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1 Introduction 
This document serves as the final report for the Flight Services and Aircraft Access task order 
NNL14AA57T (Reference (3)) as part of NASA Environmentally Responsible Aviation (ERA) Project 
ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control 
(AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 
ecoDemonstrator.  For the AFC Vertical Tail, this is the culmination of efforts under two task orders 
(Reference (1) and (2)). 

The task order was managed by Boeing Research & Technology and executed by an enterprise-wide 
Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing 
Defense and Space and Boeing Test and Evaluation.   

Figure 1 illustrates the organizations engaged while executing the Flight Services and Aircraft Access 
task order.  Boeing BR&T in St. Louis was responsible for overall Boeing project management and 
coordination with NASA.  The 757 flight test asset was provided and managed by the BCA 
ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. 

 

Figure 1:  Engagement Map – Flight Services and Aircraft Access Task Order 

With this report, all of the required deliverables related to management of this task order have been 
met and delivered to NASA as summarized in Table 1.  In addition, this task order is part of a broader 
collaboration between NASA and Boeing. 
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Table 1 Project Management Deliverable Summary 

Deliverable 

Number 
Deliverable Description 

Delivery 
Date 

4.1 Monthly Technical Letter Progress Reports Monthly 

4.2 Kick-Off Presentation 5/2/14 

4.9 Integrated Schedule 4/18/14 

4.13 NSRS List 3/17/15 

4.15 Crew Currency Report 3/17/15 

4.21a Draft Final Report 7/31/15 

4.21b Final Report 12/23/15 

1.1 AFC 

The purpose of the Active Flow Control (AFC) Enhanced Vertical Tail Technology Development 
Project was to determine the applicability of active separation control for commercial aircraft 
operation.  As part of their Environmentally Responsible Aviation (ERA) Project, NASA sought to 
demonstrate the potential viability of reducing vertical tail size through the use of Active Flow Control 
in flight.   

Under the Flight Services and Aircraft Access task order, Boeing installed and demonstrated the 
performance of the AFC-enabled vertical tail in flight.  Testing on the 757 ecoDemonstrator aircraft 
validated the integration and function of AFC applied to a vertical tail.  This report summarizes the 
work performed by the Boeing team as defined by contract NNL10AA05B task order NNL14AA57T.  
With the delivery of this report, all of the required AFC deliverables have been met, as summarized 
in Table 2. 

Table 2 AFC Deliverable Summary 

Deliverable 

Number 
Deliverable Description 

Delivery 
Date 

4.5 “Quick Look” Flight Test Data Report 
Daily during 

flight test 

4.7 Flight rate per AFC Flight Day 4/17/14 

4.10 Bill of Materials for AFC mass flow distribution system 7/31/14 

4.11 AFC Research Flight Campaign Presentation 3/26/15 

4.16 Flight Day Report 
Daily during 

flight test 

4.17 Safety of Flight review minutes  4/22/15 

4.21a Draft Final Report 7/31/15 

4.21b Final Report 12/23/15 
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1.2 IAM 

As part of their Environmentally Responsible Aviation (ERA) Project, NASA sought to demonstrate 
the potential benefits of Insect Accretion and Mitigation (IAM) technologies.  One of the challenges of 
wing laminar flow is early boundary layer transition from laminar to turbulent due to roughness 
induced by insect contamination.  IAM coatings are an attempt to mitigate insect residue adhesion 
through both chemical composition and coating topography.  

Boeing performed engineering development work to design, fabricate, install, and flight test IAM 
technology on the Boeing 757 ecoDemonstrator.  Boeing, in collaboration with NASA, collected flight 
test data on the IAM coatings during testing in Shreveport, LA.  Shreveport was selected based on 
high insect population densities desired for present IAM testing.  These tests encompassed three 
phases (5a, 5b, and 5c) called out in the proposed SOW (Reference (3)) devoted to the low speed 
flight testing of the IAM technologies.   

This report summarizes the work performed by the Boeing team on the IAM technology as defined 
by contract NNL10AA05B task order NNL14AA57T.  With the delivery of this report, all of the required 
IAM deliverables have been met as summarized in Table 3. 

Table 3: IAM Deliverable Summary 

Deliverable 

Number 
Deliverable Description 

Delivery 
Date 

4.3a Engineered Surface Substrate TTR1 Presentation 6/26/14 

4.3b Engineered Surface Substrate TTR1 Closure Report 6/26/14 

4.4a Engineered Surface Substrate TTR2 Presentation 10/30/14 

4.4b Engineered Surface Substrate TTR2 Closure Report 11/6/14 

4.6a 4-inch x 6-inch Witness Plates from the Spray out 1 5/16/14 

4.6b 4-inch x 6-inch Witness Plates from the Spray out 2 9/29/14 

4.6c 4-inch x 6-inch Witness Plates from the Spray out 3 1/9/15 

4.8 Flight rate per IAM Flight Day 3/24/15 

4.12 IAM Research Flight Campaign Presentation 3/24/15 

4.14 Return the Flight Tested Engineered Surfaces 5/12/15 

4.16 Flight Day Report 
Daily during 

flight test 

4.17 Safety of Flight review minutes  4/22/15 

4.18 Engineering surface substrate recommendations 6/26/14 

4.19 Engineering surface substrate size and shape recommendations 11/6/14 

4.20 
Attachment and removal procedures of the Engineering surface 

substrate 
11/6/14 

4.21a Draft Final Report 7/31/15 

4.21b Final Report 8/30/15 

4.22 Camera system accelerometer location recommendation 9/12/14 

4.23 Camera system accelerometer data 4/10/15 



 Unlimited Rights NASA CONTRACT NNL10AA05B TASK ORDER NNL14AA57T 13/61 

 

4.24 4-inch x 6-inch Witness Plates from Spray out 2.A 12/5/14 

4.25 30-inch x 29-inch Plates from Spray out 2.A 12/5/14 

 

2 Flight Test Airplane 
The 757 ecoDemonstrator was a Model 757-222 from Stifel Aircraft Leasing, obtained for this project 
after retirement from revenue service with United Airlines.  The airframe was line number 263, serial 
number 24627, with effectivity NE016.  It was re-registered N757ET after refurbishment for use as 
the 757 ecoDemonstrator. 

The airplane was fitted with Pratt & Whitney PW4037 engines leased from Delta Airlines.  The port 
side (left) engine was a 4037M.  This engine was modified via Service Bulletin to increase the 
available thrust from 37,000 to 40,000 pounds during AFC testing to provide increased thrust 
asymmetry.   

The airplane was also modified both internally and externally to incorporate other technologies being 
tested by Boeing independent of this contract and to install flight test instrumentation.  The airplane 
entered layup for installation of hardware and instrumentation on 1 Sept 2014.  First Flight was on 17 
Mar 2015.   The airplane as configured for AFC testing is shown in Figure 2. 

 

Figure 2:  757 ecoDemonstrator as configured for AFC Testing 
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3 AFC Technology Demonstration 

3.1 Objectives 

The objectives of the AFC flight demonstration were as follows: 

 Demonstrate the ability to integrate a prototype AFC system into an airframe, and thereby 
highlight key integration challenges. 

 Demonstrate AFC impact on rudder effectiveness in flight using available APU flow rates.   

 Collect in-flight data for comparison to full-scale wind tunnel results and CFD predictions. 

It should be noted that it was not possible to test the system at vertical tail design conditions (negative 
Beta and large rudder deflections) principally due to the airplane’s relatively large vertical fin and low 
airspeed / low altitude safety limitations. However, meaningful measurements were obtained through 
standard flight test practices which enabled extrapolation into the design conditions using available 
full-scale wind tunnel test data on a 757 vertical tail. 

3.2 Technology Description 

Active Flow Control modifies a flowfield by adding energy to it, in this case in the form of an array of 
sweeping jets, to enhance desirable flow characteristics or suppress undesirable flow characteristics.  
For the vertical tail, the active flow control was applied to mitigate the separation that occurs on the 
rudder at high deflection angles and thereby increase the sideforce generated by the vertical tail. 

Testing at the National Full-scale Aerodynamics Complex (NFAC) 40x80 wind tunnel demonstrated 
AFC control authority enhancement of a full scale Boeing 757 vertical tail.  It explored the effects of 
actuation parameters such as exit jet momentum, actuator spacing, and actuator patterns across a 
range of test points representative of takeoff and landing conditions.  Results showed that AFC 
provided a significant increase in sideforce.  This was accomplished within the flow capability of the 
757 airplane Auxiliary Power Unit (APU) compressor. 

Ultimately, application of AFC to a vertical tail could enable reduction of the tail wetted area that would 
translate into a reduction in fuel consumption and greenhouse gas emissions.  A 0.5% reduction in 
fuel use is estimated for a 777-class airplane based on potential vertical tail size reduction with 
suitably practical AFC integration (Reference (4)).   

3.2.1 Sweeping Jet Actuators 

The key component of the AFC system used in these demonstrations is the sweeping jet actuator. 
This device emits a continuous jet of air that oscillates from one side of the outlet nozzle to the other.  
This jet “oscillation” works like a dynamic effector but without the complications of moving internal 
parts or pulsed flow from the source.  For these demonstrations, the actuator nozzles were placed 
just forward of the rudder hinge line on the non-moving portion of the tail (vertical stabilizer). 

Figure 3 shows the features of a sweeping jet actuator that is representative of the type used for 
these demonstrations.  The device achieves a sweeping motion due to a dynamic instability inherent 
in the design of the interaction region of the device.  The instability is excited via feedback paths 
resulting in the cyclic attachment of the jet to either wall of the interaction region, which causes the 
exiting jet to sweep across the nozzle between exit walls “A” and “B”. 

Figure 4 presents a Schlieren visualization of the flow field generated by a sweeping jet actuator.  In 
the vertical tail application, the actuators were installed with the long axis perpendicular to the trailing 
edge of the fixed portion of the tail.  This resulted in a spanwise (vertical direction) sweeping motion 
of the jet. 
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Figure 3:  Drawing of the components of a 

sweeping jet actuator 

 

 

Figure 4:  Schlieren image of a sweeping jet 

actuator flowfield.  Note the jet that is toward 

the bottom of the nozzle at the right side of the 

image.  (Photo credit:  Caltech) 

3.3 AFC Schedule Highlights 

The task order contract (Reference (3)) covered the completion of engineering design work and 
analysis, parts fabrication, lab testing, system installation, and flight testing.  Design work began in 
mid-2013, concurrent with NFAC wind tunnel testing.  The Preliminary Design Review (PDR) was 
held in November 2013, with the Critical Design Review (CDR) following in January 2014.  Both PDR 
and CDR packages were provided to NASA under the Phase 1 contract (Reference (2)). Drawing 
releases and parts fabrication began in March 2014 and continued through December 2014.  Aircraft 
modifications started in September 2014 and were completed in February 2015. 

Figure 5 is an annotated photograph depicting the external arrangement of the AFC system on the 
757 ecoDemonstrator.  

 

Figure 5:  External AFC system arrangement 
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3.4 AFC Mass Flow Distribution System 

Figure 6 illustrates the AFC modifications installed into the vertical fin and aft fuselage.  The 757 
production bleed air system was modified to enable use of the APU compressor as the AFC air 
source.  A control valve was installed adjacent to the existing APU shutoff valve to enable flow rate 
variations.  An air-to-air heat exchanger was mounted underneath the aft body of the airplane to cool 
the APU air to comply with fin and rudder structural requirements.  A calibrated duct was installed 
downstream of the heat exchanger to measure flow rates, and ducting was installed in the vertical fin 
to supply air to each of 31 actuators.  To minimize changes to existing hardware, the AFC actuators 
were mounted on panels external to the outer mold line of the vertical fin. 

The sweeping jets added momentum to the mixing of near-wall flow over the rudder.  This helps to 
keep the flow attached over the rudder and can increase rudder effectiveness at higher rudder 
deflections. 

 

  

 

Figure 6:  AFC Modifications to 757 EcoDemonstrator Aft Fuselage and Vertical Fin 
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3.4.1 AFC System Integration 

Hardware integration was made more difficult since the airplane had already been built.  For 
example, tubing in the vertical fin was installed in multiple pieces due to limited access.  Tubing 
bends and branches had to be designed to fit within the existing geometry to avoid cutting structure.  
In a new design, longer tubes and more optimized flow paths could be incorporated reducing both 
installation time and the number of couplers (saving weight).    

Careful design and stress analysis ensured the tubing would be able to withstand maximum loading 
during flight without leakage, and be able to accommodate thermal expansion due to the heated 
APU air.  Similar analyses ensured the vertical tail would be able to withstand the additional weight 
of the tubing and side forces generated during test.  

The airplane was modified in the Boeing Field Flight Test hangar in Seattle.  Figure 7 illustrates the 
scaffolding used to gain access to the aft fuselage and vertical fin. 

 

 

Figure 7:  Scaffolding surrounding the 757 ecoDemonstrator aft fuselage and vertical fin 

Figure 8 shows some of the ducting installed inside the vertical fin and the access challenges.    
Since many tubing joints were required, periodic leak checks were performed during installation to 
ensure proper sealing.  This disciplined approach saved time overall by not having to “chase leaks” 
at the end when access to repairs would have been much more difficult. 
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Figure 8:  Duct installation inside the vertical fin 

In addition to routing tubing around structure, it was also necessary to mitigate interference with 
systems.  As shown in Figure 9, ducting ran through equipment bays containing rudder control 
actuators.  A slight interference with hydraulic hoses was remedied by installing 45 degree angle 
fittings at the hose ends and “clocking” the hoses away from the duct.  As an additional precaution, 
the hoses were wrapped with a protective coating to prevent abrasion in case of incidental contact 
under load.  An inspection plan was put in place to look for damage during flight.  None was found.   

 

Figure 9: Hydraulic lines and AFC ducting 

Since hot APU compressor air was being used as the AFC source, it had to be cooled to meet 
structural and system temperature limits.  For the purposes of flight test, an externally mounted heat 
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exchanger provided the most cost effective solution. An existing qualified unit was used that 
provided both acceptable back pressure and the necessary thermal performance. Figure 10 shows 
the heat exchanger mounted underneath the aft fuselage and some of the structural reinforcements 
at the tubing penetrations and heat exchanger attachment points.   This type of installation would 
obviously not be appropriate for a production design.  

 

Figure 10:  Installation of the heat exchanger below the aft fuselage 

The AFC panels were installed on the fixed portion of the vertical stabilizer. The actuator nozzle 
outlets were located immediately upstream of the rudder bullnose and each actuator was numbered 
to aid in data analysis.  Figure 11 shows the installation during the build process.  The actuator 
outlets appear as black triangular shapes between the actuator number and the rudder.  The circles 
on the rudder mark locations for future installation of flow cones.  The final configuration is shown in 
Figure 12 with the flow cones installed.  These were used to provide flow visualization during the 
flight test program. 
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Figure 11:  Close-up external view of typical AFC panel installation 

 

 

Figure 12:  Flow cone installation on the vertical fin and rudder 
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3.4.2 AFC Instrumentation 

Three types of instrumentation supporting AFC flight testing were installed on the 757 
ecoDemonstrator:   

1) The airplane was fitted with standard sensors to provide air data and airplane performance 
characteristics, including control-surface positioning measurements. 

2) The AFC system was fitted with pressure and temperature sensors to monitor and record 
mass flow and system performance.  System mass flow was calculated from calibrated 
pressure and temperature data. 

3) Flow cones were installed on the starboard (right) side of the vertical fin and rudder to allow 
for external flow visualization. 

Only category 2 instrumentation to monitor and record AFC system performance was installed under 
the NASA task order.  Figure 13 and Figure 14 illustrate details of the AFC system instrumentation 
used in the aft fuselage and the vertical fin, respectively. 

 

Figure 13:  AFC Fuselage Instrumentation 

 

AFC Control Valve 

UP 
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AFC Control Valve 
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Figure 14:  AFC Vertical Fin Instrumentation 

3.4.3 Laboratory and Ground Tests 

A series of laboratory and ground tests were conducted to ensure the AFC system worked as planned 
prior to flight.  These tests included: 

 Heat exchanger vibration testing – conducted to establish the frequency response and 
vibration level limitations of the heat exchanger. 

 AFC flow valve and valve controller integration – conducted to validate proper operation of 
the system controller architecture and develop the in-cabin software interface (GUI) used to 
control the AFC system in flight. 

 Valve controller EMI testing – conducted to validate the controller would not interfere with 
airplane systems when in operation. 

 Duct calibration – conducted to establish the mass flow calibration necessary to derive AFC 
system performance from pressure and temperature parameters installed in the duct. 

 System leak tests – conducted at key points in the assembly process to ensure acceptable 
performance.  

 AFC system ground test – conducted to validate the system functionality and verify AFC flow 
valve control before flight.  This test also measured AFC actuator output and spanwise 
homogeneity of flow output from the 31 AFC sweeping jets. 

3.5 AFC Enhanced Vertical Tail Research Flight Campaign 

The AFC flight campaign was conducted to measure the impact AFC had on rudder effectiveness 
and aerodynamic loads while demonstrating the viability of the system in a flight environment.  

3.5.1 Safe to Fly 

A significant amount of time was invested to validate, verify, and ensure the airplane as configured 
for AFC testing would be safe to fly.  Several reviews of the system design and its impact on the 
airplane were held within each affected engineering organization.  Wind tunnel test data and systems 

UP 

FWD 
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analysis were used to appropriately resolve identified risks.  Findings and conclusions were 
documented and approved by the 757 Chief Engineer prior to flight. 

The NASA ASRB (Airplane Safety Review Board) process was not used for this project.  NASA 
instead elected to participate in the multiple review board meetings held as part of the overall Boeing 
process.  In addition, on-site NASA QA personnel reviewed every step of the system installation.  The 
Federal Safety Hotline was available to all participants throughout the flight test program to report 
any safety concerns. 

One of the risks addressed during the AFC Safe to Fly process was the threat of a bird strike on the 
exposed heat exchanger.  While it could be shown statistically that this threat wasn’t likely, additional 
steps were taken to provide complete assurance that Continued Safe Flight and Landing (CSFL) 
would not be compromised even if the heat exchanger was hit. 

Structural stiffeners shown in Figure 15 were installed underneath the maintenance platform in the 
aft fuselage to ensure that if the heat exchanger suffered a bird strike, the damage would not 
propagate into the fuselage. 

 

Figure 15:  Structural stiffeners under the maintenance platform 

3.5.2 Site Location 

Flight conditions necessary to demonstrate AFC effectiveness required that testing be performed 
over water with visual flight rules. 

The Strait of Juan de Fuca was chosen based on the following criteria: 

 Anticipated lost days using meteorological analysis of historical weather patterns 

 Cost effectiveness for flight crew and test crew 

 Compatibility and availability of chase plane for flow visualization photography. 

Figure 16 shows the Strait and its proximity to Boeing Field.   
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Figure 16:  Map of Washington State depicting Boeing Field and the Strait of Juan de Fuca 

3.5.3 Flight-Test Planning 

Figure 17 shows the AFC flight test sequence.  Initial testing included all 31 AFC actuators.  After this 
was completed, the system was modified to disable 15 actuators and test the remaining 16 AFC 
actuators (every other actuator operational).   

 

Figure 17:  AFC Flight-Test Sequence 

3.5.4 AFC Flight Test Summary 

Prior to the start of AFC testing, the airplane conducted two flights to perform handling quality and 
system functional checks after the installation lay-up period.   

Four days of AFC flight testing were completed, composed of six flights in total.  All flights originated 
from and returned to KBFI (Boeing Field - King County International).  The initial flight assessed 
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airplane handling qualities with the AFC system operating for the first time.  All maneuvers were 
conducted at high altitude (10,000 to 15,000 ft).  Minimum acceptable speed and maximum AOA 
(angle of attack) were determined at this time. 

AFC testing on the second day captured decelerations, sideslips, and trims with the AFC system on 
and off.  These conditions were conducted at high altitude and were repeated at low altitude (3,000 
to 5,000 ft). 

The third day consisted of two sorties as the airplane was configured at a lighter weight.  Remaining 
trims and all AFC on conditions were completed at low altitude.  Conditions previously conducted 
were repeated for data quality. 

The AFC system was modified after the third day to disable airflow to every other actuator, leaving 
16 of the original 31 operational.  This was done to simulate a partially-failed system.   

The fourth and final day of testing also consisted of two sorties.  The first completed sideslips and 
decelerations with AFC on and off at high altitude.  The second and final sortie completed low altitude 
trims again with the AFC system on and off. 

This flight marked the completion of AFC flight test conditions.  The airplane then entered a lay-up 
period wherein the AFC system ducting and heat exchanger was removed.  The APU was 
reconnected to the rest of the airplane bleed system per the standard 757-200 configuration. 

3.5.5 Flight Test Conditions Achieved 

Table 5 summarizes the test conditions executed during the course of planned AFC testing.  All AFC 
flight conditions were conducted with wing flaps at Flaps-30, and gear retracted.  Rudder deflections 
of approximately 30 degrees were obtained at lowest speeds and at lowest altitudes tested. 

 Table 4 Summary of all flight test conditions achieved during AFC testing 

Maneuver Type 

AFC Total Flow Rate 

Speed (KCAS) / 

Altitude(1,000 ft) 

31 

Actuators 

16 

Actuators 

Off Maximum Intermediate Low Low 

Approach to 

Stick shaker 
  - - - - 162 / 10-15 

 

Handling Qualities 
Evaluation 

 

  - - - - 130 / 10-15 

  - - - - 125 / 10-15 

  - - - - 120 / 10-15 

  - - - - 115 / 10-15 

  - - - - 110 / 10-15 

Steady-Heading 
Sideslips – 

Right Pedal 

  - - - - 140 / 10-15 

  - - - - 125 / 10-15 

  - - - - 110 / 10-15 

  - - - - 110 / 10-15 

Steady-Heading 
Sideslips – 

    - -   140 / 10-15 

    - -   125 / 10-15 
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Left Pedal      - -   110 / 10-15 

Constant Pedal 

Decelerations –  

10 deg Sideslip 

    - -   152 / 10-15 

Constant Pedal 

Decelerations –  

5 deg Sideslip 

    - -   152 / 10-15 

Full Pedal 

Simulated 

Engine-out 

Decelerations 

      -   152 / 3-5 

Simulated 

Engine-out 

Trims –  

TLF / Idle 

  - - - - 110 / 10-15 

          140 / 3-5  

- - - -   130 / 3-5  

          125 / 3-5  

- - - -   115 / 3-5  

          110 / 3-5  

Simulated 

Engine-out 

Trims –  

Max / Idle 

  -  -  -    - 110 / 10-15 

          140 / 3-5 

- - -   - 130 / 3-5 

          125 / 3-5 

- - -   - 115 / 3-5 

          110 / 3-5 

 

3.5.6 AFC Aircraft Data Summary 

During each test flight, AFC system performance and aircraft information data were recorded from 
onboard instrumentation and ship system parameters.  The data included aircraft altitude, velocity, 
angles and rates; rudder angles and loads; and AFC temperatures, pressures, and flow rates.  These 
data files were delivered to NASA as documented in Reference (16). 

The photos from the chase plane of the vertical fin flow cones were digitally overlaid to provide an 
enhanced composite snapshot of the air flow during a given test condition.  Each composite image 
represents one second of time during a condition and combines approximately five separate 
sequential images taken from the chase plane.  The attachment points of each cone were aligned in 
each photo to construct the composite images.  Figure 18 illustrates the difference in flow field with 
AFC off and on. When AFC is off, the tuft orientation at many locations on the vertical fin does not 
coincide with the cone orientation in previous or subsequent photos taken within a fraction of a second 
of each other. This spreading or scattering of the cones in the composite photo indicates unsteady 
separated flow. When the flow is attached and smooth, the cone from one picture to the next nearly 
coincides. The Figure below shows much less variation in cone orientation when AFC is on, indicating 
that AFC is positively affecting the air flow over the rudder. 
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Figure 18:  Composite images of vertical fin flow cones with AFC off (left) and AFC on (right) 

 

Preliminary analysis of aircraft parameters indicates that AFC increases rudder effectiveness at the 
flight conditions tested.  These results are consistent with the flow-visualization results obtained from 
cone images. 

  

AFC OFF AFC ON Max

• vcas ~ 110 kts
• beta ~ 6.3°
• rudder ~ 29°
• hp~ 4.4 Kft

• vcas~ 110 kts
• beta ~ 7.5°
• rudder ~ 29°
• hp ~ 4.5 Kft

• AFC flow maximum

AFC

Sweep-Jet

Actuators

Rudder

Hinge-Line

Cut Out



 Unlimited Rights NASA CONTRACT NNL10AA05B TASK ORDER NNL14AA57T 28/61 

 

4 IAM Technology Demonstration 

One of the challenges for the practical implementation of wing laminar flow technology is early 
transition from laminar to turbulent flow due to roughness induced by insect contamination.  Suitable 
Insect Accretion and Mitigation (IAM) coating technologies may reduce wing and leading edge insect 
residue adhesion. 

4.1 Objectives 

The objectives of the IAM flight demonstration were as follows: 

 Evaluate the performance of multiple coatings under simulated airline operational conditions, 

 Characterize insect accretion distribution on transport airplane wing surfaces, span-wise and 
chord-wise, 

 Collect data to support insect density profile during takeoff and landing operations. 

To support these test objectives, the IAM substrate design was required to maximize frontal area on 
the leading edge, provide side-by-side comparison between coated and uncoated surfaces, not 
significantly deviate from the baseline aircraft leading-edge profile and support panel removal and 
installation in one crew shift.  

4.2 Technology Description 

The Insect Accretion and Mitigation coating technology relies on both chemical composition and 
topography of the coatings to maximize the ability to reduce insect residue adhesion. 

4.3 IAM Design, Fabrication and Installation 

The Design, Fabrication and Installation (NNL14AA57T Phase 3) statement of work for IAM included 
definition of the optical window and camera configuration, recommendations for the substrate, 
installation and removal procedures, and sprayout applications of the various IAM coatings.   

The flight test configuration chosen based on NASA inputs involved installing 4 substrates on slat 8 
and 4 substrates on slat 9.  Figure 19 shows 757 slat numbering nomenclature.  Figure 20 
summarizes slat substrate installation configurations on the slats of the right-hand (starboard) side 
wing.  Engineered Surfaces (ES) have the IAM coating applied to the substrate.  Uncoated panels 
were installed on alternating locations as controls.  Figure 21 shows substrate numbering on the slats. 

To capture insect impact data during flight and facilitate rapid evaluation of the test success criteria 
during operation, high-resolution cameras were mounted in the forward fuselage.  Photographic data 
was monitored and reviewed real-time during flight testing. 

 

Figure 19:  757 Slat Numbering Nomenclature 
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Figure 20:  Substrate Installation Locations on Slats 8 and 9 (Top View). 

 

 

Figure 21:  Substrate numbering locations on slats (Front View) 

4.3.1 Camera Design 

Efficient testing required a real-time assessment of the status of the insect density relative to the 
minimum requirement (GFI 5.3) between each takeoff and landing.  To gather this data, NASA agreed 
to provide cameras capable of detecting insect strikes in flight.  Boeing assisted in the camera 
selection process as well as designing and integrating the necessary installation hardware to provide 
highest quality images.   

4.3.1.1 Camera Selection/Settings 

Lab testing performed by NASA and insect size information led to a 1mm X 1mm minimum insect 
residue size expected.  In order to capture as many strikes as possible, imaging requirements defined 
by NASA were to resolve a 1mm X 1mm dot with 9 pixels (Reference (9)).  To meet this criteria, Nikon 
D800E cameras with Nikon AFS-NIKKOR 300mm f/2.8G ED VRII telephoto lenses were selected.  
Based on ground testing performed by NASA (Reference (10)) with a mockup of the physical layout, 
this hardware was shown to provide adequate resolution to satisfy the criteria if an optically clear 
window was used.  Details of the optical window are in the Optical Window Design section below. 

The IAM cameras were positioned in the passenger cabin of the aircraft at windows 2 and 3 on the 
starboard side as shown in Figure 22.  This was done to provide an adequate field of view to capture 
the test panel locations as shown in Figure 23. The camera at window 2 was focused on Slat 9, and 
the camera at window 3 was focused on Slat 8.  The camera, lens and mounting assemblies (GFP 
6.2-6.4) were installed on a camera mount assembly that was attached to the aircraft.  Further details 
of the camera mount design can be found in the Camera Mount Design section below.  
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Figure 22:  IAM Cameras Mounted in Windows 2 and 3 

 

Figure 23:  Example of Photo of Slat 8 from Window 3 IAM Camera 

The preferred camera settings to use during IAM test flights were selected during test flights of other 
technologies on the 757 ecoDemonstrator aircraft during April 2015. 

To maximize depth of field across the slat, the camera was manually focused and the aperture was 
stopped down to the lens limit of f/22. Motion blur of the wing bending was determined not to be an 
issue for shutter speeds of 1/320 sec or faster.  Lighting was a challenge. Depending on the heading 
of the aircraft, a direct sunlight reflection washed out many sample test photos. To reduce the risk of 
“washed out” photos, spot metering with a -1 exposure bias was selected. To allow for a small f-stop 
with a relatively fast shutter speed, an ISO of 2000 or less was deemed to produce sufficiently crisp 
photos. 

4.3.2 Camera Mount Design 

Boeing collaborated with NASA to design a mount to position the two cameras used to capture insect 
hits during the flights. NASA and Boeing engineers visited Boeing’s first 757 flight test airplane 
(NA001) on February 14, 2013 with the goal of identifying the optimum position for placing the 
cameras.  The team installed targets of various sizes representing bug strikes on the four slats 
outboard of the right engine.  From this information and digital models of the geometry, the forward-
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most windows were identified as the best position to place the cameras to get the appropriate field of 
view.  

NASA designed the mounting hardware connected to the camera that would interface with the mount 
connected to the aircraft structure.  Boeing provided a general vibration environment (Reference (23)) 
so dampeners could be incorporated to reduce the risk of image blur due to high-frequency vibrations.  
A tripod base mount was developed for each camera that would connect to the lens and incorporate 
the dampeners in the feet of the mount.  Figure 24 shows the camera mount design model with the 
camera included. 

 

Figure 24:  NASA Mount Design with Camera Attached 

Boeing designed a “table-top” rack that would attach to the internal fuselage frame.  The table top 
design allowed both cameras to be attached to the same mount while positioned to view out windows 
2 and 3, as shown in Figure 25.   
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Figure 25:  Boeing “Table-Top” Camera Mount Design 

4.3.3 Optical Window Design 

The camera testing performed by NASA (Reference (10)) assessed the degradation of the image 
quality through different window options to a baseline with no window at all.  The test included optically 
clear glass and a standard 757 window pane.  From these initial results, NASA recommended that 
optically clear glass be used to meet the resolution requirement for a 1mm sized insect.   

Following sections describe the design changes developed at Boeing to modify the existing flight test 
window installation to meet the optical requirements. 

4.3.3.1 Window Material Selection 

To maximize resolution, optical glass aligned perpendicular to the camera lens is preferred.  Due to 
physical, cost, and schedule constraints, an acrylic window with an anti-reflective coating was 
proposed (Reference (24)). It was tested using the same hardware (cameras and acrylic lens) that 
would be on the aircraft.  The angle through the lens, distance to the wing location of the panels, and 
a spare slat to capture the wing contour were mocked up at several different lighting conditions.  
Results from these tests showed that image quality and resolution would be acceptable.  The design 
changes were coordinated and accepted by NASA. 

4.3.4 IAM Substrate Design 

4.3.4.1 Substrate Material 

The substrate material recommendation (Deliverable 4.18) was delivered as a part of the Table Top 
Review 1 (TTR1, Reference (11)) (Deliverables 4.3a & 4.3b).  The recommendation was based on 
the coating application process and requirement to remove without damage to the accrued insects 
post flight and lay flat for inspection.  Additionally, only commercially available alloys with accepted 
material allowables characteristics would be chosen.  The materials were tested on a 757 slat 3 nose, 
which is the mirror of slat 8.  Results are shown in Table 6. 

 

 

 



 Unlimited Rights NASA CONTRACT NNL10AA05B TASK ORDER NNL14AA57T 33/61 

 

Table 5:Candidate Subtrate Material tested around 757 Slat Nose 

 

 

Clad 7075-T6 was chosen as the preferred material. Clad is easier than bare metal to surface prep 
for installation and for application of the IAM engineered surface.  The clad surface is 1100 series 
aluminum which was previously flown on a NASA insect accretion test on a Falcon jet for similarity.  
The panel thickness of 0.012 in. was chosen as it was bendable enough that it could be applied by 
hand and remain in place with removable adhesives.  The 0.016” thick sheet was too stiff.  It was 
difficult to lay smooth and would quickly disbond.  Aluminum foils were not acceptable as the metal 
would plastically deform upon application and wrinkle on removal. 

4.3.4.2 Material Size 

An objective of the design was to have all panels the same size and rectangular.  This would allow 
any panel to be located in any position and minimize the cost of substrate manufacturing, installation, 
tracking, and shipping.  The final panel size recommendation (Deliverable 4.19) was 27 inches in 
width (measured in spanwise direction) by 30 inches in length (measured in chordwise direction).  
The chord length was determined by the maximum chord length at the outboard end of slat 9.  The 
substrate was installed with a 0.5 inch offset from the slat upper surface trailing edge to provide for 
surface area to bond speed tape during installation.  Similarly, the panel was 0.9 inches away from 
the seal skirt trailing edge.  See Figure 26 for the dimensions along the outboard edge of slat 9 and 
Figure 27 for the inboard end of slat 8. 

   

Figure 26:  Selected Panel size fitted at  the outboard end of slat 9 (Front View) 

Thickness Alloy Notes

0.002 foil wrinkles

0.003 foil wrinkles

0.005 foil wrinkles

0.012 7075-T6 Bare good

0.012 7075-T6 Clad best

0.016 2024-T3 Bare creases

0.016 7075-T6 Bare stiff

0.016 7075-T6 Clad stiff



 Unlimited Rights NASA CONTRACT NNL10AA05B TASK ORDER NNL14AA57T 34/61 

 

 

Figure 27:  Substrate installation on the inboard end of slat 8 (Front View) 

The width was determined to be 27 inches based on slat width, installation and testing.    Photo 
targets were installed between panels requiring 1 inch of spacing.  With the speed tape boundary on 
all panels at 1 inch, 3 inch spacing was required resulting in 27 inch panel spacing.  Slat 8 was the 
panel width driver.  See Figure 28 for installation on Slat 8 and Figure 29 for installation on Slat 9.   

 

Figure 28:  Panel spacing on slat 8 (Front View) 
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Figure 29:  Panel Spacing on Slat 9 (Front View) 

4.3.4.3 Slat Gridline Markings 

To assist in determining insect accretion along zones of the slat, equal frontal area markings were 
placed on the slats.  The frontal area was split into 4 zones starting at the upper engineering surface 
starting point and at the lowest highlight on the slat.  See Figure 30 for a side view of the area line 
markings. The lines were projected normal to the frontal plane onto the slat surfaces.  An additional 
line was added at the lower visible location from the camera mounted in the fuselage window since 
the underside of the slat was not viewable.  Due to the varying size profile of the slat chord across 
the span, the area line markings spacing varied spanwise.  See Figure 31 for an isometric view of the 
slat with area line markings and spacing.  Outboard marking of vertical separation is 3.64 inches and 
inboard is 4.20 inches.  The lines were not marked on the Engineered Surface so as to not interfere 
with the insect accretion.  Additional lines were added following the same process on slats 7 and 10 
to aid in bug counting on additional slats.  One-quarter inch thick lines were painted on the slats with 
primer.  Photo targets were added along the area lines to split between the IAM panels and split the 
other slats into 4 similar sections.  These were added for computer photo processing capability. See 
Figure 32 for a view of outboard slat 7 and slat 8 with photo targets and painted lines. 

 

Figure 30:  Side view of equal area line markings 
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Figure 31:  Side View of Equal-Area Line Markings 

 

 

Figure 32:  Painted Lines and Photo Targets on Slats (no IAM panels installed) 

4.3.5 IAM Substrate Installation and Removal Design 

The substrate installation design was delivered as a part of the TTR-2 on 10/30/2014 (Reference 
(12)) with an update including some minor changes on 2/6/2015 (Reference (13)) (Deliverables 4.4a 
and 4.4b).  Double-sided adhesive tape was determined to be the best solution for installing the 
substrate to the slat outer surface.  The adhesive tapes chosen would need low enough adhesion 
strength to allow removal of the substrate without plastic deformation of the substrate but be strong 
enough to withstand the aero loading.  A double-sided tape that would not leave adhesive residue on 
the slat surface was highly preferable.  Additionally, any heat to assist in removal would compromise 
the insect accretion on the engineered surfaces.  Through testing, 3M repositionable tape 9425HT 
was found to offer the best practical solution.  One side of the tape has a high strength adhesive 
(45oz/in. peel strength) and the other side has a low strength adhesive (12 oz/in. peel strength).  The 
high strength side would be bonded to the substrate so, during removal, the tape would remain 
attached to the panel, limiting the amount of adhesive residue on the slat surface.  This process 
hastened the surface preparation of the slat surface for the subsequent panels.  The high temp (HT) 
tape was chosen due to the solar radiation and temperatures the panels would be exposed too.  The 
HT material is rated for 250F verses 125F for standard 9425HT tape.   

After the panels were bonded to the slats for a test, the lower surface crept and disbonded from the 
slat due to the stiffness of the panel.  To alleviate creep concerns on the lower surface, a 2” strip of 
high strength (96 oz/inch) double-sided, pressure-sensitive adhesive tape was added.  This portion 
of the substrate would not be subjected to insect accretion so plastic deformation during removal was 
acceptable.   
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The tape was laid along the whole inner surface of the substrate in an effort to eliminate air bubbles 
that may lead to disbonding under aerodynamic load.  Due to the stiffness of the aluminum sheet, 2-
inch strips of tape with 0.063-inch gaps were laid spanwise along the back surface of the substrate.  
See Figure 33 for tape configuration on the inner surface of the substrate. 

 

Figure 33:  Double-Sided Tape Configuration 

To ensure full bonding adhesion from the pressure sensitive tapes and to reduce voids, vacuum 
pressure was used to for the panel installation.  First, the substrate panels were bonded on using the 
double-sided tape.  The panels were then vacuum bagged for a minimum 1 hour at a minimum of 22 
inches Hg to ensure full strength.  See Figure 34 for view of vacuum bagged substrates.  An NDI was 
performed after bagging to check maximum air void sizes.  Prior to installation, Kraft paper was placed 
over the engineered surface to protect the coating.  A tap test was performed on the panel and the 
voids were drawn on the Kraft paper.  The void sizes were checked against the allowable void sizes 
per the stress analysis prior to removal.   

 

Figure 34:  Vacuum Bagging of Substrate on Slats 
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The substrates are exposed to air flow and are required to be grounded for EME/EMI.  A 2.0-inch 
wide x 1.5-inch long 3M 1181 copper tape is used for grounding from the substrate outer surface to 
the slat outer surface.  See Figure 35 for substrate ground path installation. 

 

Figure 35:  Copper Tape Ground Path Installation (Substrate) 

To seal the edges from air ingression and act as a second load path, 2-inch wide 434 aluminized 
speed tape is applied around the periphery of the panels.  The tape is first applied to the upper and 
lower aft edges and then the inboard and outboard edges.  This ensures all the tape joints have aft 
facing steps.  The loss of a single piece of tape will not cause the failure of the adjacent tape.  Along 
the outboard edge, 0.003-0.005 diameter pin holes were added at each tape gap as a vent.   

4.3.5.1 IAM Substrate Installation 

The installation procedure was provided to the BT&E organization per the Boeing approved process 
to allow for safe operations.  An overview of the steps was provided in Deliverable 4.20 (Reference 
(14)). Slats 8 and 9 outer surfaces were prepared prior to substrate installation.  The surfaces were 
solvent wiped on the metal leading edge, slat wedge, and lower flex skirt OML with MPK (methyl 
propyl ketone).  The surfaces were then abraded with very fine Scotch-Brite ® pads to promote 
adhesion.  The use of orbital powered sanding tools was permitted.  The enamel on the slat wedges 
was sanded to remove the gloss.  After all sanding, the surfaces were solvent cleaned with MPK.  To 
assist in repeatedly locating the IAM panels on the slat surface, 2 inch x 2 inch corner markings were 
added along the upper trailing edge surface of the slat with fine permanent marker as shown in Figure 
36. 

To install the panels, the leading edge was first extended to the landing position.  The substrates are 
temporarily located to the locating features without removing the backing tape.  The tape at the nose 
is first removed and bonded.  The tape backing strips are then removed one at a time as the panel is 
rolled/pressed onto the surface working forward to aft to avoid voids.  To develop the tape bond 
strength, a vacuum is then applied.  After vacuum bagging, a tap test was performed to confirm 
acceptable void sizes.  The voids are drawn on the Kraft paper protecting the engineer surface as 
shown in Figure 37.  After the voids are deemed acceptable, the Kraft paper is removed and the 
bonding copper tape is applied and resistance checked.  The periphery is wrapped in speed tape and 
the outboard edge holes are installed.  See Figure 38 for a view of the completed installation.     
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Figure 36: Panel Installed With Upper Trailing Edge Corner Locating Marks 

 

 

Figure 37: Voids Drawn on Covering Kraft Paper 

 

 

Figure 38: Complete IAM Panel Installation 

4.3.5.2 IAM Substrate Removal 

An overview of the steps was provided in Deliverable 4.20 (Reference (14)). To remove the 
substrate, the speed tape around the periphery and copper grounding tape are removed.  After 
removal of the edge tape, the edges were marked with the location of the photo targets for later 
location of the equal area lines.  The removal of the panel begins at the lower trailing edge on the 
flex skirt.  The panel is peeled away from the slat surface with a plastic or phenolic wedge or 
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scraper to separate the high tack tape from the slat surface. See Figure 39, Figure 40, and Figure 
41 for removal details.  After removal, the substrates were placed in shipping boxes as shown in 
Figure 42.   

 

Figure 39: Peel substrate away from slat surface (Lower Surface View) 

 

Figure 40: Peel IAM Panel Away From Slat (Upper Surface View) 

 

Figure 41: Flat Removed IAM Panel with Edge Marked for Area Lines 
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Figure 42: Substrate Located in Box with Lid Supports 

4.3.6 Structural Analysis IAM Panel Installation 

The high level requirement for the IAM panels was to assure continued safe flight and landing 
(CSFL) in the event a panel came off the airplane.  Given that the underlying slat surface is 
unmodified, a departing panel simply exposes the basic external airfoil, so the airplane meets this 
requirement.  Collateral damage of a departing panel was considered, but since the panels weigh 
under 2 lbs each they were not deemed a risk to the airplane.  Note that the empennage leading 
edge is certified for an 8-lb bird-strike.  The remaining design and analysis effort was focused on 
minimizing the possibility of a panel coming off the airplane.  

The IAM panels are attached with double-sided adhesive tape, and installation trials indicated that 
voids between the panel and slat surface were probable due to surface waviness and uneven 
contact.  The analysis objective was to show that, given an expected external pressure field, voids 
would not propagate and cause the panel to depart the airplane.  The bond strength of the adhesive 
tape would be stressed if a net pressure existed across the panel, i.e. pressure within a void higher 
than on the external surface of the panel.  There was concern that trapping a bubble during 
installation at sea level would create a very high net pressure across the bond at altitude.  At the 
extreme, this could be 14.7 psi x 1.5 safety factor (14.7 psia is sea level standard static pressure).  
The adhesives being considered for easy panel application and removal were not sufficiently strong 
enough for this high pressure. 

An important feature of the design was to apply the adhesive tape in narrow spanwise strips with a 
small gap between the strips.  This gap would allow any voids to vent to the external pressure field 
at the tape edge which would significantly reduce the affected area. 

4.3.6.1 Summary Void Limitations 

The allowable void sizes for the taped panels are shown in Figure 43, with a 2.5” limit for edge flaws 
and a 3” limit for internal voids. 

Strategy 

 Evaluate external pressures 

 Test adhesive strength 

 Develop correlated bond line simulation 

 Define void limits for installation quality inspection. 
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Figure 43: Void Limitations 

4.3.7 Coatings Application Procedure Development 

The primary objectives of the series of sprayouts were to develop and verify the procedures needed 
to go from the small scale mix quantities (order 100 ml) and small size panels (order 0.2 sq. ft.) 
sprayed and cured at NASA LaRC to the order-of-magnitude larger mix quantities and panel sizes 
needed for the 757 ecoDemonstrator flight tests.  The ecoDemonstrator panels were sprayed at 
Boeing to develop a procedure appropriate for the larger panels.  

Some particular concerns and questions to be addressed by the preliminary sprayouts were: 

1) What formulation quantities would be needed for producing the coated panels for the flight 
test? 

2) What mix protocol is needed to produce the liter-size quantities that would give consistent and 
uniform mixes to apply? 

3) How to mount and orient substrate panels for formulation application? 
4) What paint-booth conditions were needed for the final sprayout? 
5) What paint gun setting or modifications to the spray gun might be needed to give uniform film 

build during each coating pass? 
6) How many application passes were need to produce the desired cured coating properties? 
7) What changes in solvent amount or solvent system are needed to give a formulation that could 

be applied with ten to 20 minutes between passes (10 minutes being the approximate time it 
would take to spray eight large panels and observe the sprayout after each pass during final 
application)? 

8) Would the paint gun or formulation composition need to be modified to prevent settling in the 
filled formulations? 

9) How much time to flash off the coated panels prior to cure? 
10)  How to orient the panels in the cure oven? 
11)  What is the correct cure protocol for each formulation? 
12)  Would the performance properties of the cured coatings be adequate for the flight test? 

4.3.7.1 Summary 

Lessons learned from the series of Sprayouts 1, 2, and 2A led to a successful Sprayout method 3.  
The final sprayout involved five formulations, each onto eight 27” by 30” by 0.012” 7075-T6 clad 
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panels which were then used in the Flight Test.  Results of each sprayout were transmitted to NASA 
LaRC in after each sprayout test.  In addition, “witness” plate examples of the results were also 
delivered (Deliverables 4.6a, 4.6b, 4.6c, 4.24 and 4.25).  Some of the details from the sprayouts are 
listed below. 

4.3.7.2 Mixing, Application and Performance Testing Details 

The IAM formulations, resins, and fillers were supplied to Boeing by NASA LaRC.  The solvents MEK 
(methyl ethyl ketone), MAK (methyl amyl ketone), and cyclohexanone were procured by Boeing.  The 
formulations were mixed then sprayed in a humidity and temperature controlled paint booth and oven 
cured.   

Insect adhesion mitigation performance was performed at NASA LaRC after delivery of at least two 
4” X 6” panels from each sprayout method.  NASA Langley personnel observed Sprayouts 2 and 3. 

Other IAM coating performance tests were done at Boeing.  Adhesion was measured using a cross 
hatch adhesion test similar to ASTM D3359.B on dry and 7-day wet soaked samples, Ra and Rq 
surface roughness was measured with a mechanical profilometer using ISO 97 with cutoff of 0.03 
micro inches (x5), and panel flexibility was measured either using ASTM D522.B mandrel bend or by 
actual bending of the trial panel over a slat taken from the ecoDemonstrator.  Final dry film 
thicknesses were also measured. 

4.3.7.3 Sprayout 1 

Sprayout 1, performed from May 12 to 17, 2014, consisted of a series of 5 trial formulations (IAMC-
1, -2, -3, -4, -5) and a pre-run formulation IAMC-PR that was the same as IAMC-1.  The IAMC-PR 
formulation was used to gain experience prior to the start of the trial.  Each formulation was to be 
sprayed at two different thicknesses.  Aluminum substrates used varied in size from 4” by 6” to 12” 
by 12” and in thickness from 0.016” to 0.040”.  All substrates were sprayed with an adhesion promoter 
conversion coat, AC-131, followed by an aerospace, non-chrome containing corrosion inhibiting 
primer prior to application of the IAMC formulation.  The original formulation instructions called for 
using only MAK as the solvent. Cures were either at 50 °C or were cures that started at 100 °C and 

then went to 170 °C.  

After the initial –PR formulation sprayout, it was apparent that this formulation could only be applied 
as a thin layer for each application pass and needed approximately 30 minutes between application 
passes instead of the target of 10 to 15 minutes.  Also the –PR cured panels showed de-wetting and 
shrinkage.  Consequently, Sprayout 1 formulations were then modified during the trial to include some 
MEK in the solvent and some of the formulations (IAMC-2, -4) were sprayed horizontally.  An issue 
found during mixing of some formulations was that the resin was not completely dissolving with some 
remaining in the mix flask and/or plugging the spray gun.   

Testing results showed the expected dry film thicknesses were generally less than expected based 
on a theoretical calculation, IAMC-4 had large measurable variations in coating thickness across the 
panel, and IAMC-1 had noticeable shrinkage at the coating edges.  Surface roughness was above 
100 micro-inches for IAMC-5, and crosshatch adhesion was marginally acceptable for IAMC-3 and 
this formulation also had peeling and cracking in the mandrel bend test.   

4.3.7.4 Sprayout 2 

After Sprayout 1, the decision was made to use 0.012 inch thick 7075-T6 aluminum as the substrate 
for the IAM coatings for the Flight Test.  Consequently a pre-trial was held on July 23 and 24, 2014 
to determine a suitable method for spraying out and curing 30 inch by 30 inch panels at 170 °C for 
up to 6 hours.  Considerations were given to the lack of rigidity of the large panel making them difficult 
to keep flat while applying coating, the need for a non-coated area for adhering the panels onto the 
slat for the flight test, the possibility of warping the panel during a high temperature cure if the panel 
was not flat, the need for a high cure temperature tape that would not leach silicone into the coating 
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during the cure, and that up to 8 panels of a formulation will need to be cured at one time.  Using a 
commercially available, high temperature cure, polyurethane aerospace coating as the test bed 
formulation, it was found that the 7075-T6 substrate panels could be sprayed nearly vertically (70 
degrees from horizontal) when taped onto a 0.040” 2024-T3 backing panel using Shercon PC-90 
tape.  The panels could then be cured at 170 °C for up to 6 hours when laid flat in the cure oven 

without warping or having silicone contamination from the tape, and that the tape could be used to 
picture-frame the coating so that there would then be areas for adhering the test panels onto the slat 
without applying the Flight Test tape to the coating and potentially causing tape adhesion issues 
(Figure 44).  

  

Figure 44: Example of IAM Coated Substrate Appearance 

 

Sprayout 2, performed from September 23 to 25, consisted of a series of 5 trial formulations (IAMC-
1, -2, -3, -4, -5) similar to that in Sprayout 1.  However, the formulation solids level was lowered by 
10 to 20% for IAMC-1, -3, and -4 and more MEK was added to the solvent package for IAMC-2, -3, 
and -4.  Aluminum substrates used varied in size from 4” X 6” to 29” X 32” and in thickness from 
0.012” to 0.020”.  Substrates used were aluminum 0.012” thick 7075-T6 except when 0.020 inch thick 
2024-T3 clad panels were required for a performance test.  All substrates were sprayed with an 
adhesion promoter conversion coat, AC-131.  However in this sprayout, only formulations -2, -3, and 
-5 were followed by an aerospace, non-chrome containing corrosion inhibiting primer prior to 
application of the IAMC formulation as -1 and -4 formulations are unfilled epoxies.  Application times 
between coating passes were changed based on Sprayout 1 and real time observations made during 
Sprayout 2. Cure protocols were the same for Sprayout 1, except for IAMC-3 where the 6 hour cure 
at 50 °C was replaced by a 6 hour cure at 120 °C. 

During mixing of IAMC-1 and -5, it was noted that the oxetane component seemed to solvate at a 
totally different rate than the hardeners component that were supplied in the same container so that 
NASA recommended that in the future, they be shipped separately.  Also in IAMC-5, the solution 
tended to separate while it rested so a paint shaker was needed for re-dispersion. The amine solution 
in IAMC-4 did not dissolve readily under sonication at room temperature so as suggested by NASA 
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the solution was heated to 50 °C where it disperse easily under sonication.  IAMC-2 appeared to need 
longer sonication times to disperse the filler than when a smaller amount of the formulation was made 
at NASA.   

During application of IAMC-1, some de-wetting was still present but less than in Sprayout 1.  After 
cure, there was some “picture framing” (thickening) around the coating edges.  IAMC-2 slowly 
“gummed up” the gun during application so the solution should be filtered prior to filling the spray gun 
to minimize this effect. IAMC-3 showed solvent pop after cure and was attributed to switching to an 
all MEK solvent blend.  IAMC-5 was filtered with a large mesh filter prior to filling the spray gun and 
slight manual agitation was applied by the Boeing painter during coating application and between 
application passes. 

Test results showed the expected dry film thickness was less than expected based on a theoretical 
calculation.  The root cause for much of this decrease was identified and arose because not all 
solution sprayed was applied to the panel as some was lost during spraying between panels and at 
edges to insure the complete panel had a uniform and consistent coating.  Surface roughness Ra was 
above 500 micro-inches for IAMC-2.  All formulations passed the dry/wet scribe adhesion test.  Some 
cracking was observed in all three IAMC-1 test panels, while one IAMC-3 test panel had some 
cracking.   

4.3.7.5 Sprayout 2A 

An additional trial sprayout was requested by LaRC prior to the final sprayout for the Flight Test.  The 
purpose of this sprayout as identified by LaRC is summarized in Figure 45.  Because of the issue 
with different epoxies used in the Topographical Investigation portion identified in Figure 45, 
formulation IAMC-5A of Sprayout 2A used the epoxy resin of formulation IAMC-5 but with no fillers, 
while formulation -5B used only one of the two fillers found in formulation IAMC-5 (Figure 46).   In 
order to spray out the filled systems without undue particle settling, a spray gun with agitated reservoir 
was identified by Boeing ( 

Figure 47).  In order to minimize the “picture framing” issue identified in the previous sprayouts, an 
elevated temperature flashoff at 30 °C and a multiple temperature step cure up to 170 °C was 

specified for IAMC-1 and -4 by LaRC.  Based in part on the solvent packages in commercial high 
temperature cured urethanes, such as that used in the pre-trial of Sprayout 2, the IAMC-3 solvent 
package was modified to be a mixture of MAK and cyclohexanone, which are less volatile solvents 
than the MEK used in Sprayout 2, and the temperature was slowly ramped up to the specified cure 
temperature of 120 °C. 
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. Figure 45: Areas for Improvement Needed Based on Sprayout 2 (From NASA LaRC) 

 

Figure 46: Areas for Improvement Needed –Topographical Investigation Alternative (From NASA 

LaRC) 
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Figure 47: Sata NR2000 D=Gravity Fed Paint Gun with Agitator 

 

Sprayout 2A, performed from December 3 to 5, 2014, consisted of the 5 trial formulations (IAMC-1, -
3, -4, -5A, and -5B).  Besides the use of formulations, -5A, and -5B, differences from Sprayout 2 
included a refinement in the mixing and application procedures as well as in the solvent package and 
cure protocols.  Due to time constraints for making the formulations at LaRC, 12” X 12” test patches 
were applied to the large 0.012 inch thick 7075-T6 clad aluminum panels as illustrated in  

Figure 48.  These panels were also given to the Structures group for testing on the ecoDemonstrator 
slat.  All substrates were sprayed with an adhesion promoter conversion coat, AC-131.  In this 
sprayout, only formulations -3 (urethane base), -and 5B (filled epoxy) were followed by an aerospace, 
non-chrome containing corrosion inhibiting primer.  The other formulations were unfilled epoxies.  

 

Figure 48: Large Panel Pattern for Sprayout 2A. 

 

No issues were noted during mixing of IAMC-1 or IAMC-5A.  IAMC-3 required some additional mixing 
and sonication for dissolution of materials into the new solvent blend.  IAMC-4 required a small 
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amount of additional solvent and sonication for dispersion of the amine in this formulation IAMC-5B 
required some additional sonication for dispersion of the filler. 

During application of IAMC-1, some de-wetting was still present and strong de-wetting and   shrinkage 
occurred during cure.  For IAMC-3 which used a less volatile solvent package than in Sprayout 2, 
some particulates were observed, but wetting between coats was much better and less and smaller 
size solvent pop was observed after curing. For IAMC-4, there was still some de-wetting and 
shrinkage after cure, but it was judged to be acceptable when a large size (30” X 29” panel) is 
completely coated. IAMC-5A had some sagging on the second pass, but it was thought it could be 
managed by increasing the time between application passes slightly as the coating wet in well to 
previously applied layers.  IAMC-5B sprayed well with the agitated reservoir spray gun with good wet-
in into the previous application pass.  Filler settling and separation were minimal.  Upon curing there 
were some large grit structure, but they were thought to arise due to a delay between mixing and 
application involved with getting the agitator gun adjusted.  

Dry film thicknesses were typically within 20% of expectation.  Surface roughness Ra was above 
about 200 micro-inches for IAMC-5B, but this was expected since this formulation was being 
considered for the topological investigation.  All formulations passed the dry/wet scribe adhesion test 
although a test in the thicker coating area of an IAMC-1 test panel indicated a marginal failure.     

4.3.7.6 Sprayout 3 (IAM Coated Panels for Flight Test) 

Based on the results from three previous sprayout trails performed at Boeing and the plan by NASA 
LaRC to investigate both chemistry and topological changes in the Fight Test, formulations selected 
by LaRC for the final sprayout were IAMC-3, -4. -5, -5A, and -5B.  Sprayout 3 was performed from 
March 2 to March 7, 2015 in the presence of NASA personnel.  Mixing procedures were only changed 
slightly from the previous sprayout of the formulations in those cases where it was noted that 
additional processing was needed to ensure coating uniformity. Two to three batches of each 
formulation were made in order to provide enough material for the sprayouts.  Application and cure 
procedures were similar to the previous sprayout of these formulations except for minor adjustments 
to account for the number of large panels being sprayed, eight for each formulation.  All substrates 
were sprayed with an adhesion promoter conversion coat, AC-131.  In this sprayout, formulations -3 
(urethane base), -5 (filled epoxy with one filler) and -5B (filled epoxy with two fillers) were followed by 
an aerospace, non-chrome containing corrosion inhibiting primer after the conversion coat and prior 
to the  insect adhesion mitigation formulation application. The other formulations were unfilled 
epoxies.  

Layout for coating application used on the Flight Test Panels and the witness panels that were sent 
to LaRC are shown in Figure 49.  After the sprayouts, a judging board consisting of Boeing and NASA 
personnel ranked the large 0.012” X 27” X 30” 7075-T6 Al clad panels from 1 to 8 within each 
formulation for uniformity and consistency.  The higher ranked panels from each coating formulation 
were then to be used in the Test Flights in Shreveport.  
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Figure 49: Layout of Large Flight Test and Witness Coated Panels 

The mixing and application protocol for Sprayout 3, which was written based on the previous sprayout 
results, was generally followed.  Any changes to the protocol were documented in the redline copy 
referenced at the end of this section.  One change was that in the mixing of IAMC-4 the sonication 
time was increased from 15 minutes to as long as 40 minutes in one batch to ensure dispersion of 
the ingredients into solution.  Examples of the coatings made during sprayout 3 are given in Figure 
50. 

 

  

Figure 50: Coated Witness Panel Produced during Sprayout 3  

Dry film thickness was in the expected range for each of the formulations.  Surface roughness Ra 
was about 10 µin for IAMC -5A, 60 µin for -5, and 400 µin for -5B, which gave a good range of surface 
roughness for the topological investigation.  The surface roughness for the surface chemical 
investigation varied only from about 5 to 10 µin so topological effects were minimized in this set.   All 
formulations passed the dry/wet scribe adhesion test.   

Results sent to LaRC were: 

1) “LaRC_SOIII_RedlineCopy”. April 7, 2015. 
2) “Test Property Spreadsheet- SO_III_Combined”.  March 30, 2015. 
3) “LaRC Sprayout 3 03-27-15 R2”. March 27, 2015. 

4.4 IAM 757 ecoDemonstrator Flight Test Program 

The primary test objective of the coatings is to keep the wing leading edge clean and free of insect 
residue.  A secondary benefit of the test is categorizing the insect accretion profile on the wing leading 
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edge through a range of altitudes (up to 10,000 ft), during normal takeoff and landing operations.  To 
support these test objectives, the substrate design was required to maximize frontal area on the 
leading edge, provide side-by-side comparison between coated and uncoated surfaces, not 
significantly deviate from the aircraft leading edge profile and support panel removal and installation 
in one crew shift. 

4.4.1 Safe to Fly Review 

The Safe to Fly review for the IAM technology to fly on the aircraft was held at Boeing on April 3, 
2015. The review included the Boeing chief engineer for the 757 ecoDemonstrator and NASA 
personnel via telephone.  

The Boeing chief engineer for the 757 ecoDemonstrator formally approved the operation of the aircraft 
with IAM installed via signature on the Block 3 Safe to Fly Coordination Sheet, released April 22, 
2015 (Reference (15)) which satisfied Deliverable 4.17. 

4.4.2 Site Selection  

The primary risk factor identified in the project Risk, Issue and Opportunity (RIO) management was 
the likelihood of encountering enough insects to meet the NASA-defined insect residue density 
criteria.  Without adequate insect activity, the ability to collect a statistically significant dataset to 
assess the performance of the different IAM coatings could be compromised.  Based on previous 
testing by NASA with a Falcon aircraft, up to 15 flight cycles could be necessary to achieve the density 
criteria.  To improve the likelihood for success, a search for the optimum site to conduct the flight test 
was performed. 

4.4.2.1 Site Selection Team 

The site selection team (Table 6) was led by NASA Ames Research Center (ARC) with 
representatives from NASA Langley Research Center (LaRC), Boeing, Volpe and the University of 
California, Davis.  Volpe was contracted to provide quantitative data from the national airport 
database, and acted as the primary contact between the team and airports of interest.  An 
entomologist from UC Davis provided expertise on insect activity. 

Table 6: Site Selection Team 

Name Organization 

Bruce Storms NASA-Ames 

Robert Fong NASA-Ames 

Mike Alexander NASA-LaRC 

Keith Harris NASA-LaRC 

Tom Farrell Boeing 

Jeffrey Crouch Boeing 

Lynn Kimsey UC Davis 

Amir Tabrizi Volpe 

Melanie Soares Volpe 

4.4.2.2 Site Selection Criteria 

The team identified several key site selection factors including physical attributes, meteorological 
attributes, and insect population likelihood.  These were used to rank the locations with the highest 
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probability for success.  The final criteria list was agreed to on August 20, 2013 (Reference (5)) and 
is summarized below. 

Physical Attributes 

• Continental US 

• Runway long enough to support the modified B757 (>8,000ft)  
• Low traffic counts (<500 aircraft per day), particularly during day-time hours  
• Control tower 
• Note available airspace (i.e. noting distance to airports or test facilities in the approach 

vicinity)  
• Near wetlands or agricultural areas 

Meteorological Attributes – provided by month 

• Low weather delay count (i.e., amount of rainy days) 
- Rainy days are defined by rain lasting at least one hour during daylight hours 

• Daily temperature range between 65 and 90 Degrees Fahrenheit during daylight hours 
for a minimum 4 hour window 

• Humidity > 30% during daylight hours 
• Little or no wind over 10kts for a minimum 4 hour window 
• March – May 2015 are target months 

Insect Population Likelihood 

• Given the physical and weather attributes described above, offer a recommendation 
by month as to the likelihood of insect strikes 

• Species and size by geographical area likely similar except for pollinators introduced 
by local farmers 

Based on the historical data provided by Volpe, the primary criteria used to sort airports were the 
meteorological attributes that affect insect population; specifically, temperature, wind speed and 
likelihood of rain.  Temperature restrictions allowed the geographical area to be focused to the West-
Coast and Southern states.    

With these criteria, the initial airport list included a total of 86 airports from 15 states.  The team 
reviewed additional qualitative criteria comparing airport layouts, familiarity of Boeing Test and 
Evaluation (BT&E) and possibilities for nearby alternate locations.  

4.4.2.3 Airport Questionnaire  

From the down-selected list of airports, the top 12 sites were interviewed for more details using a 
common set of questions developed by the team.  Volpe handled communications with the 
representatives from each airport.  These questionnaires were intended to assess the airports’ 
interest to support this activity and gather further information on likelihood for obtaining adequate 
insect density.  Of the 12 sites selected to receive the questionnaire, eight of them responded.  The 
final questionnaire and responses were distributed to the team (Reference (6)). 

4.4.2.4 Airport Site Visits 

After reviewing the airport responses to the questionnaire the plan was to visit the top three, as 
determined by the team.  These site visits were used to inspect the facilities and assess any additional 
impressions not covered in the formal criteria.  The timing of the visit was approximately one year 
before testing and as close as possible to the same time of year to give the team an idea of 
representative conditions for that time of year.  These visits were to locations in Florida, Louisiana 
and California.  The sites and dates visited are shown in  

Table 7. 
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Table 7: Site Visits 

Airport Date of Visit 

Tallahassee, FL (KTLH) 4/14/2014 

Fort Myers, FL (KRSW) 4/16/2014 

Stockton, CA (KSCK) 4/22/2014 

Fresno, CA (KFAT) 4/23/2014 

Shreveport, LA (KSHV) 4/29/2014 

Alexandria, LA (KAEX) 4/30/2014 

4.4.2.5 Final Site Selection 

After the site visits concluded, each organization within the selection team ranked their preferred 
sites.  Shreveport, LA was the unanimous choice. 

4.4.3 Flight Test Planning 

Boeing collaborated with NASA on the development of the test phases to ensure the objectives of the 
test were adequately captured.  The overall plan was captured in the ConOps discussions (Reference 
(16)).  A successful sortie was defined as one that collects a minimum of 25 insects/square foot on 
two of the four panels per slat.  Phase 5a was used to gather a baseline with uncoated panels and 
develop the bulk of the insect profile information.  Although the panels in 5a were uncoated, the 
preparation of the external surface was preferred by Boeing to be “de-glossed” to reduce the risk of 
poor image quality due to lighting issues.  NASA’s preference was to keep the shiny finish the panels 
were delivered with, to limit the variables between their lab testing and the flight test results.  A 
meeting was held on March 26, 2015 where it was agreed (Reference (18)), the panels in 5a would 
be “de-glossed” using scotch-brite pads that kept the roughness values the same as the baseline 
finish, and phase 5b and 5c would use the shiny finish for the reference panels.   

Using the panel layout definition, specific panel configurations flown during phases 5b and 5c were 
defined by NASA using the rankings list created after Sprayout 3 (Reference (19)).  The spanwise 
locations of the coating types were changed between 5b and 5c to ensure no bias in the data due to 
spanwise variation of the insect density. 

4.4.4 Flight Profile Development 

Particulars of the flight profile were selected to maximize insect accretion while flying a variety of 
takeoff conditions to simulate actual airline operations and taking into account airplane limitations. 
The aircraft configuration required specific Temporary Operating Limitations (TOLs) and Aircraft 
Advisories to be in place for the duration of the flight test.  The limitations applied for the IAM 
installations specifically were to restrict the retraction capability of the leading edges and limit the 
maximum pressure altitude to 10,600 feet.   

To achieve a range of climb rates and speeds, takeoffs were performed at a range of flap detents, 
F01, F05 and F20. All landings during IAM testing were performed at detent F20. In addition to flap 
detent, final climb altitude varied between 1,500, 5,000 and 10,000 feet. With one exception during 
Phase 5C, full stop landings were used during bug collection flights to simulate airline operations. 

4.4.5 Weather Contingencies 

Due to unavailability of a hangar at Shreveport Regional Airport, Boeing provided a contingency plan 
to protect the IAM panels from rain.  The plan included two parts: 1.) a scaffolding rain cover and 2.) 
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a tarp.  The contingency plans were presented to NASA and accepted on April 1, 2015 (Reference 
(20)).  

A precipitation weather cover was requested to cover the panels in case of inclement weather during 
testing.  Rainfall on the insect accretion post flight would add an unknown variable to the results.  It 
was also desirable to reduce moisture on the panels overnight.  The design of the cover required it 
to be installed within minutes, be offset of the leading edge so as to not touch the surfaces, be water 
resistant, not allow the wind to blow rain onto the surfaces, and not be a hazard to the airplane.   

It was determined a cover for each slat was preferable over one large cover.  This would make the 
cover more manageable to prevent contact of the IAM surface during installation.  The covers were 
successfully tested with a watering can.  0.25 inch diameter holes were punctured at the lowest 
inboard points adjacent to offsets to provide a water drain path.  See Figure 55.   

 

Figure 51: Slat Cover Installation Cross-Section 

 

 

 

Figure 52: Slat Covers Installed 
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Figure 53: Slat Covers Installed From Lower Surface 

 

Figure 54: Testing for Water Proofing 

 

 

Figure 55: Drain Path for Water Pooling at Covers Lowest Point 
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4.4.6 Test Operations Preflight Activities 

The testing in Shreveport was expected to be highly weather dependent. Prior to testing, temperature, 
precipitation, and wind limits were established through consultation with project entomologists. 
Boeing analyzed historic meteorological and local weather forecast data for the airports in the area 
to predict testing windows with weather conducive to greatest insect activity.  A running forecast was 
used to manage test operations, see Figure 56. This site was valuable for adapting the plan as the 
test team learned which weather factors had stronger influence on insect density. 

 

Figure 56: Atmospheric Physics Forecast (Ground Temperature) (from BT&E internal website) 

4.4.7 Flight Summary 

The typical test day plan was presented to NASA at the Flight Campaign Briefing on March 24, 2015 
(Reference (21)) which satisfied Deliverables 4.12 and 4.8.  This plan included the steps for pre-flight 
preparation, in-flight execution and decisions, and post-flight activities for the three different phases 
of testing (5a, 5b, and 5c).  The flow times for each task were estimated and incorporated into the 
test scheduling.  A brief summary of the test plan flow times compared to the average test metrics is 
shown in Table 8. 

Table 8: Average Testing Flow Times Compared to Estimates 

Metric Estimate Actual (Avg.) 

Flight Cycle Time (brake release to landing)   

1,500 ft max altitude  10 min 6 min 

5,000 ft max altitude 15 min 10 min 

10,000 ft max altitude 20 min 17 min 

Taxi Time Between Circuits 10 min 12 min 

Inspect/Clean/Refuel Turn Time 2.5 hrs 2.0 hrs 

Onsite the testing performance was better than expected due to favorable conditions providing better 
than expected insect accretion.  A total of 11 flight days were needed to collect the required data; four 
days fewer than planned.  Only two days were lost due to weather and a total of four multiple-sortie 
days were achieved.  A summary of the flight log is covered in the Flight Log section below. 
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4.4.8 Inspections 

The crew aboard NE016 monitored the on-board camera data during the flight.  Once it was 
ascertained they had enough bug accretion, the plane would return to base.  With the crew still on-
board, a joint effort was made by NASA and Boeing ground crews to verify that the bug density on 
the IAM control panels met the density criteria. 

To ensure a bug density of 25 hits/square foot, a square foot template was used to conduct the 
counting initially.  Figure 57 outlines the zone numbering used; note Zone 0 is the underside of slat 
below the first white line in Figure 57.  Because of the slat curvature, a trend was noted after the first 
couple flights where zone 4 consistently received the lowest number of bug hits.   

 

 

Figure 57: Panel Zone Numbering (View from Above) 

As a result, using a simple square foot template proved difficult to show enough bug density.  It was 
determined that counting the number of bug hits in zones 2 and 3 would provide a better density 
count.  The process was then changed to count the number of bug hits in zones 2 and 3 where a total 
count between 53 to 62 hits in both zones would meet the density criteria.  If the criterion was not 
met, the crew would determine if the weather conditions were conducive to conduct more circuits or 
if the testing needed to be called off for the day.  If the criterion was met, then a detailed bug count 
was completed on the surrounding slats on the right wing.  The slat counts represented control data 
to identify possible bug density generation factors such as location along the wing.  To count the 
number of bug hits, the count was recorded by zone following the same zone format outlined in Figure 
58.  For the slats without IAM panels that were counted, green paint was used to isolate the different 
zones for counting. 
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Figure 58: Slat Zone Numbering 

After counting a zone, the total number of hits for that zone was recorded according to a table (see 
in Inspection Data Summary section for an example).  The count was purely numerical in nature as 
no special attention was given to bugs based on size.  For any bug hits that spanned more than one 
zone, only the zone in which the bug hit originated was counted.  Streaks or “protein stains” were 
also considered as hits and were included in the count.  In addition, NASA’s entomologist was 
available to identify the various insects that had hit the panels. 

Zone 4 

Zone 3 

Zone 2 

Zone 1 

Zone 0 
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4.4.9 Flight Log 

The flight testing in Shreveport was split into three distinct panel configurations: 5a, 5b, and 5c. Phase 5a included 5 sorties, 5b included 4, 
and 5c included 6 sorties. A summary of sorties flown for each configuration is provided in the tables below. 

Table 9: Phase 5a Flights Summary 

P
h

a
s
e

 5
a
 

DATE 4/29/2015 4/30/2015 4/30/2015 5/1/2015 5/1/2015 

FLIGHT  # 007-002 Flt1 007-003 Flt2 007-003 Flt3 007-04 Flt4 007-04 Flt5 

CONFIG - RIGHT RA RA RA RA RA 

TIME (1st BREAK 
RELEASE - 
ENGINE OFF) 

17.43.42 - 19.26.28 15.55.50 - 17.50.20 
20.11.05  -21.22.17,  
21.53.39 - 22.46.58 

15.59.13  - 
17.33.20 

19.44.52 - 22.09.12 

TOWER WIND 
DIRECTION/SPEED 
(KT) at 500ft 

010/11,010/12,350/07 
330/4 at 800ft, 290/5 

at 700ft, 340/7, 
340/7at 1K, 340/9 

290/7 at 700ft, 
320/11, 270/8, 290/5, 

280/7,330/5,330/4 

110/3, 100/3, 
070/4, 020/6 

360/6, 290/4, 
330/3, 310/6, 
350/6, 010/5 

FLAPS AT T/O 20,5,20 20,1,20,1,20 20,20,20,20+20,20,20 1,1,1,1 5,5,5,5,5,5 

MAX ALTITUDE 10,000ft 5,000 ft 5,000ft 5,000ft 5,000ft 

# OF FULL 
LANDING 

3 5 4+3 4 6 

# OF TOUCH AND 
GO 

0 0 0 0 0 

# OF RUNWAY 
FLYBY 

0 0 0 0 0 
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Table 10: Phase 5b Flights Summary 

P
h

a
s
e

 5
b
 

DATE 5/2/2015 5/3/2015 5/4/2015 5/4/2015 

FLIGHT  # 007-05  Flt6 007-06 Flt7 007-07  Flt8 007-07  Flt9 

CONFIG - 
RIGHT 

RB RB RB RB 

TIME (1st 
BREAK 
RELEASE - 
ENGINE OFF) 

15.44.16 - 17.20.20 15.40.31 - 17.47.03 15.40.38 - 17.24.03 19.35.36 - 21.14.49 

TOWER WIND 
DIRECTION/SP
EED (KT) at 
500ft 

150/5, 160/7 at 800ft, 
160/7 at 1000ft, 190/5 

220/10, 200/10G14, 
200/12, 200/11, 190/11, 

200/11 

calm, 180/6, 160/5, 
150/6, 170/7 

100/10,calm,120/10,120/1
0G15,130/10 

FLAPS AT T/O 20,20,20,20 5,5,5,5,5,5 1,1,1,1,1 20,5,20,5,20 

MAX ALTITUDE 10,000ft 5,000ft 5,000ft 5,000ft 

# OF FULL 
LANDING 

4 6 5 5 

# OF TOUCH 
AND GO 

0 0 0 0 

# OF RUNWAY 
FLYBY 

0 0 0 0 
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Table 11: Phase 5c Flights Summary 

P
h

a
s
e

 5
c
 

DATE 5/5/2015 5/6/2015 5/6/2015 5/7/2015 5/8/2015 5/10/2015 

FLIGHT  # 007-08  Flt10 007-09  Flt11 007-09  Flt12 007-10 flt 13 007-11 Flt14 007-12 Flt 15 

CONFIG - RIGHT RC RC RC RC 
RC, slats 
retracted 

RC 

TIME (1st BREAK 
RELEASE - 
ENGINE OFF) 

15.48.50 - 
15.21.21 

13.23.04 - 
16.09.15 

18.34.38 - 
20.27.47 

14.34.37 - 
16.01.50,  
17.55.34 - 
19.20.27** 

18.12.39 - 
19.26.18,  
20.17.39 - 
20.43.13 

16.23.08 - 
16.40.39,  
17.59.21 -

19.01.01**** 

TOWER WIND 
DIRECTION/SPEE
D (KT) at 500ft 

130/16, 160/12 
at 800ft, 

160/12, 140/13 

160/10 at 
800ft, 150/12, 
120/10 at 700 

ft, 140/10, 
100/11 at 700 

ft, 150/13, 
140/12, 140/12 

130/9, 
150/10&15, 

160/13, 130/10 
at 800 ft, 

170/08, 140/08, 
130/11, 

150/10, 160/07, 
150/11,  

140/9, 130/14, 
120/11, 150/7 

180/6, 160/6 at 
1000ft, 210/5, 
190/7, 200/8, 

190/7, 170/10, 
180/8, 190/10 

170/5, --/--
,170/5, 

180/14, 170/16, 
180/6, 160/9, 

160/8, 170/6 at 
800ft, 160/11 

FLAPS AT T/O 20,20,20,20 
20,20,20,20,20,

20,20,20 
5,5,5,5,5,5,5 1,1,1+1,1,1,1 1,1 

5,20 + 
5,20,5,20,5 

MAX ALTITUDE 5,000ft* 
10,000ft (4 

flights) 5,000ft 
(last 4 flights) 

5,000ft 5,000ft 1,500ft*** 1500ft 

# OF FULL 
LANDING 

4 8 7 3+4 1+1 2+5 

# OF TOUCH AND 
GO 

0 0 0 0 0 0 

# OF RUNWAY 
FLYBY 

0 0 0 0 
9+2 at 500ft 

(AGL) 
0 

*Planned for 10,000ft but several layer of clouds  up to 10K --> change plan to 5,000ft, unsuccessful in meeting density criteria & wind 
conditions deteriorated 

** Refuel in between flights and waiting for the ceiling to burn off. 

***Max Altitude 1500ft instead of 5000ft due to ceiling (2000ft) and preferring to stay VFR (visual flight rule) and out of any potential 
precipitation.  

****Insect Density Inspection between the two flights.
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4.4.10 Image Data Summary 

For each sortie, the IAM cameras were positioned to each capture slats 8 and 9. Images were 
captured approximately once every second during test conditions.  

Although resolution was designed to be adequate to capture most insect impacts, focus, optical 
window quality, and lighting conditions adversely impacted what was visible. It is estimated that 15-
30% of total insect impacts were discernible in the image data. A large portion of the insect impacts 
counted on the ground were streaks or small particles which were not visible in the in-flight images. 
In addition, day to day (and photo to photo) variations in focus, optical window quality, and lighting 
conditions adversely influenced the ability to observe these impacts during flight. A section from an 
in-flight photo is shown in Figure 59. 

 

Figure 59: Example In-Flight Photo 

In addition to the in-flight images obtained, post flight photographs of the relevant leading edge 
surfaces were captured as well. These images were taken from outside of the aircraft at a much 
closer range. As such, much more details were visible in the on-ground images. An example photo 
from the ground inspection is shown in Figure 60. 
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Figure 60: Example On-Ground Photo 

All images collected in-air and on the ground were delivered to NASA at the conclusion of testing as 
documented in Reference (22).  

4.4.11  Aircraft Data Summary 

During each test flight, aircraft data was recorded from onboard instrumentation and ship’s systems.  
The information included aircraft altitude, velocity, configuration, and outside ambient conditions.  
These data files were delivered at the end of testing to NASA along with comments from flight crew 
per Reference (22). 

4.4.12  Inspection Data Summary 

Insects were counted on the IAM panels and reference slats.  Counts are recorded by panel and slat 
zone.  On reference slats 7 and 10, spanwise area was discretized into five zones similar to IAM slats 
8 and 9. Counts were provided to NASA at the conclusion of testing (Reference (22)).  

Typical counts showed a higher accretion rate in the lower zones and a relatively constant accretion 
rate spanwise. The zones close to the nacelle on Slat 7 tended to collect fewer insects since the 
nacelle provides some shielding from the ballistic trajectories.  

Accretion counts are plotted as a raw count, and as accretion / square foot. Example table and charts 
from Phase 5C flight 4 are shown below in Table 12, Figure 61 and Figure 62.  
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Figure 61: Flight 4 Accretion Distributions 

 

Figure 62: Flight 4 Accretion Per Square Foot 
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Table 12: Flight 4 Insect Count 

ZONE 

R10 R9 R8 R7 

REF REF REF REF CONTROL TEST CONTROL TEST CONTROL TEST CONTROL TEST REF REF REF REF 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 

4 41 58 40 34 42 43 31 36 36 47 29 32 47 39 40 35 

3 34 33 40 33 52 52 36 33 43 36 28 47 49 38 37 24 

2 82 59 63 72 49 49 49 38 57 52 54 51 38 41 89 30 

1 63 72 74 63 43 56 39 56 44 60 71 65 75 78 84 45 

0 5 10 9 7 7 7 9 13 12 11 11 9 9 12 14 5 

TOTAL 225 232 226 209 193 207 164 176 192 206 193 204 218 208 264 139 
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5 Summary 
This report summarizes the work performed by the Boeing team on AFC and IAM technology as 
defined by the NASA contract NNL10AA05B task order NNL14AA57T.  With the delivery of this 
report, all of the required AFC and IAM deliverables have been completed. 

The AFC Enhanced Vertical Tail demonstration was the culmination of several years of 
technology maturation, including: sub-scale wind tunnel testing, full-scale wind tunnel testing, 
CFD simulation studies and a system integration study.  The objectives of the AFC demonstration 
were to: demonstrate the ability to integrate a prototype AFC system into an airframe, 
demonstrate AFC impacts on rudder effectiveness in flight and collect in-flight data for comparison 
to full-scale wind tunnel data and CFD simulations.  These objectives were achieved by designing, 
fabricating, installing and flight testing a sweep jet based AFC system on the vertical tail of the 
757 ecoDemonstrator.  The AFC system functioned as designed and significantly affected the 
control power of the rudder, as evidenced by flow cone visualization, measured forces and 
moments, and pilot feedback.  As a result of this demonstration, a significant body of knowledge 
has been created that will influence future applications of active flow control.  In addition, the need 
for maturation of the integration and manufacturing readiness of the technology has been 
highlighted as the primary challenge for commercial application of AFC.   

The Insect Accretion and Mitigation demonstration assessed a subset of the most promising 
coatings, developed by NASA, for the mitigation of insect accretion in a transport category aircraft 
flight environment.  The objectives of the demonstration were to assist NASA in the application of 
the coatings onto a full scale test article, collect data to assess the ability of the coatings to reduce 
the amount of residue accumulated during typical aircraft takeoff and landing operations, as well 
as gather information to document the altitude profile describing when insect strikes were 
collected.  These objectives were achieved by designing, fabricating, installing and testing panels 
with IAM coatings on starboard-side wing slats of the 757 ecoDemonstrator.  Photographic, 
physical inspection and aircraft flight profile data were collected and delivered to NASA to assess 
the IAM performance.  Results from the data collected indicate a measurable reduction in insect 
residue for some of the formulations tested.  This unique opportunity produced information that 
will help inform the development of this technology so that it may one day lead to application on 
a future commercial aircraft design. 

 
 
 
 
 



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2.  REPORT TYPE 

Contractor Report
 4.  TITLE AND SUBTITLE

Flight Services and Aircraft Access: Active Flow Control Vertical Tail and 
Insect Accretion and Mitigation Flight Test  

5a. CONTRACT NUMBER

NNL10AA05B

 6.  AUTHOR(S)

Whalen, Edward A.

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 NASA Langley Research Center                     
Hampton, Virginia 23681                                                                                                 

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael G. Alexander

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified 
Subject Category  05
Availability:   NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T (Reference (3)) 
as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test 
preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) 
experiments conducted on the 757 ecoDemonstrator.  

15. SUBJECT TERMS

Active flow control; Boeing; Flight test; IAM; Insect mitigation Accrection; Rudder; SMAAART; Vertical

18. NUMBER
      OF 
      PAGES

66
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

03/24/2014 -08/31/2015

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

NNL14AA57T
5f. WORK UNIT NUMBER

  9999999  

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/CR-2016-219005

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)

01 - 201601-


