Cloud Regimes as a Tool for Systematic Study of Various Aerosol-cloud-precipitation Interactions

Lazaros Oreopoulos (NASA-GSFC)
Nayeong Cho (USRA/NASA-GSFC)
Dongmin Lee (Morgan State/NASA-GSFC)

Acknowledgements: NASA’s “The Science of Aqua and Terra” and “Modeling Analysis and Prediction (MAP)” programs
Our thinking

- Need to understand effects of aerosols on clouds and precipitation and eventually on Earth’s Radiation Budget
- Problem poses obvious observational challenges
- How to separate aerosol from all other effects?
- Breaking down the analysis by “regime” (group together similar conditions) may help
- But how do we define regimes?
 - Exploiting cloud appearance (from passive obs) is a starting point
 - This poses some constraint on environmental conditions
 - Additional constraints can be imposed
- So we proceed with a “cloud regime” (CR) analysis
 - Our CRs are based on MODIS
 - You may also know ISCCP “Weather States”
The 12 MODIS Collection 6 CRs

Cloud optical thickness

Cloud top pressure (mb)

Cloud fraction (%)
Where the CRs occur
CRs and large-scale vertical motion

Omega [Pa/s]

Cloud optical thickness

Cloud fraction (%)

RFO: 2.99

RFO: 4.92

CF: 29.66

CF: 84.09

CF: 88.86

CF: 96.69

CF: 89.30

CF: 82.24
Dataset and methodology

• 12 years of Aqua-Terra L-3 daily (D3) 1° data
 – Collection 6

• Joint histograms of CTP-TAU

• MODIS CRs from \(k\)-means clustering of CTP-TAU joints

• Aerosol Optical Depth (AOD)
 – We calculate seasonal AOD distributions and perform compositing at the vigintile level (20-bin distribution) of cloud properties and precipitation for each CR separately (Terra CR=Aqua CR)
 – We often focus on the upper (3Q, “high” aerosol) and lower (1Q, “low” aerosol) quartile and perform statistical significance test
 – Two ways to build AOD seasonal distributions: (1) for each gridcell (stronger constraint); (2) for each CR (weaker constraint)

• Precipitation data: GPCP-1DD

• Land/ocean separation illuminating
Sampling issues
(how to build AOD distributions)
1) \[\text{AOD} = \frac{\text{Aqua AOD} + \text{Terra AOD}}{2}. \]

2) \[\text{AOD} = \text{Aqua AOD} \quad \text{OR} \quad \text{AOD} = \text{Terra AOD} \]

3) \[\text{AOD} = \frac{\text{Aqua}_1 \text{AOD} + \text{Aqua}_2 \text{AOD} + \text{Terra}_1 \text{AOD}}{3}. \]
Comparison of two AOD sampling options (CR3)

AOD distribution defined PER CR

AOD distribution defined PER GRIDCELL

1Q AOD

1Q AOD
Precipitation
Precipitation comparison (RR>0) two sampling methods

3Q/1Q AOD defined by per CR per Season

3Q/1Q AOD defined by per Grid per Season

GPCP Precipitation (mm/day) with 3Q AOD vs. GPCP Precipitation (mm/day) with 1Q AOD
Precipitation (RR>0) comparison (Land-Ocean)
Cloud Properties
Cloud fraction

Cloud fraction with 1Q AOD

Cloud fraction with 3Q AOD

CR12
CR9
CR8
CR2
CR5
CR6
CR1
CR3
CR11
CR10
CR4

Global

Ocean

Land

Red=meets expectations
Cloud Top Pressure

(Gryspeerdt et al. 2014)
Cloud optical thickness

Red = meets expectations
Cloud effective radius

Blue=meets expectations

Liquid/Ice cloud effective radius with 3Q AOD

Ocean

Global

Land
Summary and parting thoughts

• We propose that Aerosol-Cloud-Precipitation relationships be examined on a “cloud regime” basis
 o This helps us examine aerosol influence under more “similar” conditions

• Even then, the outcomes depend on how one samples AOD distributions (weaker or stronger constraints on meteorology)

• Most times, cloud property and precipitation differences between low and high aerosol loadings are small (albeit statistically significant)
 o But not always consistent with expectations (optical thickness, low cloud precip)
 o Enhancement of precipitation for most CRs for large AOD

• Important: our analysis cannot distinguish how AOD retrievals biases vary due to cloud presence within or across CRs

• Also working with TMPA precip (forthcoming) hoping to resolve more details (e.g. morning/afternoon contrasts)
Additional Slides
CR cloud type breakdown per CloudSat
Note that the Y-axis scale is not linear and different for CR2.
Note that the Y-axis scale is not linear and different for CR2.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
<td>7%</td>
<td>2%</td>
<td>5%</td>
<td>8%</td>
<td>7%</td>
<td>10%</td>
<td>42%</td>
</tr>
</tbody>
</table>

MODIS Cloud Regime RFO (%)
GPCP daily mean Precipitation (P>=0)

Scatter plot comparing Latitudinally-weighted mean precipitation rate (*including zero* precipitation) for upper 3q AOD and lower 1q AOD. The horizontal and vertical error bars indicate one fifth of the interquartile range of the distributions used to calculate the composite means; distance from median to 25% percentile is represented by the error bars **below and to the left** of the symbol while that to the 75% percentile by the error bar **above and to the right**. All the values are statistically significant with 95% confidence except CR2 (LAND).

(MYD CR = MOD CR) + daily grid new AOD + daily mean GPCP
Assigned 3Q AOD
Assigned 1Q AOD

MAM

JJA

SON

DJF
Latitudinally-weighted Mean values of AOD assigned to 3q and 1q (per season per grid, what we used GPCP analysis) for each CR.

Red line : 3Q
Blue line : 1Q
Diamond : mean of AOD.