The Journey to Mars

- Exploration Mission – 1
- Launch Complex 39B, Kennedy Space Center (KSC)
 - Space Launch System (SLS)
 - Orion
 - Ground Systems Development & Operations (GSDO)
Ground System Development & Operations (GSDO)

- **Evolvable Launch Architecture**
 - Space Launch System (SLS)

- **Upgrades and modifications across KSC**
 - Launch Complex 39B
 - Mobile Launcher
 - Vehicle Assembly Building
 - Umbilicals

- **Critical Design Review – October 2015**
Launch Probability

- GSDO requires safe and reliable ground systems
- Launch Probability is a key Technical Performance Measure
 - Applicable to SLS, Orion, and GSDO
 - Seeking no less than 90% for each launch attempt
- GSDO Launch Probability Requirements
 - Inherent Launch Availability
 - 98% for each launch attempt
 - @ 24 hours
 - Operational Availability
 - 80% between launch attempts
 - @ 360 hours or 14 days
Reliability, Maintainability, Availability (RMA)

- RMA team analyzes the integrity of hardware chosen for GSDO ground systems
 - Failure and Repair Data
 - Historical data from previous programs
 - Manufacturer
 - Subject Matter Expertise
 - Ancillary Handbooks
- RMA analysis verifies GSDO requirements
- Integral part of the design review process
- Critical reliability analysts interface directly with design and operations engineers
GSDO RMA Allocations

◆ Allocation is an iterative process

◆ Allocation Issues:
 ▪ Change in the number of subsystems under analysis
 ▪ Increase in the number of components per subsystem
 ▪ Original allocations derived from preliminary designs
 ▪ Eighteen subsystems were not meeting requirements

◆ Literature suggests reallocation
 ▪ Models that include both reliability and maintainability parameters absent from the literature
 ▪ Maintainability allocation methods not applicable to GSDO
Methodology

Software

- PTC Windchill Quality Solutions
- Reliability Prediction and Reliability Block Diagrams (RBD) modules
- Assumes exponential distribution for failure and repair rates
- MIL-HDBK-217F Parts Count Calculation Model
- Monte-Carlo Simulations at 1,000,000 iterations
Methodology

◆ Reliability
 ▪ The probability that a system (or component) will fail at or after a predetermined time \(t \)
 ▪ Failures rate sources
 ▪ Manufacturer
 ▪ Historical Data
 ▪ Ancillary handbooks – Non-electronic Parts Reliability Database (NPRD) 2016, Electronic Parts Reliability Database (EPRD) 2014
 ▪ Mean Time Between Failures (MTBF)
 \[
 R(t) = e^{-\lambda t}, \text{ where } \lambda = \frac{1}{MTBF}, \ t = 24 \text{ hours}
 \]
 ▪ \(\lambda \) is the subsystem or component failure rate
Methodology

Maintainability

- The ability of a subsystem to be restored or repaired to an operational state within a given time period
- Values are estimated using subject matter experts (i.e., operations engineers)
- Mean Time to Repair (MTTR)
 - Corrective Maintenance

\[M(t) = 1 - e^{-\mu t} \]
\[\mu = \frac{1}{MTTR} \]
\[\mu \text{ is the constant repair rate} \]
\[MTTR_{SS} = \frac{\sum (\lambda_i \cdot MTTR_i)}{\sum \lambda_i} \]
Availability

- Function of reliability and maintainability
- The probability that a repairable subsystem will operate satisfactorily at a given point in time during the period of analysis
- Point Availability analysis
 - Excludes logistic and administrative delays

\[A(t) = \frac{\mu}{\lambda+\mu} + \frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)t} \]
◆ Reallocations were based on changes to the launch architecture
◆ Initial Allocations did not reflect current designs
◆ Verify analysis is correct for current designs
Recommendations

Consider reallocation for:

- Any increase in the number of components without a change in the design strategy (e.g., added redundancy, quality of hardware)
- Subsystems that contain a mix of upgraded and legacy components with historically high failure rates and considered single points of failure
- Significant changes to the launch architecture
GSDO is creating a robust ground systems architecture

GSDO requirements incorporate safety and reliability for successful launch activities

RMA Analysts interface directly with and provide recommendations to design teams to ensure verification of requirements

- Continuously perform RMA analyses through subsystem verification and validation
Reallocations - Reliability

- $R(t) = e^{-\lambda t}$
- $\lambda = \frac{1}{MTBF}$
- $t = 24$ hours
- $R_{GSDO} = \prod_{i=1}^{n} R_i(t) = R_1 * R_2 * \cdots R_n$
- Reliability is a lower-bound measure
- Cause for reallocation
 - Change in the launch architecture
 - Number of subsystems & components
Reallocations - Maintainability

- $M(t) = 1 - e^{-\mu t}$
- $\mu = \frac{1}{MTTR}$
- $t = 24$ hours
- $MTTR_{GSDO} = \frac{\Sigma(\lambda_{SS} \times MTTR_{SS})}{\Sigma \lambda_{SS}}$
- Maintainability is an upper-bound measure
- Cause for reallocation
 - Adjustment factor not applicable for all subsystems
Reallocations - Availability

\[A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-\left(\lambda + \mu\right)t} \]

\[\lambda = \frac{1}{MTBF} \]

\[\mu = \frac{1}{MTTR} \]

\[t = 24 \text{ hours} \]

 Availability is a lower-bound measure

 Increase in Availability Estimates
 - Reallocations of reliability and maintainability
 - Change in the number of subsystems under analysis