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Abstract. The recently completed study for the Advanced Technology Large-Aperture Telescope (ATLAST) was the 

culmination of three years of work that built upon earlier engineering designs, science objectives, and sustained 

recommendations for technology investments. Since the mid-1980s, multiple teams of astronomers, technologists, and 

engineers have developed concepts for a large-aperture UV/optical/IR space observatory to follow the Hubble Space 

Telescope (HST). Especially over the past decade, technology advances and exciting scientific results has led to 

growing support for development in the 2020s of a large UVOIR space observatory. Here we summarize the history 

of major mission designs, scientific goals, key technology recommendations, community workshops and conferences, 

and recommendations to NASA for a major UV/optical/IR observatory to follow HST. We conclude with a capsule 

summary of the ATLAST reference design developed over the past three years.  
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1 Early Concepts for a Large UVOIR Space Observatory  

1.1 Concepts Before the 2000 NRC Decadal Survey* 

Years before the Hubble Space Telescope (HST) was even launched and became a celebrated 

space observatory, the scientific and engineering communities were already discussing a much 

larger-aperture follow-on mission that would cover the ultraviolet, optical, and infrared (UVOIR) 

wavelength regime and be able to continue breakthrough science when HST was no longer 

available. To a remarkable degree, many of the basic design requirements and some priority 

scientific objectives of those flagship concepts of three decades ago are reflected in the more 

                                                 
* Smith and McCray (Reference 1) describe this time period in depth, although including several 

topics beyond the scope of this paper.  

mailto:Harley.A.Thronson@nasa.gov


2 

advanced recent concepts described in this journal and were advocated as the natural eventual 

successor to HST. 

   Probably the earliest substantive identification of a large UVOIR space observatory specifically 

intended to follow HST was the National Research Council Space Science Board (SSB) report, 

Space Science in the Twenty-First Century: Imperatives for the Decades 1995 – 2015 (begun in 

1984 and published in 1988; see summary by Field in Reference 2). Volume II of this report 

observed, “A large-aperture space telescope for the [UVOIR] regions has immense scientific 

potential. The need for such a telescope will be very high after 10 to 20 years of use of HST . . . 

Even now we see that some of the most fundamental of all astronomical questions will require the 

power of a filled-aperture telescope of 8- to 16-m diameter designed to cover a wavelength range 

of 912 Å to 30 μm, with ambient cooling to 100 K to maximize infrared performance.”  The 1986 

Report on the National Commission on Space, Pioneering the Space Frontier (aka, The Paine 

Report) recommended a broadly similar mission as it drew heavily on the nearly simultaneous 

SSB report and personnel, including operation at ~ 100 K.  

   Not long after the SSB and Paine Reports, in his overview of the influential 1989 Space 

Telescope Science Institute community workshop report, The Next Generation Space Telescope,3 

Illingworth urged the participants to recognize the limited lifetime of the major astrophysics 

missions, such as HST, and “look beyond, to the missions that will succeed the Great 

Observatories.” Illingworth summarized the basic parameters of the notional mission concept 

embraced at the workshop:  again, a 10 – 16 meter-class telescope operating from ~0.1 μm to 

“beyond 10 μm” thanks to passive cooling to 100 K. [As Smith and McCray point out (p. 49 (Ref. 

1)), “This widely quoted apparent limit to a low temperature achievable via passive (aka, radiative) 

cooling alone became for some years a major hindrance . . .in achieving sensitive observations at 
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long wavelengths.”  Wide recognition that radiatively cooled optical system temperatures far 

colder than 100 K were possible emerged as a significant factor in the mid-1990s in emphasizing 

infrared observations, rather than UV/optical wavelengths, for the first major post-HST 

observatory (see below)]. 

   Illingworth summarized a selection of some of the most exciting science that the large post-HST 

observatory would be capable of, including important structures in cosmologically distant galaxies 

observable throughout the Universe with scale sizes of 100 – 1000 pc. [Notional details of the 

large UVOIR space observatory are listed on Table 1 of the workshop report.] Furthermore, 

Illingworth pointed out the exciting prospect of such a mission being able to detect Earth-like 

planets orbiting stars within 10 pc of the Sun. In the same proceedings, Angel4 observed that the 

search for Earth-like planets “was in large measure the original rationale for such a large telescope” 

in the SSB report published in 1988. His article, which emphasized the daunting engineering 

challenges to such a mission, included discussion of the required performance of an observatory 

able to search for biomarkers in hypothetical Earth-like planets and discussed those biomarkers 

considered at the time to be most revealing. 

     Interestingly, NASA first explicitly considered direct imaging of extrasolar planets with a large-

aperture telescope as part of the Project Orion design study (Black 1980).  Both ground- 

and space-based imaging were evaluated, with the final report optimistic that a 2.4 m space 

telescope would enable the detection of large Jovian planets around stars within 10 pc.  

Coronagraphic imaging of the beta Pictoris circumstellar disk by Smith & Terrile (1984) provided 

impetus to the first mission study work, leading to a proposal for the modest-aperture, ultra-smooth 

Circumstellar Imaging Telescope (CIT) by the Jet Propulsion Laboratory (Terrile 1988, 1989). 
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The difficulty of manufacturing large optics at the time to the required smoothness limited aperture 

sizes and, consequently, the size of exoplanets that could be studied.   

   In 1991, two years after the STScI meeting, JPL hosted a workshop, “Technologies for Large 

Filled-Aperture Telescopes in Space,” which emphasized developments necessary to enable the 8 

– 16 m UVOIR telescope operating from 0.12 μm to ~10 μm described in Illingworth’s workshop 

executive summary.5 To demonstrate the impressive capabilities of such an observatory, page 6 in 

Reference 4 compares simulated visual-wavelength images of distant galaxies as observed by the 

10 m Keck telescope, HST, and a hypothetical future 16 m space observatory.  

   It is notable that before even a year had passed after launch of HST, multiple assessments and 

community workshops of a follow-on UVOIR flagship converged on basic observatory 

parameters, technology investment priorities, and science objectives – including observations of 

nearby Earth-like worlds  – generally similar to the concepts discussed in this issue (Refs. 2, 3, 4, 

5). Of course, to a large degree this is simply due to the fact that major scientific objectives evolve 

slowly and the observational requirements to achieve those objectives are set by the basic laws of 

physics and optics. However, these early 1990s workshops represented a high-water mark in 

proposing large UVOIR observatories on the lunar surface or in high-Earth orbit: in 1990, Farquhar 

and Dunham (Ref. 6) wrote briefly on the value of the Sun-Earth libration points for space 

observatories and in 1995 NASA’s very successful Solar and Heliophysics Observatory (SOHO) 

began operating at the Sun-Earth L1 point.  

   The mid-1990s also marked a pause for some years in the candidacy of a large UV/optical-

optimized observatory for selection as a high-priority major post-HST mission for NASA. In late 

1993, the Association of Universities for Research in Astronomy (AURA) empaneled an eighteen-

person committee, chaired by Alan Dressler, to assess compelling science objectives for the 
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coming decades. In 1996, the committee issued its influential report, HST and Beyond: Exploration 

and the Search for Origins: A Vision for Ultraviolet-Optical-Infrared Space Astronomy7 (aka, The 

Dressler Report). That report identified two high-priority science objectives intended to motivate 

selection of the mission concepts to achieve them, which were again very similar to the goals of 

the workshops noted above: (1) visiting a time when galaxies were young (i.e., formation and early 

evolution of galaxies) and (2) the search for Earth-like worlds. To achieve these goals, the Dressler 

Committee made three recommendations, two of which were in a substantially new direction from 

previous community recommendations and would ultimately lead to selection by the 2000 NRC 

Decadal Survey8 of the Next Generation Space Telescope (NGST): (1) extend the lifetime of HST, 

(2) build a large filled-aperture infrared-optimized space observatory, and (3) develop and 

demonstrate space interferometry. [With respect to the third recommendation, although beyond 

the scope of this paper, space astrometry became a priority of NASA's thinking about exoplanet 

observations with the establishment of a Space Interferometry Science Working group in 1991, 

which led to the development of the Space Interferometry Mission (Allen, Peterson, and Shao 

1997).  At about the time of the release of the Dressler Committee report in mid-1996, a major 

workshop in Toledo, Spain was held on the subject of IR interferometry from space and the search 

for life-bearing planets (Ref. XX).] 

   With HST’s flawed optics corrected in 1993, and two new instruments (STIS and NICMOS) 

installed during a servicing mission in 1997, numerous individuals continued to remind the 

astronomical community that HST would eventually reach its end-of-life and no mission proposed 

to extend its science programs at UV/optical wavelengths was in the offing. Given the long 

gestation period for building a flagship-class mission (over ~20 years), with the IR-optimized Next 

Generation Space Telescope (NGST) recommended by the Dressler Report as the next large 
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mission to follow HST, planning for a large UV-optical-near-IR flagship continued as a candidate 

to follow NGST.  

   In 1998, a workshop was held at the University of Colorado to discuss the future of UV-optical 

astronomy from space.9 The consensus was that the next step after HST at UVOIR wavelengths 

should be a 4 - 6 meter-class instrument to complement NGST. In response, NASA’s UV-Optical 

Working Group (UVOWG) was commissioned to study the scientific rationale for new missions 

in the ultraviolet-optical bandpass. This group produced a report10 in 1999 that likewise 

recommended (1) a 4-meter aperture telescope that emphasized wide-field imaging and UV 

spectroscopy and (2) investigation into the feasibility of an 8 m telescope with deployable optics 

similar to NGST.  The 4 m concept, dubbed the Space Ultraviolet Observatory (SUVO), was 

subsequently proposed to the 2000 Decadal Survey. Technology development was identified as a 

priority by a Survey panel, although not recommended by the full committee. The search for Earth-

like worlds was a high priority for the Survey for which the infrared-optimized Terrestrial Planet 

Finder (TPF) was the recommended mission to achieve this NASA goal. 

1.2 Preparing for the 2010 Decadal Survey 

1.2.1 Terrestrial Planet Finder Concepts: Interferometry or Coronagraphy? 

Although the technologies for extraordinarily smooth large mirrors remained out of reach at the 

time of the 2000 Decadal Survey, so that spatial interferometry seemed favored for studying Earth-

sized worlds, interest in direct imaging was sustained for example by the first exoplanet detections 

by the radial velocity technique. Imaging of terrestrial exoplanets remained a priority, even as 

some attention shifted to mid-infrared wavelengths where the targets present a contrast relative to 

the central star that is three orders of magnitude easier to obtain than in the optical: 10-7 versus 10-

10. Starlight suppression would be done by interferometric nulling between separate telescopes 

mounted on a large boom or flying in formation (Angel and Woolf 1997).  This concept became 
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known as the Terrestrial Planet Finder (TPF) and was the subject of detailed study by a NASA 

Science Working Group (SWG; Beichman, Woolf, and Lindensmith 1999).  

     The endorsement of the Decadal Survey of technology development for TPF led NASA to fund 

four university-industry teams to examine a range of architecture options, and to commission a 

TPF SWG report on the spectral signatures that could be used  to diagnose habitability and the 

presence of life (Des Marais et al. 2001).  A key outcome of the architecture studies (Beichman et 

al. 2002) was the revival of interest in a coronagraphic alternative for TPF working at visual 

wavelengths. This was made possible by the development of deformable mirror technology for 

adaptive optics: wavefronts could now be corrected to the required smoothness without the need 

to manufacture large optics with ultra-smooth surface quality. At this point, the TPF SWG went 

forward on two parallel paths studying both the infrared interferometer (TPF-I) and optical 

coronagraph (TPF-C) versions of the concept. 

   Laboratory experiments achieving 10-9 contrast (Trauger et al. 2004) gave confidence that TPF-

C was on a path to technical readiness.  As a single large telescope operating at room temperature, 

TPF-C also appeared to be a more feasible mission than TPF-I, which would require five 

formation-flying spacecraft with large cryogenic optics.  NASA therefore made the decision to 

prioritize TPF-C as the first mission for assessment and technology funding, supported by a 

substantial  investment in a JPL/Goddard mission study during 2004-2006.   

   The TPF-C science and technology development team (STDT) identified fourteen science 

objectives to drive the design.  The Flight Baseline 1 (FB1) design featured an elliptical 8 x 3.5 m 

primary mirror able to be launched within existing launch vehicle fairings.  The telescope was off-

axis and unobscured with instruments operating over 0.5 - 1.1 μm, including an imaging camera, 

integral field spectrograph, and wide field camera for general astrophysics. Multiple coronagraph 
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designs were studied as starlight suppression options. The entire observatory would operate at 

Earth-Sun L2 and over a five-year life, the equivalent of 30 stellar habitable zones would be 

searched. This was calculated to permit a 95% probability of detecting one habitable planet if the 

probability of an exoEarth around each target star was 0.1. 

   Unfortunately, budget pressures within NASA led to the termination of the TPF-C design study 

and technology investment. A final report was produced in 2006 (Levine, Shaklan, and Kasting 

2006). As NASA's largest development effort to date towards the goal of imaging Earth-like 

exoplanets, the TPF-C study strongly influenced subsequent mission concepts, including the 

concepts described in the next section 

1.2.2 Large-Aperture UVOIR Concepts and ATLAST 

With the emphasis of the 2000 Decadal Survey on the infrared-optimized Next Generation Space 

Telescope (NGST), the UVOIR community’s attention turned to preparing for the 2010 Survey.  

   A string of workshops were held in the early 2000s to consider further concepts for a UV-optical 

space telescope compelling enough to win endorsement by the NRC and development by NASA: 

“Hubble's Science Legacy: Future Optical-Ultraviolet Astronomy from Space” at the University 

of Chicago in April 2002; “Innovative Designs for the Next Large Aperture UV/Optical 

Telescope” at the Space Telescope Science Institute (STScI) in April 2003; “Future Optical/UV 

Astronomy from Space: Science and Mission Concepts” as a topical session at the American 

Astronomical Society (AAS) meeting in May 2003; and “The Science Potential of a 10 – 30 m 

UV/Optical Space Telescope” at STScI in February 2004.   

   Events were rapidly changing during this time on both the scientific and programmatic fronts.  

The discovery of dark energy and exoplanets in the late 1990s significantly influenced thinking 

about the goals of future telescopes. The failure of the Columbia Space shuttle in 1993, with the 
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subsequent hiatus in servicing missions to HST, provided a sense of urgency to define the next 

missions in UVOIR space astronomy.   

   In 2004, NASA Headquarters Science Mission Directorate solicited so-called “Vision Missions” 

in space science.  NASA chose the 10 meter-class UV-optical Modern Universe Space Telescope 

(MUST) for study (Refs. 11, 12), along with ten other missions spanning a large range of science 

objectives. The MUST concept called for a robotic servicing module to construct the telescope on 

orbit after launch by NASA’s newly proposed Ares V rocket, which was a priority of the newly 

announced Vision for Space Exploration13 (VSE).  Although the VSE specifically called for NASA 

to "conduct advanced telescope searches  for Earth-like planets and habitable environments around 

other stars, the MUST telescope, as envisioned at the time, did not explicitly include the study of 

exoplanets.   

   In parallel with the science workshops and the “Vision Missions” solicitation, shortly after the 

VSE was announced, NASA initiated an extensive program to develop long-term roadmaps for 

high-priority science goals, explicitly including the astronomical search for Earth-like planets, and 

an assessment of required technology investments necessary to achieve this goal. The exo-Earth 

science roadmap was completed in 2005 (Ref. 14).  

   To enable the search for life-bearing planets, among other goals, the NASA Administrator 

established the Advanced Planning and Integration Office (APIO) in spring 2004 with the goal of 

developing an agency-wide strategy for investing in new technologies that generally would take 

advantage of capabilities expected to be developed as part of the VSE. Although much of this 

activity was terminated a year later with the arrival of a new NASA Administrator, several 

technology roadmaps were reviewed by the NRC, recommended to NASA for implementation, 

published in 2006, and included a strategy to enable future flagship observatories. The strategy for 
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space observatories consisted of (1) broad science goals and a summary of anticipated discoveries 

and achievements, specifically including the search for Earth-like worlds and study of the early 

universe; (2) high-level milestones, options and decision points; (3) suggested implementation 

approaches and missions sets, with options and possible pathways; (4) key dependencies on and 

relations to other roadmaps; and (5) identification of required capabilities, facilities and 

infrastructure (Ref. 15). 

   In summer 2007, NASA issued a call for proposals for “Astrophysics Strategic Mission Concept 

Studies” (ASCMS), seeking to identify concepts for scientifically ambitious space astronomy 

missions and to help identify technology developments such missions might require. The 

Advanced Technology Large-Aperture Space Telescope (ATLAST) was one of the concepts 

selected by NASA for study. The objective of the study was to develop a technology development 

program for the 2010 – 2019 timeframe that would enable a large UVOIR space telescope to be 

considered by the 2010 Decadal Survey for flight in the 2020s. ATLAST improved on TPF-C 

(Sec. 1.2.1) by elevating general astrophysics to an equal footing with exoplanet science in the 

mission requirements.  ATLAST adopted many of the exoplanet science requirements, starlight 

suppression options, and technology plans developed by the TPF-C STDT.  The legacy of TPF-C 

therefore lived on in the ATLAST mission concept. 

   The ATLAST study consisted of three UVOIR telescope concepts: an 8 m monolithic mirror 

telescope16 and two segmented telescopes, one with a 9.2 m primary17 (that could fit into an 

existing Evolved Expendable Launch Vehicle (EELV)) and one with a 16.8 m primary. The 8 m 

and 16 m designs required a heavy lift launcher akin to the Constellation Program’s heavy-lift Ares 

V vehicle. 
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   All three concepts had similar scientific goals, with the direct detection and study of exoplanets 

as a goal on par with a variety of compelling astrophysical investigations. These priorities were 

notionally similar to the science priorities posited for the large UVOIR concepts over the preceding 

two decades, although developed in much greater depth, in addition to taking advantage of the 

widely recognized success of HST and the growing numbers of discovered exoplanets. The 

ATLAST team considered an aperture about 8 m to be the minimum size needed to characterize 

the atmospheres of a significant number of terrestrial mass planets in the habitable zones of their 

host stars, as well as providing the required spatial resolution and collecting area for other science 

goals.18 The monolith concept took advantage of the planned Ares V mass and volume capacities, 

while adapting high-mass ground-based mirror and support-structure technologies. The segmented 

designs relied on heritage from the James Webb Space Telescope (JWST, renamed from NGST 

earlier in the decade).  The ATLAST telescopes were designed to be operated at near room 

temperature, which greatly decreased the cost of the optics and testing compared to the cryogenic 

JWST.†  That said, however, ATLAST-type missions will require much higher optical stability 

than JWST, which is likely to be a significant factor in cost. 

   NASA’s commitment to a large heavy-lift launch vehicle as part of the Constellation Program 

encouraged additional community meetings to assess the scientific benefit of such a capability as 

a new Decadal Survey approached. NASA Ames Research Center hosted a pair of workshops in 

early 2008 specifically to assess the scientific community’s interest in using Ares V (Refs. 19, 20). 

Not long after, the NRC produced a study, Launching Science,21 of the science opportunities 

enabled by NASA’s Constellation program and especially taking advantage of the Ares V heavy-

                                                 
† Similarities between the UVOIR concepts of the decade of the 2000s and those of the 1980s were generally limited 

to the very large apertures and the highest-priority science goals. The earlier designs favored, for example, radiative 

cooling to ~ 100 K and possible operation on the lunar surface. Neither feature survived the 1990s. 
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lift vehicle. The report identified observations of Earth-like planets as a compelling goal for large-

aperture missions for which Ares V appeared to be appropriate. In addition to the eleven Vision 

mission concepts already solicited by NASA HQ SMD, the NRC sought community input. This 

resulted in two of the ATLAST concepts being considered for Ares V science payloads: an 8 m 

monolithic mirror telescope and a 16 m segmented mirror telescope.  Both telescopes took 

advantage of the large lift capacity and larger diameter fairing of the Ares V rocket, and both 

telescopes were recommended in the Launching Science report to NASA for further study.   

   With more than two decades of increasingly sophisticated engineering designs, community 

science input, and NRC reviews behind it, the ATLAST ASMCS report was submitted for 

consideration by the 2010 Decadal Survey. Responding to the scientific importance of study of 

exoplanets and the search for life, the Survey’s report, New Worlds, New Horizons,XX2 identified 

as its highest priority “medium” activity, investment in technologies to “[Prepare] for a planet-

imaging mission beyond 2020” with mission-specific funding of ~$200 M over the decade of the 

2010s. 

   In addition to assessment of very large-aperture space observatories, the astronomy community 

demonstrated characteristic opportunism earlier this current decade when NASA was offered a 

second-hand National Reconnaissance Office (NRO) telescope with the same aperture as HST (2.4 

m) and capable of operating over visual and near-infrared wavelengths. For some years, NASA 

and the Department of Energy (DoE) together had been assessing a concept called the Joint Dark 

Energy Mission (JDEM) intended to investigate in depth the mystifying dark energy. As it turned 

out, the donated NRO telescope could be modified to accomplish JDEM goals along with extra 

capabilities, including the search for extra-solar planets. This new incarnation has been dubbed the 

Wide-Field Infrared Survey Telescope (WFIRST) and has an expected launch date in the mid-
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2020s. Relevant to the development of capabilities to enable a future larger-aperture UVOIR 

observatory, WFIRST is proposed to included a high-performance coronagraph to allow direct 

imaging of exoplanets.      

1.3 The NASA Astrophysics Roadmap: Vision for the Next Three Decades 

In spring 2013, the Astrophysics Subcommittee of the NASA Advisory Council’s Science 

Subcommittee chartered a community-wide task group to develop a vision for NASA’s 

Astrophysics Division that would span the subsequent three decades. This vision built upon the 

products of the 2010 Decadal Survey and included science objectives likely to remain priorities at 

until the middle of the century; thus the name of its final report, released in late 2013: Enduring 

Quests, Daring Visions: NASA Astrophysics in the Next Three Decades22. The roadmap also 

identified key technology investments necessary to enable the missions recommended to NASA 

Headquarters’ Astrophysics Division.  

   The scientific objectives, mission concepts to achieve them, and technologies required to enable 

them were divided into three time periods, each about a decade long, beginning with the near-term 

missions already under development (e.g., JWST and WFIRST). Following this period was the 

Formative Era, which identified for NASA science priorities now familiar from conferences and 

workshops referenced in the earlier sections in this paper, with a special emphasis on the search 

for and characterization of exoplanets – and perhaps even Earth-like worlds – in the solar 

neighborhood, as well as the birth and evolution of galaxies, stars, and planets. To achieve these 

goals, the report recommended, as had others before it, a large UV/optical/near-IR mission dubbed 

the LUVOIR Surveyor, which was described in the final report as having an aperture of 8 – 16 m 

with wavelength coverage from “near-IR to near-UV,” the specific wavelengths to depend upon 

technology development. 
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   The roadmap technologies are consistent with the more detailed description presented in the 

issue by Bolcar et alia: precision deployment and wavefront control, mirror coatings, detector 

systems, and – very critically – high-performance starlight suppression. 

1.4 AURA’s High-Definition Space Telescope 

In early 2013, the Association for Research in Astronomy (AURA) chartered a team of seventeen 

scientists and technologists to study again how the challenging dual goals of cosmic origins 

science, especially of extremely distant objects and processes, and the search for life-bearing 

planets, could be combined into a single mission. Released in mid-2015, the report, From Cosmic 

Birth to Living Earths,24 described the science cases and technology drivers for a space telescope 

concept, dubbed the High-Definition Space Telescope (HDST). While the basic HDST concept 

was broadly similar to earlier UVOIR observatory concepts and science goals and the ATLAST 

designs of last decade, its science drivers and design concepts had progressed significantly and are 

described in depth. 

   Significant scientific advances over the performance of HST at these wavelengths require 

developing the capability to deploy an aperture much larger than can currently be accommodated 

within the inner diameter of existing launch vehicles, as earlier concepts had found (e.g., Refs. 3, 

5). Success with JWST continues to build confidence that precision deployment of very large 

segmented optical systems is a successful engineering solution. To give an indication of the 

advancements in imaging capabilities, Figure 1 compares the relative sizes of the primary mirror 

for HST, JWST, and HDST.  In the particular concept shown in the figure, the HDST primary is 

made up of 36 1.7-meter segments, although segments of different sizes could be adopted.  

   The AURA study developed a notional instrument suite that permitted realistic estimates of 

observatory performance consistent with being both a powerful general-purpose flagship, as well 
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as capable of detecting biomarkers in the candidate Earth-like worlds. HDST was proposed to have 

25 times the pixel density per area of HST at the same optical wavelengths, four times better 

resolution at near-IR wavelengths that JWST, and up to 100 times the point-source UV 

spectroscopic sensitivity. Furthermore, HDST was proposed to have multi-object UV spectroscopy 

for up to 100 sources in a ~3 arcmin field of view, as well as extremely stable wavefronts to provide 

precise point-spread functions over long observational timelines. 

 

 

Fig. 1. Relative sizes of the primary mirrors for HST, JWST, and HDST (from Ref. 24) 
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For galaxies out to cosmological distances, a mission such as HDST would have the capability 

to reveal features on a scale size of 100 pc or smaller (Fig. 2), which will reveal structures and 

processes critically important to major leaps in our understanding of the cosmos.  

Images from HST have thrilled both scientists and the general public for a quarter century and a 

mission such as HDST will do no less. Figure 3 compares synthetic images of a galaxy at high 

redshift as would be observed by HST, JWST, and a mission such as HDST. The breathtaking 

capability of such a mission would continue public and professional support for flagship 

observatories exploiting the limits of optical design and instrument sensitivity. 

 

Fig. 2. An observatory with an aperture the size proposed for HDST will permit observations on a scale smaller than 

100 pc throughout the universe (from Ref. 24). 
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Fig. 3. Comparison of synthetic images taken of an extremely distant galaxy as would be revealed by three flagship 

observatories (Ref. 24). 

   Both the most challenging scientific goal proposed for HDST, as well as for what many believe 

is its most exciting, is the study of UVOIR “biomarkers” in the spectra of Earth-like worlds 

orbiting neighboring stars. This goal requires a very large aperture in space in order to be able to 
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(1) observe a sufficiently large number of stars to provide meaningful constraints on the occurrence 

of potentially habitable exoplanets and (2) acquire the spectra of those exoplanets, which are 

extremely faint, and (3) to resolve the angular separation between the exoplanet from its host star, 

as discussed in the work summarized in Section 1. Technologies to permit extremely stable 

wavefront control of a large aperture, as well as starlight suppression to about one part in 10 billion 

(1010) via a coronagraph and/or starshade, were identified in the AURA report for HDST as priority 

investments to make the concept possible. 

 

2. The Advanced Technology Large-Aperture Telescope in 2015 

The 2010 Decadal Survey strongly recommended a technology development program to 

“[Prepare] for a planet-imaging mission beyond 2020.” In response, in spring 2013 NASA’s 

Goddard Space Flight Center (GSFC) initiated an internally funded assessment of a large-aperture 

UVOIR space observatory specifically intended to be sufficiently well-characterized to be 

recommended by the 2020 Decadal Survey for development in the 2020s. Building upon the 

concept studied about a half decade before, our design continued the earlier acronym, the 

Advanced Technology Large-Aperture Telescope (ATLAST). The GSFC design team was joined 

in short order by its partners from the previous study: the NASA Jet Propulsion Laboratory, the 

Space Telescope Science Institute, and the NASA Marshall Space Flight Center and informal 

discussions were carried on with the AURA HDST team (Sec. 1.4).  Our ATLAST study was 

concluded in late 2015 at the beginning of the current Large UV/Optical/IR (LUVOIR) Surveyor 

assessment, which is led by GSFC. Our ATLAST design reference mission is reported on in greater 

detail elsewhere in this issue by Bolcar et al. (Ref. 24) and Rioux et al (Ref. 25). The remainder of 

this paper gives an overview of the design, including the strategy pursued in its development.   
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   The science requirements derived for the ATLAST design from last decade18, updated by our 

team at the start of our current assessment, and consistent with AURA’s HDST concept, determine 

reference design requirements, as summarized in Table 1 and a notional instrument suite 

summarized in Table 2. From the start, our team was unambiguous about the design being capable 

of carrying out a broad range of astronomical investigations, including the priority of the 

challenging search for and characterization of Earth-like worlds in the solar neighborhood. We 

concluded that an aperture of ~10 meters was a compellingly attractive advance in general 

scientific capabilities over HST. Moreover, it is larger than the minimum aperture (~8 m) that we 

judged would produce a sample size of candidate exo-Earths of sufficient size to permit us to 

confidently estimate statistically the yield of life-bearing planets in the solar neighborhood.XX3   

  2.1 A Deployable Concept for ATLAST  

   Our segmented, deployable Engineering Design Reference Mission (EDROM) consists of a 

deployable primary mirror (Figs. 1 and 4). The aperture is scalable, meaning that its architecture 

supports adding more rings of segmented mirrors to increase the aperture in response to the 

refinement of the science requirements or availability of larger launch vehicles. The 9.2 m 

configuration that our team adopted to assess in depth was validated to fit within a five-meter 

launch vehicle fairing, an industry standard, which we chose as part of our strategy to build 

confidence that our design is feasible and costs are controllable.  An image of the final ATLAST 

reference design for this concept from mid-2015 is presented in Fig. 4. The 9.2 m aperture is made 

up of 36 hexagonal segments, reflecting the design heritage of the James Webb Space Telescope 

(JWST).  
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Fig. 4 Final visualization of the ATLAST segmented reference design. 

 

Table 1 ATLAST Observatory Requirements Derived from Science Goals 

Parameter Requirement Stretch Goal Traceability 

Primary Mirror Aperture ≥ 8.0 meters > 12.0 meters 
Resolution, Sensitivity, 

Exoplanet Yield 

Telescope Temperature 273 K – 293 K - 

Thermal Stability, 

Integration & Test, 

Contamination,  

IR Sensitivity 

Wavelength 

Coverage 

UV 100 nm – 300 nm 90 nm – 300 nm - 

Visible 300 nm – 950 nm - - 

NIR 950 nm – 1.8 µm 950 nm – 2.5 µm - 

MIR Sensitivity to 8.0 µm - Transit Spectroscopy 

Image 

Quality 

UV < 0.20 arcsec at 150 nm - - 

Vis/NIR/MIR Diffraction-limited at 500 nm - - 

Stray Light 
Zodi-limited between  

400 nm – 1.8 µm 

Zodi-limited between  

200 nm – 2.5 µm 

Exoplanet Imaging & 

Spectroscopy SNR 

Wavefront Error Stability  

~ 10 pm RMS uncorrected 

system wave front errror per  

wavefront control step 

- 

Starlight Suppression 

via Internal 

Coronagraph 

Pointing 
Spacecraft ≤ 1 milli-arcsec - - 

Coronagraph < 0.4 milli-arcsec - - 

Stretch goals are identified where mission-enhancing capabilities could be realized.  No requirements were levied on 

the observatory to achieve mid-IR goals beyond those that would enable the near-IR observations. 
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Table 2 ATLAST Instrument Suite 

 

Science Instrument Parameter Requirement 

UV Multi-Object 
Spectrograph 

Wavelength Range 100 nm – 300 nm 

Field-of-View 1 – 2 arcmin 

Spectral Resolution R = 20,000 – 300,000 (selectable) 

Visible-NIR Imager 

Wavelength Range 300 nm – 1.8 µm 

Field-of-View 4 – 8 arcmin 

Image Resolution Nyquist sampled at 500 nm 

Visible-NIR 
Spectrograph 

Wavelength Range 300 nm – 1.8 µm 

Field-of-View 4 – 8 arcmin 

Spectral Resolution R = 100 – 10,000 (selectable) 

MIR Imager / 
Spectrograph 

Wavelength Range 1.8 µm – 8 µm 

Field-of-View 3 – 4 arcmin 

Image Resolution Nyquist sampled at 3 µm 

Spectral Resolution R = 5 – 500 (selectable) 

Starlight Suppression 
System 

Wavelength Range 400 nm – 1.8 µm 

Raw Contrast 1×10-10 

Contrast Stability 1×10-11 over science observation 

Inner-working angle 34 milli-arcsec @ 1 µm 

Outer-working angle > 0.5 arcsec @ 1 µm  

Multi-Band 
Exoplanet Imager 

Field-of-View 0.5 arcsec 
Resolution Nyquist sampled at 500 nm 

Exoplanet 
Spectrograph 

Field-of-View 0.5 arcsec 

Resolution  R = 70 – 500 (selectable) 

 

 

    

2.2 A Monolith Concept for ATLAST 

In addition to the deployable concept, our EDRMs included concepts using an 8 m monolith 

primary mirror and a monolith surrounded by deployable mirror petals. 

   The latest iteration of the 8 m monolith concept has been led by the ATLAST team at MSFC and 

is described by Stahl et al.26. A major appeal for this design is the advantage of not having gaps 

due to segments in the primary mirror, which is characteristic of the deployable options for 

ATLAST. A monolith thus provides advantages with regard to some current coronagraph designs. 

However, an 8 m monolith observatory, as well as segmented designs much larger than described 
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in the previous subsection, would require the SLS Block II launch vehicle with a ten-meter fairing. 

This vehicle is slated for development, but there is at present no alternative means of launching 

the mission. The 8 m monolith concept relies on “deep-core” mirror technology newly developed 

via NASA’s Advanced Mirror Technology Development (ATMD) program.   

3. Conclusion 

Since the mid-1980s, multiple teams of astronomers, technologists, and engineers have developed 

concepts for a large-aperture UV/optical/IR space observatory to follow the Hubble Space 

Telescope (HST). Especially over the past decade, technology advances and exciting scientific 

results has led to growing support for development in the 2020s of a large UVOIR space 

observatory. To a remarkable degree, the concepts had broadly similar designs (e.g., an aperture 

in the range of 8 – 16 meters, depending largely upon the design of the primary mirror and 

availability of launch vehicle; operation from ~100 nm to ~2 μm), key required technology 

capabilities (e.g., very high-contrast starlight suppression, stringent wavefront error stability), and 

high-priority science objectives (e.g., search for and characterization of Earth-like worlds in the 

solar neighborhood, high angular-resolution imaging of extremely distant galaxies).  

   The consistency of the mission designs, increasing breadth of science objectives in this 

wavelength range, and NASA-supported technology assessments led to a series of formal 

recommendations for enabling technology funding that would permit development of a large 

UVOIR observatory. In this paper we summarized three decades of major mission designs, 

scientific goals, key technology recommendations, community workshops and conferences, and 

NRC recommendations. We concluded with a capsule summary of the ATLAST reference design 

developed over the past three years by a NASA GSFC, MSFC, JPL, and STScI team that was 
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intended to position such a mission for selection by the 2020 Decadal Survey as the highest-priority 

initiative for the 2020s. 
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Fig. 1. Relative sizes of the primary mirrors for HST, JWST, and HDST (from Ref. 24) 

Fig. 2. An observatory with an aperture the size proposed for HDST will permit observations on a scale 

smaller than 100 pc throughout the universe (from Ref. 24). 

Fig. 3. Comparison of synthetic images taken of an extremely distant galaxy as would be revealed by three 

flagship observatories (Ref. 24). 

Fig. 4. Final visualization of the ATLAST segmented reference design 
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