Energy Efficient Cryogenics
TC67_JWG Meeting

8-10 March, 2016
Montargis, France

Barry Meneghelli, Ph.D
Cryogenics Test Laboratory
VENCORE
Kennedy Space Center, Fl
Barry.j.meneghelli@nasa.gov
Energy Efficient Cryogenics

Overview of Technology Focus Areas and Capabilities

James E. Fesmire
Cryogenics Test Laboratory
Exploration Research and Technology Programs
NASA Kennedy Space Center
James.E.Fesmire@nasa.gov UB-R1 1.321.867-7557
The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide *practical solutions to low-temperature problems* while focusing on long-term technology targets for the *energy-efficient* use of cryogenics on Earth and in space.

Space launch and exploration is an energy intensive endeavor; cryogenics is an energy intensive discipline.
Energy Efficient Cryogenics

- **Cost-Efficient Storage & Transfer on Earth**
- **Mass-Efficient Storage & Transfer in Space**
- **Low-Temperature Materials & Novel Applications**

Cryogenics Enables:
- Propulsion
- Power
- Life Support
- Science
- Manufacturing
- Testing
The **Cryogenics Test Laboratory, NASA Kennedy Space Center**, is a unique community for research, development, and application of cross-cutting technologies to meet the needs of industry, government, and research institutions.

Technology focus areas include:

- ✔ **Thermal insulation systems**
- ✔ **Integrated refrigeration systems**
- ✔ **Advanced propellant transfer systems**
- ✔ **Novel components and materials**
- ✔ **Low-temperature applications**

Cryogenics is about two things:

1) using low-temperatures to do something useful,
2) storing something in a small space (energy density).
Success in cryogenics has always been defined as a healthy triangle of interaction among research, industry, and training.
Preservation of the Cold

\[\Delta T = 500 \, ^\circ\text{F} \]

\[H_2O \]

\[LH_2 \]

\[\Delta T = 500 \, ^\circ\text{F} \]
Technical Consensus Standards for Thermal Insulation Systems

• To help meet the today’s needs and further the possibilities for future gains in *global energy efficiency*, cryogenic insulation standards are being developed.

• Under ASTM International’s Committee C16 on Thermal Insulation, two new standards were published in 2014:
Thermal Insulation Systems Development and Materials Research

- Foams: Polystyrenes (Styrofoams), Polyimides, Polyurethanes
- Aerogels: (Space Technology Hall of Fame and R&D 100 winner)
 - Flexible blanket [Aspen Aerogels, Inc.]
 - Particles and expansion packs [Cabot Corp.]
 - Polymer cross-linked aerogels (X-aerogels) and experimental
- Bulk-Fill Powders: Glass bubbles, Perlites, Aerogels
- Multilayer insulation (MLI):
 - Aluminum foil and micro-fiberglass paper
 - Double-aluminized Mylar and polyester non-woven fabric
 - Double-aluminized Mylar and polyester netting
Thermal Insulation Systems Development and Materials Research (cont.)

• Layered composite insulation (LCI) systems: (patents and patents pending)
 – High vacuum or soft vacuum applications (LCI), or,
 – Non-vacuum, external environment applications (LCX)
• Vacuum insulated panels (VIP) with glass bubbles
• AeroPlastics and AeroFiber composite panels (patents and patents pending)
• AeroFoam composites for insulation, cryofuel storage, or cold batteries (patents)
• Novel smart, multifunctional composites: (patents pending)
 – Insulating – Conducting Composites (ICCs)
 – Passive-Acting Switchable Composites (PSCs)
 – Low-Temperature Shape Memory Alloy Systems for Broad-Area Thermal Management
Cryostat Insulation Test Instruments

- Cryostat-100, Cylindrical – Absolute
- Cryostat-200, Cylindrical – Comparative
- Cryostat-400, Flat Plate – Comparative
- Cryostat-500, Flat Plate – Absolute
- Macroflash (Cup Cryostat), Flat Plate - Comparative
- Cryogenic Moisture Uptake Apparatus
- Transient Thermal Tester
- 1000-liter Tank Cryostat (LH₂ or LN₂)
- Cryogenic Pipeline Test Apparatus
- Patents:
 - *Methods of Testing Thermal Insulation and Associated Test Apparatus*, US Patent 6,742,926
 - Additional patents pending

08Jun2015 NASA Kennedy Space Center
Liquid Oxygen Ground Operations Demonstration Project (GODU-LO$_2$)

Objectives:
- Rapid propellant (cryofuel) loading concept demonstrations.
- Autonomous control and data monitoring system development.
- Testbed for development of many technologies and innovations, such as:
 - Fault tolerance of failed control valves and sensors.
 - Software to monitor overall health and status of propellant loading system.
 - Component (valves and pumps) sealing system designs.
 - Cryogenic composite tank structural/thermal monitoring.
 - Novel sensors applications and use in real world environments.

Features:
- Up to 800 GPM flow rate and 225 PSI.
- Four cryogenic pumps are fed from a 6,000 gallon liquid nitrogen supply tank.
- Pumps have varying flow capacities from 25 up to 450 GPM.
- Complexity and component count is comparable to full scale launch pad transfer system.
- Modular and re-configurable for a wide range of different vehicle or R&D requirements.

Overall view of the Simulated Propellant Loading System located at the CryoTestLab
ISO Work – LN₂ Vapor Work

Objective:
• Evaluate the effects of LN₂ vapor on “simulated insulation sample”.

Test Hardware
• Various “nozzles”
• Data acquisition system (DAQ)
• 6,000 gallon LN₂ storage tank
• Simulated insulation sample (enclosure)
ISO Work – LN$_2$ Vapor Work (cont)

Test Hardware
• Simulated insulation sample (enclosure)

Sample enclosure Test run (vapor cloud) Test run (1m distance)
ISO Work – LN₂ Vapor Work (cont)

All Thermocouples

- Cool-down of Nozzle at 1 m.
- Two-Phase Flow at 1 m.
- Full Liquid Flow at 0.5 m.
- Full Liquid Flow at 1 m.

Temperature (°C)

Test Time (min)

TC1, TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10, TC11, TC12, TC13, TC14, TC15

NASA Kennedy Space Center
Conclusion

• Cryogenics is globally and fundamentally linked to energy generation, storage, and usage.
• Two keys to safe and cost-efficient (on mass-efficient) storage, transfer, and application of cryogens:
 – Integrated refrigeration systems technology (active systems)
 – Thermal insulation systems technology (passive systems)
• New high efficiency designs, methodologies, and materials (active + passive) are being developed.
• Vital collaborations are with industry and academic research institutions for a wide range of applications, both commercial and government.

Through measurement to knowledge; through knowledge to product.
James E. Fesmire
Sr. Principal Investigator
1.321.867.7557
james.e.fesmire@nasa.gov
Examples of the variation of effective thermal conductivity (k_e) with cold vacuum pressure are shown for different cryogenic insulation systems. The boundary temperatures are approximately 78 K and 293 K, the residual gas is nitrogen, and the total thicknesses are typically 25-mm.1

Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH$_2$)

Dr. William Notardonato
Cryogenics Test Laboratory
UB-R1, KSC FL 32899
bill.notardonato@nasa.gov
1-321-867-2613 (office)
1-321-412-5352 (cell)
Integrated Refrigeration Objectives
GODU-LH$_2$

• Demonstrations:
 ✓ Zero loss storage and transfer of LH$_2$ on a large scale
 ✓ Hydrogen liquefaction using close cycle helium refrigeration
 ✓ Hydrogen densification in storage tank and loading of flight tank

• Secondary objectives:
 ✓ Creating a densified hydrogen servicing capability
 ✓ Maintaining critical cryogenic design and operations skills
 ✓ Demonstrating low-helium usage operations
 ✓ Validating modern component technologies

• Potential Advantages of IRAS LH$_2$ Systems:
 ✓ Cost savings (less boiloff)
 ✓ More autonomy in operations (less downtime)
 ✓ Improved safety and reliability (enthalpy margin)
Integrated Refrigeration and Storage (IRAS) System for GODU-LH$_2$

- **Vacuum-Jacketed Tank Features:**
 - 125 m3 (33,000 gal) capacity, 22 m (70 ft) length, 3 m (10 ft) diameter
 - Vacuum-jacketed with foil/paper MLI
 - Modified 600-mm diameter manway for helium and instrumentation feedthrough
 - Internal stiffening rings for sub-atmospheric pressure operation

- **Heat Exchanger Features:**
 - Cold helium, end-to-end flow balanced
 - Modular self-supporting system with 300 m of 6-mm diameter stainless steel tubing
 - Cold helium in-line process temperature sensors (4 silicon diodes)
 - Three temperature rakes to measure vertical and horizontal gradients (20 silicon diodes)
GODU-LH$_2$ Future Uses

• LH$_2$ Integrated Refrigeration and Storage system is fully operational at Kennedy Space Center.
• Upon completion of the GODU-LH$_2$ project, the system will be available for other uses:
 – Servicing on upper stages or test stands with densified hydrogen
 – Hydrogen distribution applications
 – Cryostat-900 and high efficiency transfer lines
 – Fuel cell and electrolysis research
 – Spacecraft loading ground support equipment
 – Superconductivity applications
Advanced Cryogenic Storage & Transfer

• End-to-end system architectures for rapid and reliable operations
• Composite materials development with real-world prototype combined functional testing: structural, vibration, and thermal.
• Autonomous control and system health monitoring
• Modular, semi-flexible piping systems
• Zero-loss transfer of Liquid Hydrogen
• Supporting Technology for Safe Operations (NASA-KSC Patents):
 – Color-changing tape for hydrogen gas leak detection
 – Aerogel blended polymers (AeroPlastic) for sealing components
 – Aerogel foam composites (AeroFoam) for cryogen storage
 – Aerogel fiber panel composites (AeroFiber) for structures and thermal protection systems
 – Layered composite insulation system for extreme environments (LCX)
Energy Efficient Cryogenics
TC67_JWG Meeting

8-10 March, 2016
Montargis, France

Barry Meneghelli, Ph.D
Cryogenics Test Laboratory
VENCORE
Kennedy Space Center, Fl
Barry.j.meneghelli@nasa.gov