
Snakes on a
Rocket

Because "Python in an Avionics TestingSystem" doesn't
sound quite as cool.

Lucas Mehl

Disclaimers
These slides have been approved for release by NASA
and/or Jacobs ESSSA.
BUT...
Any views or opinions expressed in this talk do not
necessarily represent those of NASA,Jacobs ESSSA,
Tuskegee University,or anyone other than me.
AND...
Iapologize in advance for excessive use of memes

Agenda

Me
MAESTRO at a glance
Context

History (Why we do what we do)
Space Launch System fun facts
What we're up against

MAESTRO in depth (well,more in depth)
Other Considerations (time permitting)

Me
Aerospace engineeringbackground
Mostly self-taught programmer
Linux user for 10+years
Python user for 2+years
NASA/Jacobs ESSSA/Tuskegee University
github.com/LucasRMehl
twitter.com/LucasRMehl
But don't go there...

PyTennessee attendee every year since inception

'rOIJ KNOWTI-115METAL
RECTANGLErvu.CF
LJm£ LJGHT"S?

'•\ .0"\H

I 5PENDMOSrCf ttY l.lFE
PRESSl13l.11"1WS1t>MAXE"
TtiE. Am'ERN OFLIGHTS
CHANGEKa.JE\t£RI \JAM:

I\oS<XJNDS·

BUTTO O 1HE IIERN
a:" LIGHlS IS l'/.I. l/f?C>NG!

) OHGOD!1l<Y
(PRESSINGt'CRE

IT${!/(YT 13\JTToNS!
HaP/.IV(J!

\ .
(

MAESTRO

Managed

Automation

Environment for

Simulation,

Test, and

Real-time

Operations

A Python-based automation framework that serves as the
communication layer and the user interface for the Space
Launch System's hardware-in-the-loop avionics testing.

Avionics
What are avionics?

Avionics
Avionics =>Aviation electronics

What Avionics Are:

1. Triple-redundant flight computers
2. Sensors.Lots of sensors.
3. Power supplies
4. Actuators (sometimes)

What Avionics Are Not:

Fire goes that way

Fire goes that way

(J/K,propulsion engineers,we <3 you)

But...

Even though we are only testingavionics,we still have to
simulate the rest.

History of Rocket
Testing

Wernher Von Braun

Mercury-Redstone Booster Development

January 31,1961

Mercury-Redstone 2

Last test before we put a man into space

Ham The Chimp

Measure Target Actual
Apogee 115 miles 157 miles

Distance 292 miles 422 miles

Max Speed 4400 mph 5857 mph

Max g-force 11 g 14.7 g

Sad von Braun

What happened?

Problem:A servo valve did not properly regulate flow of
H2O2,making the fuel pumps overpowered,draining the
fuel too fast,triggered abort when the engine chamber
pressure dropped.
AVIONICS!
Solution:Replace the thrust regulator and velocity
integrator (analog control system)
Also,harmonic vibrations in topmost section due to
aerodynamic stress,so they added stiffeners and whatever
(not avionics).

For some reason,von Braun didn't want to put a human on
the very next rocket.

March 24,1961

Mercury-Redstone BD

Went as well as rocket launches could in those days

No launch holds
Within 1%of altitude target
Within 2%of distance target

The next day,March 25,1961,the USSR successfully
launched and recovered another dog,making their record

three out of five.

Zvezdochka ("Starlet")

60%?Good enough,comrade!

Yuri Gagarin became first man in space on April 12,1961.

Three weeks later...

May 5,1961
Mercury-Redstone 3
Alan Shepard became the first American in space.

Alan Shepard could have been first...

...but we weren't sure about the safety

...and if we're disregarding safety anyway,Yuri Gagarin
could also have gone up instead of one of Starlet's
predecessors.

Lessons fromvon Braun and the Space Race

Safety/Reliability is kinda important
For aircraft and spacecraft,safety/reliability over
everything, including schedule
For other software...probably not (reliability over
features?)

Beware problems hidingproblems

Spaceflight is
hard

30 astronaut fatalities
150+non-astronaut fatalities
32 non-fatal flight incidents
35 non-fatal training incidents
Hundreds and hundreds of launch failures

How do we deal
with that?

Simulations.

Flight computers

Redstone: electromechanical autopilot manufactured by
Waste King Corp,manufacturer of garbage disposals and
waste incinerators
Atlas D:solid-state analogautopilot
Saturn V:0.0012 MIPS
SLS:triple redundant,hundreds of M IPS*
*Not sure of exact numbers.Orion is 480 MIPS,but
reliability is far more important.Orion has triple redundant
flight computers,plus a 4th computer that can take over in
emergency crew survival and return situations

In comparison

Raspberry Pi 2:1,186 MIPS
Core i7 5960X:238,310 MIPS
Tianhe-2 supercomputer:~30,000,000,000 MIPS

Launch capacities

Redstone:0 lbs to LEO
Atlas D:2900 lbs to LEO
Saturn V:260,000 lbs to LEO
SLS Block 1:150,000 lbs to LEO
SLS Block 2:290,000 lbs to LEO

#ThingsSLSCouldLaunch

3 adult male sperm whales

#ThingsSLSCouldLaunch

One year's worth of (legally)consumed marijuana in
Colorado

Not allowed to show a picture,but it's a lot.

#ThingsSLSCouldLaunch

The steel frame of the Statue of Liberty,plus half of the
copper skin

#ThingsSLSCouldLaunch

1,500 very large Burmese Pythons

SLS:When the ForceAwakens

SLS Block I:8.4 million pounds of thrust
If I could apply that directly to me,I (or what's left of me)
would be traveling 800,000 miles per hour after one
second.
SLS Block II:9.2 million pounds of thrust
Inertial dampeners FTW?

So that's what we're up against in terms of physics.

What about in terms of avionics?

Space Launch
System Avionics

26 avionics boxes
3 flight computers
Need to be able to test Hardware-in-the-Loop

Software Groups Involved inAvionicsTesting

ARTEMIS (simulates all of the hardware)
MAESTRO (hardware/software interface,user interface)
Flight Software*(controls vehicle)
*Not cool enough for punny acronym
Software Test and Software Quality**
**Definitely not cool enough for punny acronyms or even
their own bullet

ARTEMIS

Advanced
Real-
Time
Ehhh
Mumblemumble
Information?
Simulation,probably
Let's play:spot the pun*!
*Not actually a pun.

How about now?

Siblings!

Anyway,ARTEMIS simulates everything.Models,models,
everywhere.

So we've got many of the pieces:

1. Avionics boxes & flight computers
2. Software models of all of them
3. Software models of the rocket itself
4. Flight software

Now what?

We need computing power to run those models.

20+facilities,most with:

1-2 Windows VMs (test control & monitoring)
1 High-end Windows or Linux desktop (visualization)
1-2 CentOS Linux VMs (the MAESTRO "Configuration
Manager" & facility manager)
6-16 Redhawk Linux 12-20 CPU core rack-mounted PCs
(simulation & data recording)

But that's not all!
MAESTRO also needs to act like an SLS emulator, i.e.receive

commands from test control software run at other places (e.g.
NASA Johnson,Lockheed Martin).

So,why Python?

One language to rule them all
Core Services (communication,IO,transfer protocol)
Test Control (scripting,command implementation)
Test Monitoring (real-time data collection and
monitoring,distribution)
Data Analysis
GUIs

Well-supported on Windows and Linux
Ease of development
Maintainability
Extensibility
PyPI
Community/philosophy

Now,MAESTRO...orchestrate!

MAESTRO Architecture
Point-to-Point Communication with Broker
Telemetry Service
Health Service
LogService

Point-to-Point:

Custom asynchronous RPC mechanism
Developed by several SLS stakeholders
Important for actingas an SLS emulator

Defined in high-level node configuration
Defines Broker IP,port
Defines own IP,port
Defines data archiving location

Telemetry Service:

Twisted
Simple Text-Oriented MessagingProtocol (STOMP)
Publish/subscribe mechanism

Health Service and LogService:

Twisted
Same custom RPC mechanism as before
MAESTRO can act upon health events (e.g.stop test on
FATAL)
Asynchronous logging from multiple machines to one log
file on one machine

We also need to (optionally) talk to all that hardware.

Physical Layer Switches
Custom break-out boxes
Power Supplies
These things allow MAESTRO to switch between real and
simulated hardware without moving cables around

We can test individual pieces of hardware from different
vendors without having issues from other hardware
affecting the test

Our team also develops the facility data acquisition and
monitoring system

\56:::> -

01 - - - J

{.,_,?.,

Configuration

XML
Class generation
Validation
Used for all test-related config files

INI
ConfigParser
Used for GUIs

JSON
Command Dictionaries
Used for self-test (dictionary serialization)

GUIs

Mostly PyQt
PyQwt
matplotlib
PyOpenGL

Test Conductor

MAESTRO also supports data playback

ConfiguringTests

Test Monitoring

Several GUIs ported from Java

GUIs are more consistent
Maintainance is easier
Installation is easier
Easier on developers,easier on operations

Speakingof operations...

Remember those 20+labs?

Troubleshooting
Logs
Bash
Ansible
Self-test (Ansible API)

Software Maintenance
Ansible Playbooks
Pip
Wheels
Virtualenv

Ansible

Got to see in action PyTN 2015!
Super awesome for command line usage
Super awesome for installation procedures
Windows support is iffy

Requires Powershell upgrade
Requires service to be enabled
Requires additional Python modules

MAESTRO Self-Test

Only problem:passing JSON as a command line argument

Bringing it all together:

Other
Considerations

NASA <3 's Open
Source
https://github.com/nasa/
https://open.nasa.gov/
https://code.nasa.gov/
https://data.nasa.gov/

Development Process:It's Pretty Scrummy

Requirements filtered through product lead
Enhancement/bugfix requests from users & developers

Much more common than in open source
Less pressure to move to latest and greatest

Three week sprints
Less separation between Scrum Master and Developers
Less separation between Product Lead and Scrum Master
Releases are separate from sprints

Source Control

Subversion for binary,docs,releases

Git for code

Where do we go
from here?

In terms of rockets...
In terms of Python...

Thank you!
Questions?

	Slide Number 1
	Disclaimers
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Now, MAESTRO...orchestrate!
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	MAESTRO also supports data playback
	Configuring Tests
	Slide Number 68
	Slide Number 69
	Speaking of operations...
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82

