasa.gov/
NASA’s Corrosion Technology Laboratory Team