OBJECTIVES

This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.

METHODS

Selection of Vitamins

Previous Advanced Food Technology (AFT) research has identified five compounds (phylloquinones [vitamin K], thiamin [vitamin B1], folic acid [vitamin B9], pantothenic acid [vitamin B5] and tocopherols [vitamin E]) as candidates for the fortification blend. These compounds show significant degradation trends in the spaceflight food system and may not be adequately available on long-duration missions. Vitamin selection was based on the following criteria:

- Is vitamin concentration in the current International Space Station (ISS) diet adequate to meet Recommended Daily Intake (RDI) after 2 years of ambient storage?
- Has a countermeasure other than food fortification already proven stable and readily available?
- Are both water- and fat-soluble vitamins represented in the vitamin selection of the study?

Preparation of Vitamin Premixes

The above vitamins were blended into a premix (DSM, Freeport, TX), such that the final concentration per serving would be expected to equal 25% of the RDI after 2 years of ambient storage. Fortification nutrient stability will be considered acceptable if at least 85% of the original dose remained after 2 years of ambient storage.

NOTE: All premixes were developed with consideration for thermal process, water activity (aw) and packaging requirements. The result was separate premixes for thermostabilized and freeze-dried foods.

Sample Preparation

Eight food products (table 1) were selected on the basis of nutritional content, processing method (freeze dried vs. retorted), food matrix and formulation, and ease of fortification.

Table 1. Fortified Space Foods

<table>
<thead>
<tr>
<th>Freeze Dried Foods</th>
<th>Thermostabilized Foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potatoes Au Gratin</td>
<td>Curry Sauce with Vegetables</td>
</tr>
<tr>
<td>Scrambled Eggs</td>
<td>Chicken Noodle Soup</td>
</tr>
<tr>
<td>Italian Vegetables</td>
<td>Grilled Pork Chop</td>
</tr>
<tr>
<td>Noodles and Chicken</td>
<td>Rice with Butter</td>
</tr>
</tbody>
</table>

All samples were processed according to standard ISS production specifications; each batch was sized to deliver about 180 servings of product. Two-thirds of each batch was fortified with the vitamin premix and the remaining product served as the control. Packages of fortified and control foods were placed into chambers at 4°C, 21°C, and 35°C for sensory, color, and nutritional evaluation through 2 years of storage.

NOTE: In an effort to preserve quality, all freeze-dried foods were placed into nitrogen-flushed metal cans (with O2 scavengers), immediately after production (according to spaceflight specification) until they could be packaged into individual servings.

RESULTS

Sensory Analysis

The organoleptic quality of fortified space foods was maintained after 1 year of storage at 4°C and 21°C. Italian Vegetables, Scrambled Eggs, Chicken Noodle Soup and Curry Vegetables received unsatisfactory scores following 1 year of storage at 35°C.

Nutrient Analysis

The vitamin premix is relatively stable in most foods after 1 year of storage. The only exception is thiamin, which appears to be unstable in thermostabilized foods, during elevated temperature storage. Grilled Pork Chop had the greatest loss after 6 months and 1 year, despite receiving the highest level of fortification across all foods.

CONCLUSIONS

- Vitamin fortification reduces the rate of color degradation in stored space foods; however, this activity is negated by high-temperature storage.
- Vitamin fortification does not have a negative impact on sensory properties of space foods, and 1-year data indicates that low-temperature storage (4 and 21°C) may maintain higher acceptability.
- Vitamin fortification is a feasible option for delivering at least 25% of the RDI of vitamin E, vitamin K, folic acid and pantothenic acid; thermostabilization is detrimental to thiamin stability.
- High-temperature storage seems to have a negative impact on all test criteria, so use of refrigeration may prove beneficial during long-duration missions.

FUTURE WORK

Samples that are stored at 4°C and 21°C will be evaluated after 2 years for sensory acceptability, vitamin content and color degradation. Final results will be used to determine the overall stability and acceptability of commercially available fortificants.

www.nasa.gov