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Introduction

» A safe, robust and affordable hydrogen (H2) removal
process is necessary to enable the testing required for
nuclear thermal propulsion (NTP) engine development.

« A system-level concept had been developed by burning
H2 and cooling the exhaust with direct water spray.
However, it omits first-order physics, creating safety and
cost issues concerning the H2 containment and the large
amounts of non-recyclable water.

* A new process Is proposed with innovative simplicity that
meets design objectives. The process will be
demonstrated with high fidelity computational design and
analysis tools with innovative physical models.



Objective

* The objective of this study is to propose a new total
hydrogen containment process to enable the testing
required for NTP engine development. This H, removal
process comprises of two unit operations: an oxygen-rich
burner and a shell-and-tube type of heat exchanger. This
new process is demonstrated by simulation of the steady-
state operation of the engine firing at nominal conditions,
with computed hydrogen-to-oxygen ratio at end of heat
exchanger less than the lower flammability limit.



UNIC Multidisciplinary Computational Fluid
Dynamics Methodology

= Unstructured-grid, pressure-based, turbulent, finite-rate reacting

flow formulation

» Real Fluid Model for multiphase flows
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UNIC Multidisciplinary Computational Fluid

Dynamics Methodology
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UNIC has been used to support prior NTP efforts in studying
conjugate heat transfer phenomena of a coupon sample being
heated in an arc heater, and in a solid-core Small Engine.
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Heat Exchanger Sizing Methodology

dp +——+ pudu =0

g F5 s ok
Q =m (12 +5u§_ — i — Euf)
The power transfer is calculated with Newton’s law of cooling as given by:
Q = hA(T,, — Tp)

The local Nusselt number, used to determine the heat transfer coefficient, is obtained from the Gnielinski
equation:

Nun = (f/8)(Rep—1000)Pr
Up = 1+12.7(f /8)Y/2(Pr2z/3-1)

Where the Moody friction factor for a smooth wall is given as a function of Reynolds number by the Petukhov
equation:

f = (0.790 In(Rep) — 1.64) 2

Which is also used to define the wall shear stress as:

w =1 (%5)

The software Cequel™ (Chemical Equilibrium in Excel), provides the remaining required equation of state
functionality and relations for the transport and thermodynamic properties of the combustion gases, which are
allowed to dissociate and recombined through the tube assuming equilibrium throughout.




Total Hydrogen Containment Process
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Conceptual Design

Conceptual Design Goals
» Oxygen-Rich Burner design goal: 99% reduction of hydrogen
« Straight-cylinder burner size
 State of inlet oxygen
« O/F ratio
» Heat exchanger design goal: 1% reduction of hydrogen
» Shell-and-tube tubular heat exchanger
» Cooling tube size
* Number of cooling tubes
 Layout of cooling tubes
» Hydrogen removal process goal: computed flammability < LFL

Lower Flammability Limit

The hydrogen and oxygen mixture can not be ignited if the percent of hydrogen in the mixture (less steam) is less than
the lower flammability limit (LFL), or higher than the upper flammability limit (UFL). The flammability limits based on
the volume percent of hydrogen in oxygen at 14.7 psia (1 atm, 101 kPa) are 4.0 and 94.0 [25]. Converting to mass
percent of hydrogen in oxygen, the LFL and UFL are 0.2618% and 49.67%, respectively. Since the idea of the oxygen-
rich burner is to burn off hydrogen as much as possible near the end of the burner, UFL is therefore not applicable and
the goal is to reduce the mass of hydrogen in dry mixture to a value lower than the LFL. Note that the auto-ignition
temperature of hydrogen is 773 deg. K.

The flammability is calculated as:

ﬂammabz’]in: = aHI Ty ® aOH(AIH /I‘IOH)




N%A Axisymmetric Grid & Computational Domain
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Axisymmetric, Coupled Pressure Vessel &

Nozzle/Diffuser/Burner CFD Parametric Studies

Case | O/F | R/Ro | L/Lo | To2inet/To | O2 injector geometry Burner geometry Ave exit H2 mass

fraction, %
1 9 36 705 90 Duct Straight cylinder 5.81
2 9 46 940 90 Duct Straight cylinder 3.86
3 9 46 940 90 Duct Straight cylinder with a 3.56

long wall fin

4 9 46 940 300 Sonic nozzle Straight cylinder 4.27
5 9 65 940 90 Duct Straight cylinder 3.92
6 9 65 940 200 Duct Straight cylinder 3.61
7 9 65 940 200 Sonic nozzle Straight cylinder 4.46
8 9 65 940 300 Sonic nozzle Straight cylinder 2.58
9 9 65 940 300 | Swirled sonic nozzle Straight cylinder 5.84
10 | 12.5| 65 940 300 Sonic nozzle Straight cylinder 0.96
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This CFD parametric study results show the importance of inter-connected physics such as turbulent
mixing, finite-rate chemistry, and residence times that are driven by design parameters such as geometry,
O/F ratio, and state of oxygen. It also shows the importance of having a CFD-based process design such
that achieving the design objective of the specialized process could be simulated and demonstrated.




Comparison of H2 Mass Fraction Contours in Coupled
Pressure Vessel & Nozzle/Diffuser/burner CFD Parametric Study

I

[ INEEEENEEEEEES

12



A Heat Exchanger Sizing Result

for a Fixed Cooling Tube Diameter

Case A B ¥ D
m/tho 1.00 0.50 0.10 0.05
Ti/To 3,331 3331 1331 3,331
Tout/ To 1,053.5 947.1 733.1 658.0
Twal/To 400 400 400 400
D/Do 0.1016 0.1016 0.1016 0.1016
L/Lo 14.732 14.732 14.732 14.732
Remn 114,969 57.485 11,497 5.748
Reout 286.453 156.883 39.410 21,771
Machin 0.568 0.284 0.057 0.028
Machou 0.283 0.130 0.023 0.011
L/D 145.0 145.0 145.0 145.0

Case C is chosen as a nominal case for the demonstrative computation among many possible cases. The heat
exchanger sizing tool is a fast, one-dimensional thermal system model. Although more physics have been added, it
still uses assumptions such as equilibrium chemistry. To be conservative and considering those assumptions, the

actual L/D designed was therefore increased from 145 to 230.

13



14

Axisymmetric, Integrated Pressure Vessel &
Nozzle/Diffuser/Burner and Single Cooling Tube CFD Results

Case O/F m/mo Flammability % | Flammability % <
LFL?
1 12.5 0.1 0.00193 Yes
2 12.5 0.2 0.01288 Yes
3 12.5 0.3 0.03247 Yes
4 12:5 0.4 0.05406 Yes
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3-D, Coupled Pressure Vessel &
Nozzle/Diffuser/Burner/Heat Exchanger CED Results
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3-D, Coupled Pressure Vessel &
Nozzle/Diffuser/Burner/Heat Exchanger CFD Results
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Computed temperature and species concentration contours on the symmetry plane for the entire three-dimensional process



3-D, Coupled Pressure Vessel &
Nozzle/Diffuser/Burner/Heat Exchanger CFD Results

»0F f b heat exch
[ /.\\\ . urner e eat exchanger
- / 0
3000 |- £ N\ 0E ___H20]
i / AN O B T S © -
i o N\ S I /7 D=t
- / Q " E
5500 = \\ gw E T e,
i \ w |
i A g
B \ £10°F
e 2000 - H 2
'— - \ .g -3 i - - .
_— \ F10°F Likely recombination
o 1,503,410 cells LN £ h reactions in heat exchanger:
e 2,693,266 cells | 2E L
i 9,364,973 cells N 8 F A iy S OH+H2=H20+H
il L "~.| OH+OH=0+H20
burner heat exchanger oG I OH 4 H+OH=H20
ﬁJllAllLAl LlJLAIlLlﬁIﬁ;IIILIAIIJILIIIJJ‘{A>: 10763d‘\;||(|\\lll\l\ll\l\l\l|\|\\\\l\\\\l\l\\\\\lwllwlwl
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50
X/X, X/,

Final flammability computed at the exit plane of the heat exchanger from three grid cell
sizes. The flammability results show that H2 total containment objective has been met with
the proposed process.

Case Cell numbers Flammability | Flammability %
% <0.2618%?
1 1,503,410 0.00300 Yes
2 2,693,266 0.00204 Yes
3 9,364,973 0.00199 Yes
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Conclusions

« A new, high fidelity design tools based hydrogen
containment process Is proposed using a non-contact heat
exchanger in lieu of direct water spray for better cooling
efficiency and recyclable water (without the need for
storing a large amount of water).

« The computed flammability at the end of heat exchanger is
less than that of the lower flammability limit, demonstrating
the total hydrogen containment capability of the proposed
process.



