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Abstract: Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) fil-
tering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a
comparative study of different approaches to reduce this loss of accuracy within the framework of
the dynamic Germano SGS model. One of the possible approaches is to apply Harten’s subcell
resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid
points adjacent to the exact shock location. The other considered approach is local disabling of the
SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence
interaction problem for comparison of the considered modifications of the SGS filtering procedure.
For the considered test case both approaches show a similar improvement in the accuracy near the
shock.
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resolution scheme, Shock/Turbulence interaction

1 Introduction
The presence of a shock wave in turbulent flows might pose a numerical accuracy problem in employing
the SGS filtered equations across shocks, depending on the LES model, the grid size, as well as the shock
strength. Since the majority of dynamic LES models involve filter operations, hereafter referred to as “LES
filters” to distinguish them from standard “numerical filters”, when the LES filtered equations are applied
through the shock, the Rankine-Hugoniot relations are affected by the filtering operation, since the filtered
variables are not discontinuous. In the present study we consider LES with implicit filtering employing the
dynamic Germano procedure [1] for calculating the model coefficients. The dynamic Germano procedure was
developed for shock free turbulence. Sagaut and Germano [2] have noticed that the usual filtering procedures,
based on a central spatial filter that provides information from both sides, when applied around the shock,
produce parasitic contributions that affect the filtered quantities. They suggested using non-centered filters
to avoid this nonphysical effect. In [3] shock-confining filters have been proposed instead. Another approach
based on the deconvolution method is considered in [4].

Aside from the subgrid scale filtering procedure, the accuracy of LES with shocks depends heavily on the
accuracy of the numerical scheme. In this study we consider a combination of the low dissipative high order
nonlinear filter scheme of Yee and Sjögreen [5] to locate the shock accurately, and the subcell resolution
method of Harten [6] to confine the shock location to be within a grid cell. Previous studies indicate that
the combination of the nonlinear filter scheme with Harten’s subcell resolution method is able to accurately
locate the shock within a grid cell. For the comparison we will also consider a modification of the SGS
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filtering procedure including local one-sided filtering without subcell resolution. One more modification
considered here is local disabling of subgrid-scale (SGS) dissipation, which has been employed in previous
studies [7, 8]. A new method to handle the transition points (buffer zone) between the smeared shock and
the one-sided SGS filter equations is under development.

The outline of the paper is as follows. Section 2 provides a description of the LES model considered and
the numerical scheme used to solve the governing equations with the details on the three modifications of the
LES filtering procedure. Section 3 describes the shock-turbulence interaction problem setup and a comparison
of the the current DNS computations with the digitized results from [9]. Then LES computations employing
the proposed method are compared with the filtered DNS data, and with LES results using standard and
modified LES filtering procedures.

2 Mathematical Formulation and Numerical Methods

2.1 Governing Equations and LES Model
We consider the filtered compressible Navier-Stokes equations written in the conservative form

∂tρ̄+ ∂j(ρ̄ũj) = 0 (1)
∂t(ρ̄ũi) + ∂j(ρ̄ũiũj + p̄δij − τ̌ij + τSij) = 0 (2)

∂t(ρ̄Ẽ) + ∂j(ρ̄Ẽũj + p̄ũj − τ̌ij ũi + q̌j + qSj ) = 0, (3)

where ρ is the density, ui is the ith velocity component, p is the pressure, T is the temperature, E is the
total energy, and t is the time. For a function f , the LES filtering operation is denoted as f̄ :

f̄(r, t) =
1

∆

∫ ∞
−∞

∫ ∞
−∞

G
(

r−ξ
∆ , t− τ

)
f(ξ, τ)dξdτ, (4)

where G(x, t) is the filter kernel in physical space and ∆ is the filter width. The Favre filtering operation is
denoted as f̃ = ρf/ρ̄, and f̌ stands for the Favre-filtered variables:

τ̌ij = 2µ(T̃ )(S̃ij −
1

3
δij∂kũk), S̃ij = (∂j ũi + ∂iũj)/2 (5)

q̌j = −λ(T̃ )∂j T̃ . (6)

Unlike the “bar” and “tilde”, the “breve” symbol does not denote a filtering operation, but indicates that the
quantity is based on primitive filtered variables. In the equations (5) and (6) the dynamic viscosity is given
by µ(T ) = µ0(T/T0)3/4 and thermal conductivity is expressed through a constant Prandtl number Pr and
heat capacity at constant pressure cp: λ(T ) = cpµ(T )/Pr. The equation of state is p̄ = Rρ̄T̃ , where R is
the gas specific constant. The subgrid-scale (SGS) terms, SGS stress tensor τSij , and SGS heat flux qSj are
modeled as follows:

τSij −
1

3
τSkkδij = −2µt(S̃ij −

1

3
S̃kkδij) (7)

τSkk = 2CI ρ̄∆2|S̃|2 (8)

qSj =
µtγcv
Prt

∂j T̃ , (9)

where µt = ρ̄Cs∆
2|S̃|, and |S̃| =

√
2S̃ijS̃ij . The Smagorinsky constant Cs and the constant for the isotropic

part of the SGS stress CI are obtained through Germano-Lilly [10] procedure:

Cs =

〈
LCs
ij M

Cs
ij

〉
H〈

MCs
ij M

Cs
ij

〉
H

, CI =
〈Lll〉H〈
MCI

ll

〉
H

, (10)
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where

LCs
ij = Lij −

1

3
Lllδij , Lij =

(
̂̄ρũiũj

)
− ̂̄ρũî̄ρũj/ ˆ̄ρ (11)

MCs
ij = −2ˆ̄ρ∆̂2| ˆ̃S|2

̂(
S̃ij −

1

3
S̃llδij

)
+ 2∆2

[
̂(
ρ̄|S̃|S̃ij

)
− 1

3

̂(
ρ̄|S̃|S̃llδij

)]
(12)

MCI

ll = 2ˆ̄ρ∆̂2| ˆ̃S|2 − 2∆2 ̂(
ρ̄|S̃|2

)
(13)

and < f >H stands for averaging in homogeneous (periodic) directions.
For the considered test case with low turbulent Mach number Mt < 0.4 it is shown [11] that the isotropic

part of the SGS stress can be neglected: CI = 0. The Germano procedure requires an explicit test filtering
operation, denoted here with the hat symbol. For the Germano procedure we use a 3D filtering operator
based on a 1D trapezoidal filter:

f̂i =
1

4
fi−1 +

1

2
fi +

1

4
fi+1. (14)

Note that according to [12] the width of the discrete filter can be estimated as

∆ = h

√√√√√12

(N−1)/2∑
j=−(N−1)/2

j2Wj , (15)

where h is the grid spacing and Wj are the filter weights. Using formula (15) for filter (14) gives ∆ = h
√

6.

2.2 High-Order Filter Schemes
In order to solve the system (1) – (3) introducing as little numerical dissipation as possible, we use the
high-order nonlinear filter scheme of Yee et al. [5, 13, 14, 15] which consists of three steps.

2.2.1 Preprocessing Step
Before the application of a high-order non-dissipative spatial base scheme, a preprocessing step is employed to
improve the stability. The inviscid flux derivatives of the governing equations are split into the following three
ways, depending on the flow types and the desire for rigorous mathematical analysis or physical argument.

• Entropy splitting of [16] and [17, 18]. The resulting form is non-conservative and the derivation is
based on entropy norm stability with boundary closure for the initial value boundary problem.

• The system form of the [19] splitting. This is a conservative splitting and the derivation is based on
physical arguments.

• Tadmor entropy conservation formulation for systems [20]. The derivation is based on mathematical
analysis. It is a generalization of Tadmor’s entropy formulation to systems and has not been fully
tested on complex flows.

For the current test case containing a shock wave in the flow field it is more appropriate to use a conservative
splitting. The Ducros et al. splitting is employed for all the computations.

2.2.2 Base Scheme Step
A full time step is advanced using a high-order non-dissipative (or very low dissipation) spatially central
scheme on the split form of the governing partial differential equations (PDEs). A summation-by-parts
(SBP) boundary operator [21, 22] and matching order conservative high-order free stream metric evaluation
for curvilinear grids [23] are used. High-order temporal discretization such as the third-order or fourth-order
Runge-Kutta (RK3 or RK4) method is used. It is remarked that other temporal discretizations can be used
for the base scheme step.
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2.2.3 Post-Processing (Nonlinear Filter Step)
To further improve nonlinear stability from the non-dissipative spatial base scheme, after the application
of a non-dissipative high-order spatial base scheme on the split form of the governing equation(s), the
post-processing step is used to nonlinearly filter the solution by a dissipative portion of a high-order shock-
capturing scheme with a local flow sensor. The flow sensor provides locations and amounts of built-in
shock-capturing dissipation that can be further reduced or eliminated. At each grid point a local flow sensor
is employed to analyze the regularity of the computed flow data. Only the discontinuity locations would
receive the full amount of shock-capturing dissipation. In smooth regions no shock-capturing dissipation
would be added. In regions with strong turbulence, if needed, a small fraction of the shock-capturing
dissipation would be added to improve stability. For a variety of local flow sensors with automatic selection
of the proper parameter, depending on different flow types see [13]. For the problem considered in this work
we use Ducros et al. flow sensor [24]:

w =
(O · u)2

(O · u)2 + ω2 + ε
. (16)

Here u is velocity vetor, ω is vorticity magnitude and ε = 10−6 is a small number to avoid division by zero.
The nonlinear dissipative portion of a high-resolution shock-capturing scheme can be any shock-capturing
scheme. For the problem considered in this study it is activated when the Ducros et al. sensor w > 0.6 for
the case M = 1.5 and w > 0.3 for the case M = 3.

Let U∗ be the solution after the completion of the base scheme step. The final update of the solution after
the filter step is (with the numerical fluxes in the y- and z-directions suppressed as well as their corresponding
y- and z-direction indices on the x inviscid flux suppressed)

Un+1
j,k,l = U∗j,k,l −

∆t

∆x
[H∗j+1/2 −H

∗
j−1/2], Hj+1/2 = Rj+1/2Hj+1/2, (17)

where Rj+1/2 is the matrix of right eigenvectors of the Jacobian of the inviscid flux vector in terms of Roe’s
average states based on U∗. H∗j+1/2 and H∗j−1/2 are “filter” numerical fluxes in terms of Roe’s average states

based on U∗. Denote the elements of the filter numerical flux vector Hj+1/2 by h
l

j+1/2, l = 1, 2, ..., 5. The

nonlinear portion of the filter numerical flux h
l

j+1/2 has the form

h
l

j+1/2 =
κ

2
wlj+1/2φ

l
j+1/2. (18)

Here wlj+1/2 is a flow sensor to activate the nonlinear numerical dissipation portion of a high order shock-
capturing scheme 1

2φ
l
j+1/2, and κ is a positive parameter that is less than or equal to one. The choice of

the parameter κ can be different for different flow types and is automatically chosen by using the local κ
described in [13]. However, in this study we set κ = 1 to be used with the standard Durcos et al. flow sensor.

It is noted that the nonlinear filter step described above should not be confused with the LES filtering
operation. For previous studies on the performance of this filter scheme in DNS and LES simulations,
see [14, 25, 26, 27, 28, 29, 13, 15]. This scheme has been validated for DNS of a 3D channel flow, 2D
temporal and spatial evolving mixing layers, Richtmyer-Meshkov instability, 3D Taylor-Green vortex, 3D
isotropic turbulence with shocklets, extreme condition flows, and 3D LES of temporal evolving mixing layers
comparing with experimental data.

2.3 Modifications of the LES Filtering Procedure for Flows with Shocks
During LES computation using the filtered governing equations, there are two additional sources of inaccu-
racy that may appear near the shock. The first one is connected with the numerical scheme used for solving
the governing equations. Away from the shock the high-order central scheme is applied, introducing a neg-
ligible amount of numerical dissipation. However, in the vicinity of the shock the shock-capturing scheme is
activated, introducing numerical dissipation into the computed solutions. The amount of numerical dissipa-
tion introduced by the shock capturing scheme depends on the particular problem parameters and may be
higher than the turbulent dissipation modeled by the SGS terms. Hadjadj and Barmeo [7, 8] proposed to
locally disable the SGS terms in order to obtain more accurate results. Denote this procedure as LES-Z:
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Procedure LES-Z
1. Employ flow sensor to detect shocks
2. Obtain Cs from Dynamic Germano Procedure except near the shock
3. Set Cs = 0 within grid stencil width of the scheme at shock

Setting Cs = 0 within the grid stencil width of the shock location (according to the computed flow sensor
indicator) might appears to be too abrupt. An alternate procedure would be to set Cs = 0 at the shock
location and a smooth transition function Cs such as tanh in the vicinity of the shock. Our studies show
that setting Cs = 0 for the whole WENO grid stencil width rather than a tanh smoothing function produces
better results.

The second additional source of inaccuracy of LES results in the vicinity of the shock comes from the
fact that the explicit filtering operation in (10) – (13) is applied across the shock, causing inaccuracy of
the results. In this case, as is pointed out in [2], a one-sided filtering operation should be used instead of a
central form. Denote this procedure as LES-1S:

Procedure LES-1S
1. Employ flow sensor to detect shocks
2. Employ Harten’s subcell resolution approach to detect exact shock location
3. Obtain Cs from Dynamic Germano Procedure except near the shock
4. Apply one-sided filtering procedure to the left and right of the shock location

It is noted that for the one-sided filtering formulation, one should use a discrete filter with the same filter
width as in the standard central filter procedure. For example, with the trapezoidal filter (14) one can use
the right-sided filter f̂+

i = 1
2fi + 1

2fi+1, which according to formula (15) has the same ∆ = h
√

6 as filter
(14).

The third considered modification is based on Harten’s subcell resolution (SR) approach [6] combined
with ENO reconstruction. Any shock-capturing method applied at the shock will result in smearing the
shock. By estimating the exact shock location through SR and using ENO reconstruction one can sharpen
the shock so that the numerical dissipation is minimized more locally. Denote this procedure as LES-SR:

Procedure LES-SR
1. Employ flow sensor to detect shocks
2. Employ Harten’s SR approach to detect exact shock location
3. Obtain Cs from Dynamic Germano Procedure except near the shock
4. Employ ENO reconstruction for the values of the points adjacent to the shock
5. Apply one-sided filtering procedure to the left and right of the shock location

3 3D Turbulence Across a Supersonic Shock Wave

3.1 Problem Setup
The 3D test case considered here concerns an initial turbulence disturbance at inflow boundary interacting
with a stationary supersonic planar shock wave. The problem has been studied by previous investigators,
mainly related to DNS computations, e.g. [30, 9, 8]. Here we choose the configuration considered in the
DNS study of [9]. Figure 1 shows a schematic of the problem setup. The computational domain limits are
−2 ≤ x ≤ −2 + 4π, 0 ≤ y ≤ 2π and 0 ≤ z ≤ 2π. The grid is uniform in all directions with the spacing
in x three times finer than in y and z (see [9] for explanation). We solve the filtered governing equations
(1) – (3) in a non-dimensional form. The Yee et al. filter scheme with Ducros et al. flow sensor [24] is
used for integration of the governing equations. The spatial base scheme is the 8th-order central differencing
and the nonlinear filter scheme is the dissipative portion of the 7th-order WENO scheme. Since the initial
data consists of a planar shock in the x-direction, numerical dissipation should be mainly needed in the
x-direction. In order to obtain more accurate results WENO dissipation is employed only in the x direction
at the postprocessing stage of the Yee et al. filter. The inflow and outflow boundary conditions are applied
in the streamwise direction and periodic boundary conditions are applied in the transverse directions.

Inflow boundary condition. A fully developed turbulent inflow condition is applied using a turbulent
database. This database is generated as follows. First, an initial isotropic turbulent field with the energy
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spectrum E(k) ∼ k4 exp(−2k2/k2
0) and microscale Reynolds number Reλ = ρλu′rms/µ = 140 is generated

using the methodology described in [31]. Here the energy peak wavenumber k0 = 4 is used. Next, the
decay of this field in a periodic box is simulated for approximately three eddy turnover times τ = λ/u′rms to
ensure fully developed turbulence. After the decay the Reynolds number Reλ = 40 and the turbulent Mach
number is Mt = u′iu

′
i

1/2
/c0 = 0.16. Here c0 is the mean speed of sound. The generated isotropic turbulence

is introduced at the inflow boundary with constant mean velocity u0. We consider two cases with mean flow
Mach number M = 1.5 and M = 3.0. In order to compare the DNS results we use the inflow database from
[9].

Outflow boundary condition. In order to avoid acoustic reflections of subsonic flow from the outflow
boundary a non-reflective sponge layer is employed on the region near the outflow. The length of this layer is
xmax− xsp = π. The sponge layer is implemented by introducing a following source term into the equations
(1) – (3)

Ω = −k0u0

2π

(
x− xsp

xmax − xsp

)
(f− < f >yz), (19)

where f = ρ, ρui, ρE and 〈·〉yz denotes averaging in the y- and z- directions.
The outflow pressure p∞ is chosen such that the mean shock location is stationary. For laminar flow

Rankine-Hugoniot conditions give

p∞
p0

= 1 +
2γ

γ + 1

[
(u0 − Us)2

c20
− 1

]
, (20)

where p0 is the inflow mean pressure, u0 is the mean inflow velocity, c0 is the mean inflow speed of sound
and Us is the shock velocity. As the inflow condition is turbulent, the Rankine-Hugoniot conditions are valid
only instantaneously but not in average. After an initial guess based on (20) the outflow pressure is refined
by an iteration procedure, integrating the governing equations on a coarse grid and updating the pressure
according to the formula

p′∞ = p∞ + 4Usρuu0/(γ + 1). (21)

See [9] for more details.
Gathering statistics. The simulation statistics for a given function f are obtained by averaging in time

and in homogeneous directions:

< f >H (x) =
1

LyLz∆t

∫ t0+∆t

t0

∫ Ly

0

∫ Lz

0

f(r, t)dzdydt, (22)

where Ly and Lz are domain sizes in transverse directions. The averaging is performed over a time span
∆t ≈ 100/(k0u0). Convergence is confirmed by comparing the results with statistics obtained over time span
∆t/2. The statistics are gathered after the transition period has passed. Transient time t0 is estimated as
t0 � Lx/u0, where Lx is the domain size in the streamwise direction. The correct choice of transient time
is confirmed by comparing with the statistics obtained starting from time t0/2.

3.2 DNS Comparison
After a grid refinement study the DNS results as a reference solution for LES comparison are obtained on
a grid with 1553 × 2562 points. The instantaneous streamwise and transverse velocity fields are shown in
Fig. 2. During the computation over a long time evolution, the shock slightly moved upstream. For this
turbulent Mach number the shock is wrinkled due to turbulent inflow. As shown in previous studies [30, 9],
the shock may break at higher turbulent Mach numbers Mt. The turbulence is compressed by the shock,
and immediately behind the shock it is anisotropic. The comparison of turbulent statistics for streamwise
and transverse components of the vorticity and Reynolds stress shows that the turbulence becomes isotropic
again downstream of x ≈ 3. Downstream of x = 8 turbulence is essentially damped with the sponge source
term.

Figures 3 – 6 represent the DNS statistics for different cases. The plots are presented in the reference
frame of the average shock location.

The comparison of the DNS statistics obtained in this work using the ADPDIS3D [5] code with the
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Figure 1: Turbulence across a shock wave problem setup.

Figure 2: Instantaneous velocity field ux (top) and uy (bottom) obtained with DNS on grid of 1553× 2562

points. Slice z = const.
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data obtained from digitizing the solution [9] are shown in Fig. 3. The results are in good agreement.
The grid resolution in the vicinity of the shock is the same. In [9] grid clustering near the shock has been
employed, resulting in a smaller grid size, 694× 2562. The work [9] employs the HYBRID code, which also
uses a Ducros et al. flow sensor for shock detection. However, in [9] WENO dissipation has been introduced
at every Runge-Kutta stage, whereas the Yee et al. scheme allows decreasing the computational cost by
employing WENO dissipation only after the full Runge-Kutta step.

The results of the grid refinement study for cases M = 1.5 and M = 3 on levels of grid refinement are
shown in Figs. 4 and 5. For the case M = 1.5 the results on 777× 1282 are fairly close to the DNS results
obtained with 1553× 2562 grid points, especially for the Reynolds stress statistics. For the case M = 3 the
results also converge, but the convergence is slower.

The comparison between the filtered DNS data and the results obtained with different numerical schemes
on the coarse grid with 389×642 points is shown in Fig. 6. Here we compare the results obtained by WENO
of 5th order (WENO5) and WENO of 7th order (WENO7) with the results obtained by the filter counterpart
of WENO7 with Ducros et al. split (WENO7fi+split). For DNS on a coarse grid a too low-dissipative scheme
will produce inaccurate results. To obtain the results by the filter scheme shown in Fig. 6, we use WENO
dissipation in all directions. It is noted that for LES simulation it is more important to use a low-dissipative
scheme, since the dissipation is already introduced by the turbulence model.

3.3 LES Comparison
In this section we compare the results obtained by the Germano model using different filtering procedures
(LES with standard filtering procedure, LES-Z, and LES-1S) with the DNS solution filtered to the size of
the LES grid. Results obtained by LES-SR are not shown, since that method is still under development.

Comparison of the methods on a grid with 389× 642 points for the case M = 1.5 is shown in Figs. 8 and
9. For this case the results obtained using LES-Z and LES-1S are closer to the filtered DNS than standard
LES. For certain variables, LES-1S performs slightly better than LES-Z. However, the difference between
LES-1S and LES-Z may be more significant for other flow conditions, e.g., higher Mach and turbulent Mach
numbers. In the case when the shock-capturing scheme dissipation might be larger than the SGS dissipation,
it is conjectured that LES-Z would be more accurate than the other considered approach. But for the cases
where the SGS dissipation is larger than the numerical scheme dissipation, LES-1S might obtain more
accurate results than LES-Z.

The results for the same case on a two-times finer grid ( 777 × 1282) are shown in Fig. 10. All results
obtained on this grid are quite close to each other, though LES without any modification of the filtering
procedure is slightly closer to the filtered DNS data. One can assume that the shock is resolved enough at
this level of grid refinement so that there is no need for additional shock treatment.

A similar comparison of the methods on the grid with 389× 642 points for the higher Mach number case
(M = 3) is shown in Fig. 11. The behavior of the methods is similar to the M = 1.5 case, but LES-Z here
performs slightly better than LES-1S, which can be seen especially in the plot of the y vorticity component.

It is remarked that as we employ implicitly filtered LES equations, the width of implicit filter is not well
defined. One should take this fact into account when using filtered DNS data as a reference solution for
verification of the LES model. Figure 12 shows the differences in filtered DNS data when using two different
filters:

• the 5-point top-hat filter with coefficients (1/8, 1/4, 1/4, 1/4, 1/8) and width ∆ ≈ 4.2h according to the
estimate (15),

• the 7-point trapezoidal filter with coefficients (1/22, 1/11, 2/11, 4/11, 2/11, 1/11, 1/22) and width ∆ ≈
4.8h.

The top-hat filter has been used to obtain DNS filtered data plotted on previous figures. For more precise
comparison of LES filtering modifications, explicit LES will be considered in the future.

4 Conclusions
The DNS results obtained by high order nonlinear filter schemes compare well with the reference solution
[9]. In general, the employment of the Yee & Sjögreen filter schemes requires less computational cost than
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standard Hybrid schemes. Our LES study confirms the results found by previous authors that the dynamic
Germano LES model with a standard filtering procedure may loose accuracy due to a strong shock. Two
modifications of the LES filtering procedure (LES-Z and LES-1S) which are designed for improving the
accuracy of the standard method have been considered. For this particular shock-turbulence interaction
test case both modifications of the filtering procedure show similar results which are more accurate than the
results obtained using the standard LES filtering procedure. However, the turbulent Mach numberMt = 0.16
for the test case considered here is quite low, and the SGS dissipation may be not high enough in comparison
with numerical dissipation of the shock-capturing scheme. Different behavior of considered procedures is
expected for high turbulent Mach numbers, which is forthcoming. In addition, a systematic assessment
employing LES-SR and LES-1S will be reported in a forthcoming report. Also, for better estimation of the
simulations accuracy the performance of explicitly filtered LES will be considered.
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ũ
′′ x
u
′′ x
/ũ
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Figure 3: Comparison of DNS statistics obtained in this work employing the ADPDIS3D code with data
obtained from digitizing the solution [9] employing the HYBRID code. Top row: Reynolds Stress components
x (left) and y (right). Bottom row: vorticity components x (left) and y (right).
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Figure 4: Grid refinement study for the case M = 1.5 on three grid levels: 389 × 642, 777 × 1282 and
1553×2562. Top row: Reynolds Stress components x (left) and y (right). Bottom row: vorticity components
x (left) and y (right). No LES modeling.
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Figure 5: Grid refinement study for the caseM = 3 on three grid levels: 389×642, 777×1282 and 1553×2562.
Top row: Reynolds Stress components x (left) and y (right). Bottom row: vorticity components x (left) and
y (right). No LES modeling.
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ũ
′′ x
u
′′ x
/ũ
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ũ
′′ y
u
′′ y
/ũ
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Figure 6: Comparison to filtered DNS data of the statistics obtained by the different numerical schemes
(WENO5, WENO7 and WENO7fi+split) on grid 389×642,M = 1.5. Top row: Reynolds Stress components
x (left) and y (right). Bottom row: vorticity components x (left) and y (right). No LES modeling.
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Figure 7: Comparison to filtered DNS data of the statistics obtained by LES using different numerical
schemes (WENO5, WENO7 and WENO7fi+split) on grid 389 × 642, M = 1.5. Top row: Reynolds Stress
components x (left) and y (right). Bottom row: vorticity components x (left) and y (right).
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Figure 8: Comparison to filtered DNS data of the statistics obtained by LES with different filtering procedures
(standard LES, LES-Z and LES-1S) on grid 389 × 642, M = 1.5. Top row: Reynolds Stress components x
(left) and y (right). Bottom row: vorticity components x (left) and y (right).
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Figure 9: Same as Figure 8, zoom in the vicinity of the shock
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ũ
′′ x
u
′′ x
/ũ
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Figure 10: Comparison to filtered DNS data of the statistics obtained by LES with different filtering pro-
cedures (standard LES, LES-Z and LES-1S) on grid 777 × 1282, M = 1.5. Top row: Reynolds Stress
components x (left) and y (right). Bottom row: vorticity components x (left) and y (right).
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Figure 11: Comparison to filtered DNS data of the statistics obtained by LES with different filtering proce-
dures (standard LES, LES-Z and LES-1S) on grid 389× 642, M = 3. Top row: Reynolds Stress components
x (left) and y (right). Bottom row: vorticity components x (left) and y (right).
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Figure 12: Comparison to filtered DNS data using different filter operator (Trapezoidal and Top-hat). Grid
389 × 642, M = 3. Top row: Reynolds Stress components x (left) and y (right). Bottom row: vorticity
components x (left) and y (right).
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