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Abstract
In this paper we consider the solution of the compressible Navier-Stokes equations for a class of
laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this
class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to
evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes
equations. In recent years, such flows have also been used as test cases for high-order numerical
schemes. While generally consistent steady-state solutions have been obtained for these flows using
higher order schemes, a number of results have been published with various solutions, including
unsteady ones. We demonstrate with two different numerical methods and a range of meshes with
a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Fur-
thermore, numerical evidence is presented that even when solving the equations with an unsteady
algorithm, one obtains steady-state solutions.
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1 Introduction

In the development and evaluation of numerical schemes it is essential to have a comprehensive set of
test problems. Such problems can allow specific properties of the solution algorithm to be validated.
Furthermore, they can possibly delineate deficiencies in the algorithm that must be overcome. These
test cases should provide either an analytic solution or a fully converged and resolved numerical
solution. While experimental data can often provide confirmation for the validity of the computed
solution, one should not necessarily conclude that everything is working correctly for a steady-state
problem just because there is reasonable agreement with the data according to some engineering
criterion (such as a small variation in the aerodynamic coefficients) when the residual has only been
reduced a few orders of magnitude (rather than machine zero). An appropriate evaluation should
involve a hierarchy of test cases. For example, if we consider solving the Navier-Stokes equations,
the test cases should include laminar flows. Laminar flow test cases have the distinct advantage that
they eliminate the need at sufficiently high Reynolds numbers to either resolve turbulence in a flow
field or to model the turbulence appropriately.

Some possible laminar flow test cases involving the NACA 0012 airfoil were considered by the
first author of this paper in 1984. One of these test cases (Mach number (M ) of 0.5, angle of attack
(α) of 0◦, and Reynolds number (Re) equal to 5000) was introduced in the 1985 paper by Swanson
and Turkel [1] to evaluate an algorithm for solving the compressible Navier-Stokes equations. This
particular case was chosen because it has a small amount of trailing edge separation (beginning at
approximately the 81% chord location), and thus, represented a good way to check the levels of
dissipation being produced by the numerical scheme. For example, if the scheme is too dissipative,
the effective Reynolds number is reduced, and the separation point moves downstream. Since that
time, this case has been considered in numerous evaluations of schemes, such as Refs. [1–7]. It has
also been used in a study of vortex-airfoil interaction by Svärd et al. [8]. In addition, this case and
another one of the original cases (α = 3◦) have also been used by Venditti [9] in evaluating a grid
adaptive scheme for functional outputs of flow simulations.

In recent years, some additional laminar flow cases for the NACA 0012 airfoil have also been
considered. The flow conditions are the same as for the original cases of Swanson except α = 1◦

or α = 2◦. These cases, as well as the original cases, have been considered in the European project
ADIGMA to develop adaptive high-order variational methods for aerospace applications [10]. Due
to the strong interest in these laminar flow cases, there is a need to have documentation of their
solutions.

Some recent efforts to compute members of this class of flow problems have produced solutions
that are inconsistent with the rather large number of previous solutions (computed with a wide range
of numerical methods), including those already cited in this paper. For example, Abgrall and De
Santis [11] show unexpected solutions for the α = 0◦ case, which should have a symmetric solution
based on previous results, using both second-order and third-order discretizations. One possibility
for such results is the presence of an asymmetry in their solution algorithm. Another example
concerns the unsteady solution for the α = 2◦ case presented in the ADIGMA Project [10] paper
by Taube et al. starting on page 427. Even though the computational method included adaptation,
the calculation was performed on a rather coarse mesh (815 cells) and the adaptation seems to have
been focused in the wake. Thus, there could have been insufficient resolution in the neighborhood
of the separation point, which can produce a result that appears to be an unsteady solution. There is
also the possibility that the solution algorithm is not sufficiently strong, as measured by the level of
implicitness. In this paper, we will show how a weak solution algorithm can produce what appears
to be an unsteady solution. Dolejs̆ı́ [12] has also obtained an unsteady solution for this laminar
flow case. A nonlinear system of algebraic equations (from discontinuous Galerkin finite element
method) is solved with an inexact Newton-time method. An inner iterative method is required to
solve a linear system at each time level. Since the residual (algebraic error) of the iteration is not
being reduced to approximately zero, there can be sufficient error to produce an unsteady result.
In any of these examples, one cannot dismiss the possible influence of boundary conditions. It is
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difficult to assess this because descriptions of the discrete implementation of the boundary conditions
for the problems being considered are not given.

As a consequence of such examples, a primary objective of this paper is to demonstrate that
there are steady-state solutions, even on high density meshes, to this class of problems. Two ad-
ditional objectives of this paper are as follows. The first of these is to examine and document the
behavior of a set of laminar flow problems, which includes those just discussed, as well as a com-
monly considered lower Re case with a higher angle of attack. The second additional objective is to
compare two methods for solving the compressible Navier-Stokes equations. One method [13, 14]
is based on structured grids, and the other [15] is based on unstructured grids. Both methods apply
a finite-volume approach for spatial discretization. The structured grid method uses a cell-centered
formulation, and the unstructured grid method uses a node-centered formulation. Each method ap-
plies a matrix form for numerical dissipation. In addition, using the structured grid approach a Roe
dissipation (which is frequently used in numerical schemes) is also considered. When comparing
what we call structured and unstructured schemes it is important to clarify the meaning of this ter-
minology with respect to contrasting the schemes. In the paper, the same set of structured grids (i.e.,
quadrilateral elements) is used for both methods. Thus, the comparison of the schemes is based on
the fact that there are differences in their elements and implementation.

For all computations in the paper we solve the full Navier-Stokes equations (i.e., all physical
diffusion terms are retained). The solvers for the two methods are comprised of a Runge-Kutta
(RK) scheme with an implicit preconditioner (herein also designated as RK/Implicit scheme) to
extend stability and allow a large Courant-Friedrichs-Lewy (CFL) number. A multigrid scheme is
employed for convergence acceleration. In the comparison of the methods, we consider accuracy,
stability, and convergence when computing solutions of the laminar flow cases.

In the first section of the paper, we present the governing flow equations and the boundary
conditions for the continuous problem of flow past an airfoil. The next two sections describe and
discuss the structured and unstructured methods, including the discrete boundary conditions, that
are considered. After delineating the specific differences in the two methods, we then present a set
of laminar flow results that compare the methods. Convergence histories are shown for both steady-
state and unsteady computations. Comparisons are made between the results with the structured and
unstructured methods. The effects of mesh density on the solutions, which contain between 8,192
and about 8.39 × 106 cells, as well as the surface pressure and skin-friction distributions for each
laminar flow case are presented and discussed. In all cases, there is flow separation, and both the
separation location and downstream extent of separation are compared. Overall flow details are also
illustrated with Mach and streamline plots. Such details provide a reference for other investigators
to compare against.

2 Governing Equations
We consider the two-dimensional (2-D) Navier-Stokes equations for compressible flow. Assuming
a volume fixed in space and time, the integral form of these equations can be written as∫∫

V

∂W
∂t

dV +
∫
S
F · ndS = 0, (1)

where W is the state vector of conservative variables, F is the flux density tensor, and V , S, and n
denote the volume, surface, and outward facing normal of the control volume. One can split the flux
density tensor into a convective contribution Fc and a viscous contribution Fv , which are given by

Fc =


ρq

ρuq + pex

ρvq + pey

ρHq

 , Fv =


0

τ̄ · ex

τ̄ · ey

τ̄ · q−Q

 (2)
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where q is the velocity vector with Cartesian components (u, v), and the unit vectors (ex, ey) are
associated with the Cartesian coordinates (x, y). The variables ρ, p, H represent density, pressure,
and total specific enthalpy, respectively. The stress tensor τ̄ and the heat flux vector Q are given by

τ̄ =
[

τxx τxy

τyx τyy

]
, Q = k

[
∂T/∂x
∂T/∂y

]
(3)

with

τxx = λ

(
∂u

∂x
+

∂v

∂y

)
+2µ

∂u

∂x
, τyy = λ

(
∂u

∂x
+

∂v

∂y

)
+2µ

∂v

∂y
, τxy = τyx = λ

(
∂u

∂y
+

∂v

∂x

)
.

(4)
Here, the symbol ∂ indicates partial differentiation, µ and λ are the first and second coefficients
of molecular viscosity, k denotes the coefficient of thermal conductivity and T represents the tem-
perature. By the Stokes hypothesis, λ = −2/3µ, and µ is determined with Sutherland’s viscosity
law [16]. The thermal conductivity k is evaluated with the constant Prandtl number assumption (i.e.,
the Prandtl number Pr = 0.72).

In order to close the system given by Eq. (1), we use the equation of state

p = ρRT (5)

where R is the specific gas constant.

2.1 Physical Boundary Conditions
In the continuum case, we consider an external flow problem (i.e., flow past a given geometry) on
an infinite domain Ω ⊂ R2. Thus, we need to define appropriate conditions at a wall boundary,
which we assume to be solid. Later, in the discrete case, we define a finite domain. It will then be
necessary to define suitable inflow and outflow boundary conditions.

For viscous flows, the non-penetration condition and the no-slip condition are imposed,

q · n = 0, q · t = 0, (6a)

where t is the unit vector tangent to the surface of a control volume. In addition, a boundary
condition is required to determine the temperature and one other thermodynamic variable. For the
temperature, we impose the adiabatic condition

Q · n = 0, (6b)

where Q is the heat flux vector given in (3). Usually, for the other thermodynamic variable re-
quired, the pressure is selected, which is determined from the normal momentum equation. For
example, consider the differential form of the normal momentum equation at a solid and stationary
wall boundary. This equation can be written as

(∇p · n)w = [(∇ · τ) · n]w , (6c)

where ∇ is the gradient operator.

3 Structured RK/Implicit Scheme
We apply a finite-volume approach to discretize the fluid dynamic equations and use a three point
second-order discretization of the advection terms with either the matrix-type or Roe-type numerical
dissipation. For details of these forms of numerical dissipation see Swanson and Turkel [17] and
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Roe [18]. The viscous terms are discretized with a second-order central difference approximation.
Using this discretization, we describe in this section the solution algorithm for the structured scheme.

The numerical solver called the RK/Implicit scheme is a member of a general class of schemes
with a nonlinear outer iteration and a linear inner iteration (e.g., see [15, 19]). In the outer iter-
ation, a Full Approximation Storage (FAS) multigrid method with a RK smoother such as those
of Ref. [14] is applied. The inner iteration determines an approximate implicit preconditioner for
the RK scheme, resulting in a type of implicit RK smoother. The particular implementations for
the structured grid and unstructured grid methods are described below in Section 3.1 and later in
Section 4.1, respectively.

3.1 Elements of Solution Algorithm
A semi-discrete form of Eq. (1) can be written as (omitting subscripts of discrete quantities for
convenience),

dW
dt

+ R(W) = 0, (7)

defining a system of ordinary differential equations. The R(W) denotes the residual function deter-
mined by the spatial discretization briefly described previously. Applying a three-stage RK scheme
to update the discrete solution, we obtain on the q-th stage

W(q) = W(0) + δW(q), (8)

where the change in the solution vector W is

δW(q) = W(q) −W(0) = −αq
∆t

V
LW(q−1) = −αq∆tR(W), (9)

and L is the complete difference operator for the system of equations, and V is the volume of the
mesh cell being considered. Here, αq is the RK coefficient of the q-th stage, and ∆t is the local time
step. To extend the support of the difference scheme, we consider an implicit residual smoothing
approach [20]. Adapting the smoothing technique to a system of equations, we have the following:

Li δW
(q)

= δW(q), (10)

where Li is an implicit operator. By approximately inverting the operator Li, we obtain

δW
(q)

= −αq
∆t

V
P LW(q−1) = −αq

∆t

V
P

∑
all faces

F(q−1)
n S, (11)

where P is a preconditioner defined by the approximate inverse L̃−1
i , and the summation denotes a

flux balance on a mesh cell. We can also view Eq. (11) as Eq. (9) with R(W) replaced by PR(W),
which we will denote as R(W). The change δW

(q)
replaces the explicit update appearing in Eq. (8).

Thus, each stage in the RK scheme is preconditioned by an implicit operator.
A first order upwind approximation based on the Roe scheme is used for the convective deriva-

tives in the implicit operator. To derive this operator, one treats the spatial discretization terms in
the flow equations implicitly and applies linearization. For a detailed derivation see Rossow [13].
Substituting for the implicit operator in Eq. (10), we obtain for the q-th stage of the RK scheme[

I + ε
∆t

V
∑

all faces

An S

]
δW

(q)
= −αq

∆t

V
∑

all faces

F(q−1)
n S = −αq∆tR̂(q−1), (12)

where the matrix An is the flux Jacobian associated with the normal flux density vector Fn at a cell
face, R̂(q−1) represents the residual function for the (q−1)-th stage, and ε is a relaxation parameter.
The parameter ε is taken to be 0.5.
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The matrix An can be decomposed into A+
n and A−

n , which are defined by

A+
n =

1
2

(An + |An|), A−
n =

1
2

(An − |An|). (13)

If we substitute for An in Eq. (12) using the definitions of Eq. (13), then the implicit scheme can be
written as[

I + ε
∆t

V
∑

all faces

A+
n S

]
δW

(q)

i,j = −αq∆tR̂(q−1)
i,j − ε

∆t

V
∑

all faces

A−
n δW

(q)

NB S, (14)

where the indices (i, j) indicate the cell of interest, and NB refers to all the direct neighbors of
the cell being considered. Consider traversing the boundary of a mesh cell in a counterclockwise
manner, with the positive surface normal vector always pointing outward from the cell. Then, as
discussed by Rossow [21], the quantity A−

n δW represents the flux density change associated with
waves having a negative wave speed (i.e., waves that enter the cell (i, j) from outside). Only the
neighbor cells NB can contribute to these changes in flux density. Similarly, the quantity A+

n δW
represents flux density changes associated with positive wave speeds (i.e., waves that leave the cell
(i, j)). These flux density changes are determined only by information from within the cell (i, j).

In order to efficiently evaluate the Jacobian matrices A+
n and A−

n , we rely upon their forms
when expressed in terms of the cell interface Mach number M0. For simplification, we transform
Eq. (12) to the primitive variables U = [ρ p u v]T . Thus,[

I + ε
∆t

V
∑

all faces

Pn S

]
δU

(q)
= − ∂U

∂W
αq

∆t

V
∑

all faces

F(q−1)
n S, (15)

where the matrix Pn, which is the analog of the normal flux Jacobian expressed in primitive vari-
ables, is given by

Pn =
∂U
∂W

An
∂W
∂U

=
∂U
∂W

(
A+

n + A−
n

) ∂W
∂U

= P+
n + P−

n . (16)

The Jacobian ∂U/∂W on the right-hand side of Eq. (15) must multiply the conservative flux balance
in order to ensure conservation. Using the definitions of Eq. (13) and the dissipation matrix, which
is defined in the appendix of Ref. [14], one can determine the matrices P+

n and P−
n , which are also

given in that appendix. The resulting matrices can easily be recomputed, only requiring storage for
the normal velocity magnitude and the Mach number M0. The contributions of the viscous flux
Jacobians can be included in a straightforward manner using primitive variables (see Ref. [22]).
Note that δU is simply proportional to a new residual R(U) that requires transforming back to
R(W).

To solve Eq. (14) for the changes in conservative variables δW
(q)

i,j , the 4× 4 matrix on the left-
hand side of Eq. (14) must be inverted. It is sufficient to approximate the inverse of the implicit
operator. An adequate approximate inverse is obtained with two symmetric Gauss-Seidel sweeps.
The relaxation procedure uses lexicographic ordering of the solution points. To initialize the iterative
process, the unknowns are set to zero.

For the RK/Implicit scheme, the relaxation is a combination of point and line SGS relaxation,
which is the method frequently used with unstructured schemes. With line SGS, we apply the
implicit operator across the wake line (the line emanating from the trailing edge of an airfoil), which
we call a fully implicit treatment. It is also possible to lag the boundary condition at the wake line
rather than extending the line solve across the wake line. This approach can also work well provided
local relaxation or subiterations are performed to compensate for the lagging of the wake boundary
condition. Although this may be a more convenient option from the implementation point of view
for multiblock structured grid methods, we use the the fully implicit method in this paper to obtain
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a measure of the best possible convergence with the line SGS relaxation part of the smoother for the
multigrid method. Furthermore, a variation on this wake treatment can be applied to unstructured
grid methods by appropriate reordering of the unknowns. The linear stability and high-frequency
damping properties of the basic scheme have been investigated using Fourier analysis. As indicated
in Refs. [14,23,24], this scheme has good smoothing properties, making it well suited as a smoother
for a multigrid algorithm.

Due to the upwind approximation used for the implicit operator, the coefficients for the RK
scheme are also based on an upwind scheme. For computational efficiency, we apply a three-stage
RK scheme with the coefficients

[α1, α2, α3] = [0.15, 0.4, 1.0] (17)

from Ref. [25]. A weighting of the physical and numerical dissipation is used in order to extend the
parabolic stability limit of the scheme. Then, the residual function R(q) is defined by

R(q) = R(W(q)) =
1
V

[
LcW(q) +

q∑
r=0

γqr LvW(r) +
q∑

r=0

γqr LdW(r)

]
, (18)

with
∑

γqr = 1 for consistency. The operators Lc, Lv , and Ld relate to the convective, viscous,
and numerical dissipative terms. The coefficients γqr are the weights of the viscous and dissipative
terms on each stage. Thus, the dissipation is weighted on the second and third stages with that
of the previous stages. For the present three-stage scheme, the weights corresponding to each RK
stage are as follows: [1, 0.5, 0.5]. Analysis and numerical experiments have demonstrated that this
weighting augments the robustness of the algorithm. Additional discussion of weighting is given
in [14, 22]. A comparison of performance of this three-stage scheme with that of a frequently used
five-stage scheme [6], which also applies weighting that results in a similar parabolic limit, has been
performed. This comparison demonstrated essentially the same convergence behavior for the two
RK schemes.

In the application of the three-stage RK/Implicit scheme as the smoother of a multigrid method,
the CFL number is increased to 1.0× 106 after 10 multigrid cycles. When computing difficult flow
cases, sometimes it is necessary to use some additional cycles (typically 5 cycles as done in Case 5
of this paper) to increase the CFL to 1.0× 106. For the ramping procedure see [26]. A W-type cycle
is used to execute the multigrid. Details of the multigrid method are given in the paper by Swanson
et al. [14].

3.2 Discrete Boundary Conditions: Structured Scheme
A critical element in the solution of any system of partial differential equations such as the Navier-
Stokes equations is the selection of proper boundary conditions. The choice of conditions must
be consistent with physical constraints of the problem of interest as well as the interior discrete
formulation. Moreover, the physical conditions, in general, must be supplemented with a sufficient
number of numerical relations to allow determination of all dependent variables. In addition to
defining the conditions at wall boundaries, which can be solid or porous, the infinite domain problem
must be adequately simulated in the case of external flows. This is usually done by delineating
boundaries at some distance from the primary region of consideration, and then prescribing suitable
boundary conditions for that location. In the case of a lifting airfoil, the outer boundary position
must be sufficiently far so as to not compromise the development of the lift. For example, five airfoil
chords may be too close for subcritical flows, and it is generally too close for transonic flows. A
choice of 10 to 20 chords is often found to be satisfactory. At the same time, we should point out
that even for inviscid nonlifting flow over a circular cylinder an outer boundary placed too close can
cause inaccurate prediction of the flow over the aft portion of the cylinder. There is an increased
flexibility in the location of the outer boundary if the far-field vortex effect [27] is taken into account.
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The calculations with the structured grid method include this effect. Further discussion about the
boundary location and far-field vortex effect for the laminar airfoil flows considered in this paper
will be given later in the section on numerical results.

When considering a solid boundary for the structured grid algorithm, a row of auxiliary cells
is created exterior to the domain of the flow. For viscous flows with no surface transpiration, the
nonpenetration and no-slip conditions are required, and this is imposed by treating the Cartesian
velocity components as antisymmetric functions with respect to the solid surface. Thus,

ui,1 = −ui,2, vi,1 = −vi,2.

The surface values of pressure p and temperature T are computed using the reduced normal momen-
tum and energy equations

∂p

∂η
= 0,

∂T

∂η
= 0, (19)

where η is the coordinate normal to the surface, which is associated with a transformation from
Cartesian coordinates (x, y) to computational coordinates (ξ, η).

In order to compute the unknown flow variables at the outer boundary of an external aerodynam-
ics problem, we appeal to characteristic theory, some simplifying assumptions, and the concept of a
point vortex. Using this approach, one can easily derive the Riemann invariants associated with the
normal direction to the boundary. The number of quantities specified locally at the outer boundary
depend on whether there is inflow or outflow. For an inflow boundary, the tangential velocity (qt),
the Riemann invariant (R+) corresponding to an incoming characteristic, and the entropy (s) are
specified by their free-stream values, and the Riemann invariant associated with the characteristic
from the interior of the domain (R−) is extrapolated. If there is outflow, there is only one incoming
characteristic, and only the free-stream R+ is specified; the quantities qt, R−, and s are extrapo-
lated from the interior of the domain. At the downstream outer boundary of the C-type mesh, only
the free-stream value of the pressure is given, while the dependent variables ρ, ρu, and and ρv are
extrapolated from the interior. For additional details and discussion see Ref. [1].

4 Unstructured RK/Implicit Scheme
The unstructured algorithm employs a node centered, finite volume space discretization on general
meshes. The computational mesh, which is often called a dual mesh, is constructed from the primary
grid in a preprocessing step. The dual grid forms the control volumes with the unknowns at vertices
of the primary grid.

We discretize the inviscid part by a central difference scheme with an added matrix–valued
artificial viscosity [17,28]. On a Cartesian mesh, the discretization can be shown to be second order.
To handle shocks, a pressure switch is included into the dissipative part. This reduces the order of the
method in the neighborhood of shock waves to first order. To deal with highly stretched meshes, a
cell stretching coefficient is included into the scheme. Derivatives required to discretize the viscous
terms are computed by a Green–Gauss method. For further details about the discretization strategy
we refer to [19, 29].

4.1 Description of Steady-State Solver for Unstructured Scheme

To obtain an update to the solution vector for the flow equations, we use the three-stage RK scheme (9)
with the stage coefficients (17). Compared to (10), the operator Li is defined by

Li := I + ε
∆t

V
∂R̂(q−1)

∂W

[
W(q−1)

]
. (20)
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The exact construction of ∂ bR(q−1)

∂W is avoided by considering matrix-free Krylov subspace methods,

such as the Generalized Minimal Residual (GMRES) method. Then the construction of ∂ bR(q−1)

∂W is
done by approximating the corresponding matrix vector product by a symmetric finite difference,

∂R̂(q−1)

∂W

[
W(q−1)

]
h ≈ 1

2δ

{
R̂

(
W(q−1) + δh

)
− R̂

(
W(q−1) − δh

)}
, δ := 10−6.(21)

To approximately solve the linear systems (10), we apply a left preconditioned GMRES method [30];
that is, we approximately solve

(Precj)
−1 LjδW

(j)
= −αj (Precj)

−1
δW(j) (22)

by the algorithm

• Compute r0 := −αj (Precj)
−1

δW(j), β := ‖r0‖2,v1 := 1
β r0

• for j = 1, . . . ,m

– w := (Precj)
−1 Ljvj

– for i = 1, . . . j

∗ hi,j := 〈w,vi〉
∗ w := w − hi,jvi

– hj+1,j = ‖w‖2,vj+1 = 1
hj+1,j

w

– V = (v1, . . . ,vm) ,Hm = (hi,j)1≤i≤j+1,1≤j≤m

– Solve ym := argminy‖βe1 −Hmy‖2 by Given’s-rotations

– δW
(j)

:= δW
(j),approx

= Vmym

From the equation for w of the GMRES algorithm above it is obvious that for our precondi-
tioner Precj we need to approximately solve the linear systems

Precjw = Ljvj . (23)

So, the preconditioner consists of two parts:

a) the linear operator Precj itself,

b) an iterative solution method for approximately solving the linear systems (23) required for
GMRES.

For a detailed description for the construction of both the operator Precj and the iterative solution
method, we refer to [19]. In the application of the three-stage RK/Implicit scheme as the smoother
of a multigrid method, the CFL number is increased to 1000 after 10 multigrid cycles. During the
first 10 cycles, the CFL number is 10. A W-type cycle is used to execute the multigrid. Details of
the multigrid method are given in the paper [19]. For all our computations, we used a fixed number
of GMRES iterations, namely 10.

4.2 Description of Unsteady Solver for Unstructured Scheme
To confirm the independency of steady results for the considered laminar flow cases, we additionally
carry out unsteady computations. To this end, we assume that after spatial discretization, we have
the following semi-discrete set of ordinary differential equations

d

dt

(
M(t)W(t)

)
= −R(t,W(t)), M(t) := diag (Vol(Ωi)(t)) , (24)
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which needs to be integrated in time. Since we do not consider mesh deformations, the mass ma-
trix M is constant in time; thus, Eq. (24) is simplified to

d

dt
(MW(t)) = −R(t,W(t)), M := diag (Vol(Ωi)) . (25)

To integrate (25) in time, we apply a BDF2 method, which is a member of the class of backward
differentiation formula (BDF) schemes [31]. This method. is widely used for its stability, moderate
accuracy and computational efficiency. Then a fully discrete form of (25) is given by

3MWn+1 − 4MWn + MWn−1

2∆t
= −R(Wn+1), (26)

where the superscript denotes the time level, Wn := W(tn) and ∆t the physical time step. Equa-
tion (26) in general represents a large scale nonlinear equation, which needs to be solved approxi-
mately such that the outer time iteration is not influenced by the approximation error. To solve (26)
we rearrange the equation and obtain

3
2∆t

MW∗ = −R(W∗) + Z, Z :=
1

∆t

(
2MWn − 1

2
MWn−1

)
. (27)

The approximate solution W∗
app of (27) is then our new time level Wn+1 := W∗

app. To apply
the existing steady-state solution procedure to find some approximate solution of (27), we introduce
a pseudo-time τ . Then, we may apply our steady-state solution procedure as an inner iterative
procedure to

dW∗

dτ
= R∗(W∗), R∗(W∗) :=

3
2∆t

W∗ + M−1 (R(W∗)− Z) . (28)

Hence, to approximately solve Eq. (28), we modify method (12) to

W(0) := Wn = W(tn)

W(1) = W(0) − CFLα21∆TP−1
1 R∗

(
W(0)

)
... (29)

W(s) = W(0) − CFLαs+1,s∆TP−1
s R∗

(
W(s−1)

)
W(tn+1) = Wn+1 = W(s),

where ∆T := diag(∆τi) denotes the matrix of local pseudo time steps. The sequence of precon-
ditioners Pj are given by some approximate derivative of the residual R∗. Differentiation of (28)
with respect to W∗ yields

∂R∗

∂W∗ =
3

2∆t
I + M−1 ∂R

∂W∗ . (30)

With respect to the analysis given in [15], we conclude that using (30) the preconditioner required
to solve the inner nonlinear equations (28) is given by

Pj :=
(

1
CFL

(∆T )−1M +
(

3
2∆t

I +
∂R1st

∂W∗

))
.

To approximately solve the corresponding linear systems five symmetric Gauss-Seidel sweeps are
applied. Then, algorithm (29) is used as a smoother in a FAS multigrid method to approximately
solve (28).
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4.3 Discrete Boundary Conditions: Unstructured Scheme
When considering a node centered grid metric at the boundary, we utilize what are called half cells.
As a consequence, the unknowns are located directly on the boundary, which is different from the
cell centered scheme that was used for the structured computer code. Thus, imposing conditions (6a)
and (6b) for a no-slip boundary flux, the convective distribution is evaluated by

Fc,no−slip =


0

pno−slipex

pno−slipey

0

 , pno−slip = (γ − 1)ρE.

Here the equation for pno−slip follows from the equation of state (5) using vanishing velocity, and
ρE is determined using the adiabatic wall condition. To evaluate the viscous flux, the required
velocity gradients on the boundary are approximated by

∂u
(l)
pb

∂xk
≈ nk

−u
(l)
pn

‖xpb
− xpn

‖2
, l, k = 1, 2,

where xpn
denotes the closest inner mesh in the normal direction to the boundary point xpb

, and
upn are the unknowns corresponding to the velocity located at the mesh point xpn . Then the stress
tensor τ defined in (3) is evaluated using these approximate gradients, and the term Q = 0 because
of condition (6b). Finally, to implement the boundary condition in full correlation to the inner fluxes,
dissipative terms are constructed and added for the boundary edge. Such an implementation of the
boundary condition is close to mimicking the cell centered approach where a row of auxiliary cells
is created exterior to the domain (see Section 3.2).

At the outer boundary, the same philosophy is followed as for the no-slip wall. After initial-
ization of the flow solver, the far-field values (ρ∞, (ρu)∞, (ρv)∞, (ρE)∞) define the exterior state.
These values are used to compute the full flux for the exterior boundary edge. For the inner state,
the variables for the unknowns located on the boundary edge are used. Note that this procedure au-
tomatically mimics the characteristics because of the construction of the Roe matrix weighting the
dissipative terms. The outer boundary conditions do not include the far-field vortex effect. However,
as we demonstrate in the next section, this has a relatively small effect on the laminar flow solutions
considered in this paper.

5 Laminar Airfoil Flow Results

We have considered five cases, and the flow conditions are presented in Table 1. There is flow
separation in each case, with the extent of separation ranging from trailing-edge type to extensive
type (i.e., starting at approximately x/c = 0.36 on the upper surface of the airfoil and extending to
the trailing edge of the airfoil). As indicated previously, we have also considered Case 5, which has
a lower Re and a higher angle of attack, because it is a frequent test case for laminar flow, and it has
extensive separation. For all the calculations, we used structured meshes with a C-type topology.

5.1 Computational Grids
Two families of grids were generated. Starting on the finest grid, each successive grid in a family
was obtained by eliminating every other mesh line in each coordinate direction. The finest mesh
in the family of grids for the first four cases contains 4,096 cells around the airfoil, with half of
the cells on the airfoil and the other half in the wake. Comparable emphasis is given to the wake
region in order to capture the closure of the recirculation region occurring in the laminar flow cases.
There are 2,048 cells in the radial (normal) direction. The outer boundary of the solution domain for
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Cases 1–4 is located at 10 chords away from the airfoil. Later in this section, the effect of the outer
boundary location on the computed aerodynamic coefficients is discussed. In Table 2, we define a set
of parameters describing the finest grids for the test cases. For comparison purposes, the parameters
for the 1024×512 grid are also given. These parameters include the minimum normal mesh spacing
(∆ymin) at the surface boundary, characteristic spacings at the leading edge (LE) and trailing edge
(TE) of the airfoil, and the tangential spacing at the mid-chord location. Figures 1 and 2 show the
near field and enlargements of the LE and TE regions of the 512 × 256 cell grid. In the fifth case,
we needed to generate another grid with the outer boundary located farther away (20 chords), due to
transonic disturbances and the large extent of flow separation. In addition, the mesh density in the
circumferential direction was increased in order to have appropriate resolution in the neighborhood
of the separation location. Otherwise, it is possible that the flow may appear to be unsteady. The
mesh density of this grid is 1280 × 512 (with 768 cells on the airfoil), and the ∆ymin along with
other grid parameters are given in Table 2. For all grids, there is clustering of the grid points at the
LE and TE of the airfoil.

The discrete boundary conditions of the two numerical schemes have been described succinctly
in sections 3.2 and 4.3. Additional discussion of the boundary conditions is given in Swanson and
Turkel [22] and Galle et al. [32] (see also Langer et al. [33]) for the structured and unstructured
schemes, respectively. The initial solution on each computational grid is determined from free-
stream conditions. As an additional numerical test to evaluate sensitivity to asymmetry in the initial
solution for Case 1 (α = 0◦), we have also considered an initial solution generated using a random
number generator.

In the next section (5.2), we initially describe convergence behavior of the computations. The
following five sections concern the flow solutions. Section 5.2.1 discusses the details of the numer-
ical solutions for the first four cases. Then, Section 5.2.2 identifies possible sources of differences
in the solutions on successive grids. This is followed by Sections 5.2.3-5.2.4 that provide details
concerning the effects on the solutions and computed results due to outer boundary location, far-
field vortex, and method of computing skin-friction. The final discussion about the first four cases
is given in Section 5.2.5, which presents examples of grid convergence for the aerodynamic coeffi-
cients. To conclude the results section, we describe and discuss the details concerning the transonic
laminar flow of Case 5.

5.2 Subsonic flows (Cases 1–4)
In comparing the structured and unstructured grid methods, we first consider the convergence his-
tories for the five laminar flow cases. Figures 3– 11 show how the L2 norm of the residual of the
continuity equation changes with multigrid cycles. The convergence histories are given for four
to six grids, depending upon the solution algorithm used, and include the finest grid considered.
Currently, the structured grid computer code does not have parallel processing capability, which
prevents computations on the two finest grids, which have approximately 2.1 and 8.4 million cells.
The residual on all grids is reduced to essential or absolute machine zero. All of the convergence
plots exhibit a similar behavior for the first four grids, where the finest grid has 1024 × 512 cells.
There is faster convergence with the structured grid method. Moreover, in all of the laminar flow
cases, machine zero convergence is attained with the structured grid method in roughly 90 cycles.
With the unstructured grid method, the convergence on the first four grids is attained between about
120 and 300 cycles for Cases 1–4. There is a significant slowdown in the convergence rate for the
two finest grids.

To further substantiate the existence of steady-state solutions for Cases 1– 4, calculations were
performed in an unsteady mode with the unstructured grid algorithm (see Section 4.2 for details).
For all cases the 512 × 256 grid was used, and two different time steps (1.0 × 10−3 and 1.0 ×
10−4) were considered. The time step is nondimensionalized [22] by the reference length (airfoil
chord) divided by the free-stream speed of sound c̄/

√
γ. Convergence histories for the unsteady

computations are shown in Figs. 7 – 10. The number of multigrid cycles required to converge
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the solution at each physical time step is determined by a preset convergence criterion of 10−12.
We should point out that even if this criterion is satisfied, the solution algorithm still performs a
minimum of five multigrid cycles for the inner iteration (sometimes called a subiteration) to solve
the nonlinear system (28). In each case, we observe that after a given number of cycles, which
is comparable to approximately 0.035 in nondimensional time, a steady-state solution is attained
independent of the time step. Thus, we obtain the same flow topology as for the original steady-state
computations. Note that the eventual drop of the residual to machine zero near the completion of
each calculation is a consequence of the minimum requirement of five cycles for each time step.

Now, having demonstrated the existence of stationary solutions for all the laminar flow cases
considered, we address the question of why numerical difficulties can be encountered. One can
acquire enormous insight into the reason by performing linear stability analysis (i.e., eigensystem
analysis) such as that of Roberts and Swanson [23] and Langer [34]. The analysis of Langer includes
the additional advantage that the actual problem being considered is used in the analysis. From
such analyses, a distinction can be made between what may be called weak and strong solution
algorithms. The measure of weak and strong can be assessed based on the level of implicitness in
the algorithm (i.e., the more implicit an algorithm is, the stronger it is). On this basis, we observe
that when numerical problems are encountered with a given algorithm, this can often be attributed
to the solution algorithm having a weak measure. Moreover, when an algorithm has a weak measure
and numerical difficulties are encountered, then the spectral radius of the amplification matrix for
the linear system can have eigenvalues that are close to, even perhaps exceeding, one.

5.2.1 Numerical solutions

In Figs. 12 and 13, the surface pressure coefficient (Cp) distributions of Case 1 for the structured
and unstructured grid methods are shown. Hereafter, we refer to the structured and unstructured
grid methods as SGM and USGM, respectively. All plots include the Cp distributions for the grids
considered with each solution algorithm. The presence of the boundary layer is evident by the ab-
sence of a strong pressure recovery. For either method, there appears to be essentially no difference
(to plotting accuracy) in the results due to grid density, except near the airfoil trailing edge (TE).
When comparing the results of the two methods with each other, there is close agreement with only
small differences occurring close to the TE. The surface skin-friction coefficient (Cf ) distributions
are displayed in Figs. 14 –16. For each method, there is essentially no effect due to grid density on
the Cf variations, except near the airfoil leading edge (LE) and TE. At the LE, there is a smaller
difference in the peak Cf value between successive grids with the SGM than the USGM. Again,
the differences on the first four grids near the TE seem to be a consequence of how the TE value
is computed with the USGM (i.e., differences arising because one scheme is cell centered and the
other is cell vertex).

The separation point of the flow computed with the SGM is approximately 0.808 chords. As
indicated in Tables 3 and 4 for matrix and Roe dissipation, respectively, the location of the separation
point relative to chord length (xsep/c) remains almost the same starting with the 256×128 cell grid.
These tables also give the aerodynamic coefficients: CL is the lift coefficient, CD is the total drag
coefficient, (CD)p is the pressure drag coefficient, and (CD)sf is the skin-friction drag coefficient.
All coefficients are based on surface integration using the trapezoidal rule. The CL for Case 1 is
approximately zero. Comparing the CD from the SGM and USGM computations, we find that the
difference is less than one drag count (less than 0.0001).

Figure 17 shows the Mach contours and overall streamline pattern for Case 1 obtained from the
computation with SGM on the 1024 × 512 cell grid. It should be pointed out for clarification that
the line emanating from the TE of the airfoil is simply a reference wake centerline, which will also
appear in subsequent streamline plots. The details of the streamline pattern of the flow recirculation
region are revealed in Fig. 18. The streamlines for the 4096 × 2048 grid are displayed in Fig. 19.
Here we observe the longitudinal extent of the separation region. The closure of the symmetric
separation region is as far downstream of the TE as the separation point is upstream of the TE.
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Previously, we mentioned that results described as unsteady solutions (see for example ADIGMA
Project [10]) have been computed. Here we show that with a weak solver a result can be obtained
for Case 1 (α = 0◦) that suggests that the solution may be unsteady. A steady-state calculation
was performed with the USGM using multigrid acceleration with the LU-SGS smoother [33,35]. A
CFL = 5 was used. We should emphasize that the LU-SGS scheme is a member of a hiearchy of
preconditioning techniques [15] one can use with the unstructured grid code; and thus, one can just
choose the desired scheme. Figure 20 presents the convergence history and Mach contours for this
computation. In the convergence history, we observe a residual reduction exceeding four orders of
magnitude before it abruptly increases two orders at approximately 450 cycles, and then oscillates
about that level. The Mach contours of the final result reveal what suggests a possible vortex shed-
ding behavior. However, we showed in Section 5.2 machine zero convergence with both the SGM
and USGM in Fig. 3 for this case. As already displayed, the Mach contours and streamlines corre-
sponding to these computations reveal the dramatic difference between the steady-state solution and
the result obtained with the LU-SGS scheme. This example not only identifies what can occur with
a weak solution algorithm but also it emphasizes the importance of reducing the residual to machine
zero. We should note that it is possible that with alternative weak solvers the residual could even be
reduced to a much lower level before suddenly increasing, revealing what appears to be an unsteady
solution.

In Figs. 21 – 36, we present the Cp and Cf distributions for Cases 2, 3 and 4. As indicated
in Table 1, the α increases from one to three degrees for these cases. With the increasing α, we
observe the expected increase of the suction peak in the Cp plots, along with the increasingly larger
upper surface peak Cf value near the LE. Furthermore, the separation point on the upper surface
of the airfoil moves toward the LE. When α = 3◦, the boundary layer separates slightly before
midchord location (0.464 chords) on the upper surface. The trends with respect to mesh density for
both SGM and USGM are quite similar to those seen for Case 1. We also see similar trends to those
discussed for Case 1 when comparing the solutions obtained with SGM and USGM. In addition, we
have examined for Case 2 the effect on the Cf near the TE due to the magnitude of the numerical
dissipation. Figure 26 shows that there is only a relatively small change in the Cf variation when
the numerical dissipation is reduced locally by a factor of two. The changes in the aerodynamic
coefficients with increasing mesh density for this set of cases are given in Table 3. On the finest
mesh, the CL computed with SGM for Cases 2, 3 and 4 increases from about 0.01847 to 0.05133,
and the CD increases only a small amount (from 0.05590 to 0.05851). These results are close to
those obtained with USGM, as seen in Table 5.

The global behavior of the α = 3◦ flow solution computed with SGM is displayed in Fig. 37.
The Mach contours indicate the accelerated flow regions, and the streamline pattern delineates the
large separated flow region. From the streamline patterns shown in Fig. 38 and Fig. 39, we can
observe both primary and secondary recirculating regions, with the secondary region attached to the
TE. This flow pattern is quite similar to the one for laminar flow over a NACA 64A015 airfoil at
α = 5◦ presented in Van Dyke’s album [36] of fluid motion. For both airfoils, the flow separates
near the 50% chord location on the upper surface, and it leaves tangentially to the lower surface.

5.2.2 Possible sources of differences in solutions

Small differences in solutions computed with different numerical algorithms can easily occur, even
if precisely the same discretization methods and boundary conditions are being considered. Clearly,
one of the principal reasons for this is that the implementation of such critical factors as approxima-
tions of the spatial derivatives in the governing equations and the boundary conditions (both physical
and numerical boundary conditions) are not the same. In addition, there are often implementational
changes in the numerical dissipation (e.g., regarding such elements as entropy fixes) that are intro-
duced into the complete discrete formulations. It should also be recognized that variations in the
solutions computed with different numerical schemes, especially when comparing aerodynamic co-
efficients, have frequently occurred in the literature and various computational workshops [37, 38].
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This is not surprising regarding the aerodynamic coefficients since they depend on what method was
used for numerical integration. In the subsequent discussion, we consider the specific prominent
factors possibly affecting the relatively small differences that occur in results for the laminar flow
simulations.

One possible contributing factor to the variations in the current solutions is the difference in
the metrics, which is a consequence of the differences between cell centered and nodal point finite
volume formulations. It is evident from [17, 22] and [19] that there are important dissimilarities in
the discrete representation of the operators for the numerical dissipation (e.g., number of points in
second and fourth difference approximations are not the same). With regards to the boundary condi-
tions, there are clearly implementation disparities, which are indicated in Sections 3.2 and 4.3, that
can possibly affect the relatively small observed differences in the solutions. As will be discussed
in a later section, the skin-friction coefficient is computed in a different way for the structured and
unstructured methods. Note, if we assume consistency of discretization for both numerical schemes,
then the discretization variations should vanish with mesh refinement. At this point, based on the
examination of the aerodynamic data, one cannot infer grid convergence, which as shown in [39]
is very difficult to attain. Nevertheless, and even though it is not the focus of this paper, a careful
further study of the underlying causes of the differences in the solutions, with special attention to
the implementation in the computer codes, would certainly be beneficial.

5.2.3 Effect of outer boundary location

In defining any discrete external flow problem with the outer boundary of the solution domain lo-
cated a finite distance from the geometry being considered, it is important to indicate the effect of
boundary location on the flow solution. In Table 6, we examine the effects of the outer boundary lo-
cation and far-field vortex (FFV) on the computed aerodynamic coefficients CL and CD. The results
are for Case 4, since it has the highest angle of attack (α) that we have considered at Re = 5000.
We consider the outer boundary at 5 chords, 10 chords, and 20 chords as well as the influence of the
far-field vortex that represents the induced velocity effect. For each boundary location, we approx-
imately maintain the same 10 chord grid to generate the 5 chord and 20 chord grids. Moreover, for
the 20 chord grid, additional solution points are created in both coordinate directions so as to ensure
a very small variation in the size of the mesh cells from 10 chords to 20 chords. The stretching fac-
tor SF is only about 1.01. Comparing the CL and CD values with the far-field vortex activated, we
find that the variations over all boundary locations are 1.2% and 0.34%, respectively. The percent
differences for CL and CD between the 10 chord and 20 chord locations are only 0.14% and 0.06%,
respectively. Although not shown, a comparison of the surface Cp and Cf distributions for the three
boundary locations and the FFV effect exhibits no discernible difference to plotting accuracy. These
results are not surprising considering the subcritical flow and the activation of the FFV effect, as
seen in [27].

A comparison is now made of the CL and CD values without and with the FFV effect. Table 6
indicates the expected continuous decrease in the differences of the corresponding aerodynamic
coefficients as the location of the outer boundary increases from 5 chords to 20 chords. From the
table, we see that at 10 chords there is only a 0.53% increase in CL and a 0.03% increase in CD due
to the FFV. Furthermore, over the range of boundary locations the CL percent difference decreases
from 1.11% to 0.27%, and the CD difference decreases from 0.06% to 0.015%. Thus, there is a
linear variation of the diminishing percent differences in the aerodynamic coefficients due to the
FFV effect as the outer boundary location increases. The much smaller influence of the FFV on CD

is expected, based on the FFV paper by Thomas and Salas [27].
Here we also consider the FFV effect on the computed aerodynamic coefficients of Case 5 in

which there is transonic flow and a higher angle of attack (α = 10◦). Table 7 shows results without
and with the FFV when the outer boundary is located 20 chords away from the airfoil. There are
somewhat larger changes in the CL and CD due to the physics of the flow. The increases in CL

and CD due to the FFV effect are 1.11% and 0.62%, respectively. Nevertheless, the changes in the
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aerodynamic coefficients are relatively small, and although not shown, the topology of the flow (just
as in Case 4) is not significantly affected.

5.2.4 Effect of skin-friction methods

Another consideration that should be addressed is the method of computing the skin-friction drag,
which as indicated previously is denoted by (CD)sf . For the structured and unstructured grid com-
putations of skin friction, we used the stress tensor and vorticity methods, respectively. Since the
methods are different, a comparison is now made between these methods and a third one that is
designated as the tangential velocity gradient method. These three approaches can be succinctly
described as follows. Method 1 is the stress tensor method, which is based on the inner product of
the stress tensor and the unit surface tangent vector et. Method 2 is the vorticity vector method, and
it uses the inner product of the vorticity vector and et. Method 3 is the tangential velocity gradient
method, which uses the surface normal gradient of the tangential velocity. In Table 8, we compare
the effect of these different methods on the (CD)sf of Case 1, using the 1024 × 512 grid. This
table shows that there are very small differences in the (CD)sf computed with the three methods.
Moreover, the maximum percent difference relative to Method 1 on even the coarsest grids is less
than 0.01%. The results for Method 2 and Method 3 are the same to 5 significant digits for all grid
densities greater than 128× 64.

5.2.5 Grid convergence of aerodynamic coefficients

As examples of the grid convergence of the aerodynamic coefficients, we now consider in more
detail Cases 1 and 4, which are the original laminar flow cases proposed by Swanson in 1984 and
introduced in [1]. The variation in the computed total drag CD with mesh refinement for Case 1
(nonlifting) is shown in Fig. 40. Results for the SGM include both the matrix and Roe forms of
numerical dissipation. A comparison of differences in CD on each of the first four grids (128 × 64
– 1024 × 512) between the SGM and USGM reveals a decrease from 1.2 × 10−3 to 5.1 × 10−5.
Moreover, if we consider the CD results relative to the solution on the finest grid (4096 × 2048),
we find that the difference for the pressure contribution (CD)p as well as the difference for the skin-
friction contribution (CD)sf is less than 0.2%. The (CD)p difference is the dominant part of the
total CD difference. It is important to note that the CD with SGM is still increasing; and thus, there
is an expectation that the CD values will essentially match on the finest grid.

The grid convergence behavior of the CL and CD for Case 4 (having the highest α of the Re =
5000 cases) is displayed in Fig. 41. The percent differences in the CL and CD between the SGM and
USGM computations (using matrix dissipation) are less than 0.5% and 0.2%, respectively. From this
comparison of the computed CL with the SGM and USGM, we observe a lower CL with the SGM
and an unexpected sudden change in the trend from increasing to decreasing occurring between the
512×256 and 1024×512 grids, while the CL with USGM is continuously slowly decreasing for the
full range of grids while maintaining a higher value. At this point, we cannot dismiss the possibility
that the sudden change in trend for the CL with SGM is simply a small oscillation and the apparent
trend will reverse itself on the finer meshes. Note, even though the far-field vortex (FFV) effect is
not used with the USGM but is used with SGM, this is not expected to decrease the difference in CL,
but rather to increase it slightly, as pointed out in [27]. Consideration of the information available
does not clearly indicate which or what combination of the possible differences in the numerical
methods, as discussed in Section 5.2.2, cause the differences in the CL. As evident in Fig. 41b, the
behavior of CD with mesh refinement is quite similar to that for non-lifting case. As we have already
seen, and we should emphasize here, the topology of the flow determined with the two methods is
essentially the same.

In this paper, we have not discussed the order property as established by the asymptotic con-
vergence with mesh refinement of the numerical schemes. Nevertheless, even though this is clearly
not the focus of this paper, some succinct remarks on this topic would be appropriate. While the
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design order of accuracy of a scheme is determined by the numerical discretization, which requires
sufficiently fine meshes to verify, the asymptotic order depends on local reduction of approximation
order (e.g., at the LE of an airfoil or at a shock wave) and singularities in the solution field. It is
difficult in general to demonstrate the asymptotic convergence order for a given discrete problem.
This difficulty can be exacerbated when there is a structural singularity such as the one at the TE
of the airfoil being considered. For example, see Diskin et al. [39] and Hu et al. [40]. Note that
due to the TE singularity and the elliptic nature of the flow near the airfoil surface, the asymptotic
behavior of the solution error with mesh refinement would be expected to exhibit at best first or-
der accuracy. Additional information on a corner (or reentrant) flow singularity can be found in
Refs. [39, 41]. There is no evidence in this work that the asymptotic convergence regime has been
attained. We should also mention that even with incredibly fine grid spacing near the TE using an
adaptive method [40], it is difficult to determine the necessary grid spacing near the TE to establish
the singularity behavior. While the family of grids used for this paper is quite reasonable with re-
spect to the objectives, it is evident that this family is not optimal from the standpoint of an order
property study. That is, the coarser grids would have to be much finer in the LE and TE regions,
where the dominant errors occur [42], to allow an early onset of the design order of the scheme.

5.3 Transonic flow (Case 5)
The final laminar flow case comes from the GAMM workshop [43] on compressible Navier-Stokes
solutions held in Nice, France during December of 1985. We designate this flow over the NACA
0012 airfoil as Case 5. This laminar flow is also considered in this paper because it is frequently
used as a test problem. This problem was selected for the workshop because the solution is expected
to be steady, the flow is transonic, and there is flow separation. For this case, the Re is reduced to
500 and the angle of attack is increased to 10◦. With a higher α and a free-stream Mach number
of 0.8, the flow becomes transonic on the forward portion of the airfoil upper surface. Furthermore,
even though the boundary layer is quite thick, there is sufficient flow acceleration to create a small
supersonic zone but not a shock wave.

All the computational results presented in [43] indicate steady solutions. The highest mesh
density considered was 256× 64 cells. While similar results were obtained for the Cp distributions
by the workshop participants, there were significant differences in the surface Cf variations. In the
present calculations, we have increased the mesh density to 1280×512, which is a factor of 40 times
larger than the highest value used in the workshop.

The surface pressure and skin-friction distributions computed with the structured and unstruc-
tured algorithms are presented in Figs. 42–45. In general, there is good agreement between the two
sets of results, with the only discernible differences occurring at the airfoil LE and TE. As evident in
the blowup of the LE region skin-friction results in Fig. 46, there are significant differences on the
coarser grids. For this case, there is considerable flow separation, which begins at about 0.36 chords
and extends over the entire airfoil. The supersonic zone of the flow is revealed in the Mach contours
(computed with the structured scheme) that are displayed in Fig. 47. Streamline patterns near the
airfoil TE are shown in Figs. 48 and 49. Here, we observe two recirculation regions resembling
those seen for Case 4. However, there is a much larger lateral extent of the recirculation region, both
on the airfoil and in the wake.

A comparison of the aerodynamic coefficients given in Tables 3 – 5 reveals a very close agree-
ment between the computed values with SGM and USGM. As for Case 4, the percent difference
in the CL (again relative to the finest grid value) is less than 0.5%. There is a very small percent
difference in the CD, which is less than 0.05%. It is clear that these results, as well as some of those
from the workshop, indicate that reasonably good estimates of the CL and CD can be achieved on
fairly coarse grids. For example, with the SGM using matrix dissipation, the percent differences
in the computed CL and CD on the 80 × 32 grid and the finest grid are less than 4.0% and 2.6%,
respectively.

Even though reasonably good estimates of the CL and CD can be achieved on fairly coarse
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grids, we should emphasize that there is a need to have appropriate resolution in the neighborhood
of the separation point to obtain the steady flow solution. Furthermore, the current results such as
the streamline plots demonstrate the importance of having sufficient resolution in both coordinate
directions to capture the extent of separation as well as the two vortices that occur.

6 Concluding Remarks

A family of laminar subsonic (M = 0.5) airfoil flows with Reynolds number Re = 5000 and angle
of attack (α) variation from zero to three degrees, along with a transonic case at Re = 500 and
α = 10◦, have been considered. The purpose of such flow problems is to provide a set of test cases
for evaluating accuracy and solution algorithms of a given computational method for solving the
compressible Navier-Stokes (N-S) equations. These cases provide a challenge for a computational
method, since they have flow separation regions of varying sizes that begin on the airfoil and extend
into the airfoil wake, where they terminate. There must be appropriate resolution of the flow solution
on the airfoil and in the wake. Thus, the characteristics of this class of flows provides evaluation of
the discretization of the N-S equations with particular emphasis on the physical diffusion effects.

A concern relating to this class of laminar flow problems has emerged recently due to the occur-
rence of solutions that are not consistent with a large number of previous solutions. These recent
results include an asymmetric solution for a nonlifting NACA 0012 airfoil and an unsteady solu-
tion. In this paper, we have given several possible reasons why such solutions have been generated.
One of these reasons is inadequate spatial resolution, especially in the neighborhood of the flow
separation point and possibly in the vicinity of closure of the recirculation region in the wake of
the airfoil. Without appropriate resolution, stationary flows may give the appearance of an unsteady
flow. Another of these reasons, which pertains to Case 1 (α = 0◦), is the presence of an asymmetry
in the numerical method, which may actually prevent convergence or create what appears to be an
unsteady flow solution. A third reason, which is discussed subsequently, is that convergence has not
been achieved. In fact, the residual of the discrete equations may have only been reduced two or
three orders of magnitude.

It should be pointed out that weak solution schemes may experience numerical difficulties and
not achieve steady-state solutions for increasing mesh densities. An indicator for this assertion is
given in [34]. There it was demonstrated using spectral analysis for Case 2 on the 256 × 128 mesh
that weak solution schemes are not stable in general, and hence, cannot always converge to the
steady-state solution. Such schemes have been briefly discussed in this paper. Moreover, we have
shown that the computation of Case 1 with the LU-SGS scheme [33, 35] can produce what appears
to be an unsteady solution, while computation with a stronger solver gives the symmetric, steady
solution.

In this paper, numerical solutions have been obtained for the aforementioned family of laminar
flows on a range of grid densities, with the highest being nearly 8.4 million cells. Both structured and
unstructured grid algorithms have been used to calculate the solutions. Comparisons have been made
of the computed aerodynamic coefficients computed with the two algorithms. The computations
support the assertion that steady-state solutions exist and that there is a good agreement between
the solutions determined with the two methods. Moreover, unsteady flow computations have also
been performed obtaining the same steady-state solutions, confirming the existence of steady-state
solutions for these laminar flows. This indicates that it is appropriate to use these flows for test cases
of steady-state solvers for solving the N-S equations.

In comparing the solutions computed with the structured grid and unstructured grid methods, we
have observed that the primary differences generally occur at the LE and TE of the airfoil. This is
not unexpected since these are the locations where the dominant errors occur, which is revealed by
the eigenvectors associated with the error [42]. In addition, at the airfoil TE, variations between the
solutions would be expected due to the cell centered and nodal point finite volume schemes of the
two methods. With mesh refinement, comparisons of the aerodynamic coefficients calculated with
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the two methods have revealed relatively small differences. For example, for Case 4 (α = 3◦), the
percent differences for CL and CD are less than 0.5% and 0.2%, respectively. Possible sources of
these differences have been identified. These sources include the type of finite volume formulation
and implementations of both the numerical dissipation and boundary conditions. In addition, there
are differences in how the aerodynamic coefficients were computed (e.g., method of computing the
surface skin friction). Although there exist some relatively small differences in a computed solution
with the two methods, we have demonstrated that the topology of the flow is essentially the same.

A question that arises is what happens to these laminar flow solutions in the limit of infinitely fine
mesh. Certainly, in this limit, one cannot totally dismiss the possibility of quasi-steady solutions,
which correspond to a weak unsteadiness producing extremely small variations in the aerodynamic
coefficients while essentially maintaining the same flow structure. However, even if this were true,
there is still a high level of functionality of these laminar flow cases consistent with the original
intended purpose of evaluating accuracy, stability, and efficiency of numerical schemes for solving
the compressible Navier-Stokes equations.
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Table 1: Conditions for laminar flow over the NACA 0012 airfoil.

Cases M∞ α (deg.) Rec

Case 1 0.5 0.0 5× 103

Case 2 0.5 1.0 5× 103

Case 3 0.5 2.0 5× 103

Case 4 0.5 3.0 5× 103

Case 5 0.8 10.0 5× 102

Table 2: Descriptive parameters of grids for laminar flow computations. The parameters are: mini-
mum normal grid spacing (∆ymin), tangential spacing at airfoil leading edge (∆sle), x-coordinate
grid spacing at the mid-chord location (∆xx=0.5c), x-coordinate spacing at airfoil trailing edge
(∆xte), and the grid stretching factor for the normal direction (SF).

Grid ∆ymin ∆sle ∆xx=0.5c ∆xte SF
1024× 512 1.266× 10−4 1.238× 10−3 9.198× 10−3 1.230× 10−3 1.014
4096× 2048 3.119× 10−5 3.076× 10−4 2.309× 10−3 3.087× 10−4 1.003
1280× 512 5.249× 10−4 5.027× 10−3 7.732× 10−3 4.995× 10−3 1.012
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Table 3: Computed lift and drag coefficients for laminar airfoil flow cases. Structured grid
RK/Implicit scheme with matrix dissipation.

Case Grid CL CD (CD)p (CD)sf xsep/c
1 128× 64 9.73932× 10−12 0.0560794 0.0237143 0.0323651 0.809236
1 256× 128 6.30245× 10−12 0.0554656 0.0227134 0.0327523 0.809147
1 512× 256 2.51916× 10−12 0.0555269 0.0227424 0.0327845 0.808484
1 1024× 512 6.96415× 10−13 0.0555743 0.0227887 0.0327855 0.808324

2 128× 64 0.0171399 0.0563769 0.0240700 0.0323070 0.673162
2 256× 128 0.0182808 0.0557857 0.0230892 0.0326965 0.677438
2 512× 256 0.0184589 0.0558544 0.0231239 0.0327304 0.677719
2 1024× 512 0.0184668 0.0559045 0.0231720 0.0327325 0.677768

3 128× 64 0.0340812 0.0572544 0.0251267 0.0321277 0.551588
3 256× 128 0.0356422 0.0567422 0.0242105 0.0325319 0.557332
3 512× 256 0.0357575 0.0568367 0.0242637 0.0325575 0.561063
3 1024× 512 0.0358071 0.0568914 0.0243173 0.0325741 0.561379

4 128× 64 0.0506531 0.0586205 0.0268267 0.0317938 0.469026
4 256× 128 0.0513175 0.0583079 0.0260407 0.0322673 0.468541
4 512× 256 0.0513379 0.0584381 0.0261335 0.0323046 0.466286
4 1024× 512 0.0513279 0.0585102 0.0261983 0.0323118 0.463885

5 80× 32 0.420795 0.268071 0.146177 0.121894 0.386173
5 160× 64 0.428373 0.272255 0.145338 0.125916 0.366441
5 320× 128 0.433578 0.274268 0.147083 0.127185 0.363095
5 640× 256 0.435635 0.274952 0.147426 0.127526 0.362257
5 1280× 512 0.436331 0.275155 0.147544 0.127611 0.362180
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Table 4: Computed lift and drag coefficients for laminar airfoil flow cases. Structured grid
RK/Implicit scheme with Roe dissipation.

Case Grid CL CD (CD)p (CD)sf xsep/c
1 128× 64 4.30190× 10−12 0.0603439 0.0286745 0.0316694 0.797444
1 256× 128 2.82493× 10−12 0.0560682 0.0233966 0.0326716 0.808790
1 512× 256 1.46832× 10−12 0.0555955 0.0228201 0.0327754 0.809361
1 1024× 512 6.14893× 10−13 0.0555786 0.0227945 0.0327841 0.809314

2 128× 64 0.0142639 0.0606418 0.0289888 0.0316530 0.641873
2 256× 128 0.0178031 0.0563917 0.0237691 0.0326226 0.675356
2 512× 256 0.0183782 0.0559240 0.0232022 0.0327119 0.677467
2 1024× 512 0.0184557 0.0559088 0.0231778 0.0327310 0.677736

3 128× 64 0.0298003 0.0616101 0.0300498 0.0315604 0.545074
3 256× 128 0.0349084 0.0573717 0.0249030 0.0324688 0.552189
3 512× 256 0.0356412 0.0569117 0.0243459 0.0325657 0.560561
3 1024× 512 0.0357909 0.0568967 0.0243240 0.0325727 0.561712

4 128× 64 0.0458620 0.0633387 0.0320464 0.0312923 0.471476
4 256× 128 0.0505787 0.0590025 0.0267893 0.0322132 0.470231
4 512× 256 0.0512355 0.0585229 0.0262236 0.0322933 0.466906
4 1024× 512 0.0513153 0.0585175 0.0262065 0.0323110 0.464062

5 80× 32 0.473774 0.288645 0.162503 0.126142 0.399557
5 160× 64 0.443147 0.278322 0.150869 0.127453 0.371976
5 320× 128 0.436730 0.275698 0.148106 0.127593 0.363705
5 640× 256 0.436133 0.275181 0.147588 0.127593 0.362256
5 1280× 512 0.436328 0.275108 0.147521 0.127587 0.362006
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Table 5: Computed lift and drag coefficients for laminar airfoil flow cases. Unstructured scheme for
Green-Gauss (GG) approximation and matrix dissipation.

Case Grid CL CD (CD)p (CD)sf xsep/c
1 128× 64 5.72532× 10−12 0.0548571 0.0220249 0.0328322 0.822568
1 256× 128 3.66707× 10−12 0.0553396 0.0224786 0.3286100 0.812725
1 512× 256 1.43241× 10−12 0.0555549 0.0227244 0.0328305 0.809610
1 1024× 512 3.08198× 10−13 0.0556251 0.0228086 0.0328165 0.808710
1 2048× 1024 3.26406× 10−14 0.0556450 0.0228340 0.0328109 0.808450
1 4096× 2048 1.21639× 10−13 0.0556505 0.0228396 0.0328108 0.808369

2 128× 64 0.0184311 0.0549979 0.0221796 0.0328183 0.679040
2 256× 128 0.0188355 0.0556344 0.0228022 0.0328321 0.678415
2 512× 256 0.0186424 0.0558790 0.0230895 0.0327895 0.677853
2 1024× 512 0.0185413 0.0559542 0.0231846 0.0327696 0.677682
2 2048× 1024 0.0184852 0.0559747 0.0232172 0.0327575 0.677712
2 4096× 2048 0.0184635 0.0559804 0.0232227 0.0327577 0.677611

3 128× 64 0.0372565 0.0560317 0.0234804 0.0325513 0.562096
3 256× 128 0.0365579 0.0566088 0.0239846 0.0326242 0.562351
3 512× 256 0.0361443 0.0568585 0.0242485 0.0326099 0.562385
3 1024× 512 0.0359898 0.0569381 0.0243367 0.0326014 0.562463
3 2048× 1024 0.0359160 0.0569602 0.0243622 0.0325980 0.562382
3 4096× 2048 0.0358777 0.0569659 0.0243692 0.0325967 0.562348

4 128× 64 0.0545145 0.0574118 0.0252292 0.0321826 0.475247
4 256× 128 0.0526257 0.0581509 0.0258241 0.0323269 0.470011
4 512× 256 0.0519099 0.0584556 0.0261207 0.0323349 0.466490
4 1024× 512 0.0516846 0.0585508 0.0262172 0.0323334 0.464571
4 2048× 1024 0.0515882 0.0585768 0.0262443 0.0323335 0.464276
4 4096× 2048 0.0515404 0.0585835 0.0262512 0.0323323 0.464192

5 80× 32 0.229649 0.237335 0.116117 0.121219 0.371130
5 160× 64 0.423565 0.271545 0.146140 0.125405 0.370509
5 320× 128 0.433892 0.274046 0.146860 0.127185 0.367340
5 640× 256 0.437006 0.274879 0.147233 0.127646 0.366329
5 1280× 512 0.437998 0.275166 0.147402 0.127764 0.366083
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Table 6: Effects of outer boundary location and far-field vortex on computed aerodynamic coeffi-
cients. Results are for laminar airfoil flow Case 4 (α = 3o). Structured grid RK/Implicit scheme
with matrix dissipation. Outer Bdry means approximate outer boundary location in airfoil chord
lengths, and FF Vortex means far-field vortex boundary condition.

Outer Bdry FF Vortex Grid CL CD (CD)p (CD)sf

5c off 944× 456 0.0512920 0.0586401 0.0262542 0.0323859
5c on 944× 456 0.0518624 0.0586766 0.0263024 0.0323742

10c off 1024× 512 0.0510556 0.0584924 0.0261749 0.0323174
10c on 1024× 512 0.0513279 0.0585102 0.0261983 0.0323118

20c off 1096× 560 0.0511207 0.0584662 0.0261671 0.0322991
20c on 1096× 560 0.0512576 0.0584751 0.0261789 0.0322962

Table 7: Effect of far-field vortex on computed aerodynamic coefficients for laminar airfoil flow Case
5 (M = 0.8, α = 10o, Re = 500). Structured grid RK/Implicit scheme with matrix dissipation.

Outer Bdry FF Vortex Grid CL CD (CD)p (CD)sf

20c off 1280× 512 0.432698 0.274846 0.147061 0.127784
20c on 1280× 512 0.437520 0.276531 0.147890 0.128641

Table 8: Computed lift and drag coefficients for laminar airfoil flow Case 1. Effect of skin friction
computed with different methods (Skin-friction computed with Method 1: Stress tensor; Method 2:
Vorticity; Method 3: Tangential gradient). Note, the separation location denoted by xsep/c is deter-
mined by linear interpolation for zero skin-friction. Computations with structured grid RK/Implicit
scheme using matrix dissipation.

Method Grid CL CD (CD)p (CD)sf xsep/c
1 128× 64 9.73932× 10−12 0.0560794 0.0237143 0.0323651 0.809236
2 128× 64 9.73885× 10−12 0.0560816 0.0237143 0.0323673 0.808446
3 128× 64 9.73886× 10−12 0.0560802 0.0237143 0.0323659 0.808446

1 256× 128 6.30245× 10−12 0.0554656 0.0227134 0.0327523 0.809147
2 256× 128 6.30228× 10−12 0.0554678 0.0227134 0.0327544 0.810003
3 256× 128 6.30225× 10−12 0.0554673 0.0227134 0.0327540 0.810003

1 512× 256 2.51916× 10−12 0.0555269 0.0227424 0.0327845 0.808484
2 512× 256 2.51912× 10−12 0.0555288 0.0227424 0.0327863 0.809498
3 512× 256 2.51912× 10−12 0.0555284 0.0227424 0.0327860 0.809497

1 1024× 512 6.96415× 10−13 0.0555743 0.0227887 0.0327855 0.808324
2 1024× 512 6.96410× 10−13 0.0555758 0.0227887 0.0327871 0.809330
3 1024× 512 6.96421× 10−13 0.0555755 0.0227887 0.0327868 0.809330
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Figure 1: Near field view of 512× 256 grid for laminar flow computations when Re = 5000.
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Figure 2: Leading and trailing edges of 512 × 256 grid for laminar flow computations when Re =
5000. (a) Leading edge, (b) Trailing edge.
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Figure 3: Comparison of convergence histories for Case 1 computed with structured and unstruc-
tured grid methods. (a) Structured, (b) Unstructured.
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Figure 4: Comparison of convergence histories for Case 2 computed with structured and unstruc-
tured grid methods. (a) Structured, (b) Unstructured.
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Figure 5: Comparison of convergence histories for Case 3 computed with structured and unstruc-
tured grid methods. (a) Structured, (b) Unstructured.
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Figure 6: Comparison of convergence histories for Case 4 computed with structured and unstruc-
tured grid methods. (a) Structured, (b) Unstructured.
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Figure 7: Convergence histories for Case 1 computed with unstructured grid methods in unsteady
mode (a) ∆t = 10−3, (b) ∆t = 10−4.
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Figure 8: Convergence histories for Case 2 computed with unstructured grid methods in unsteady
mode (a) ∆t = 10−3, (b) ∆t = 10−4.
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Figure 9: Convergence histories for Case 3 computed with unstructured grid methods in unsteady
mode (a) ∆t = 10−3, (b) ∆t = 10−4.
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Figure 10: Convergence histories for Case 4 computed with unstructured grid methods in unsteady
mode (a) ∆t = 10−3, (b) ∆t = 10−4.
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Figure 11: Comparison of convergence histories for Case 5 computed with structured and unstruc-
tured grid methods. (a) Structured, (b) Unstructured.
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Figure 12: Surface pressure distributions for Case 1 computed with structured grid method. (a)
Surface pressures, (b) Trailing edge region.

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

128 x 64
256 x 128
512 x 256
1024 x 512
2048 x 1024
4096 x 2048

Unstructured, Laminar Flow, Case 1

(a)
x/c

C
p

0.992 0.994 0.996 0.998 1 1.002

-0.08

-0.075

-0.07

-0.065

128 x 64
256 x 128
512 x 256
1024 x 512
2048 x 1024
4096 x 2048

Unstructured, Laminar Flow, Case 1

(b)

Figure 13: Surface pressure distributions for Case 1 computed with unstructured grid method. (a)
Surface pressures, (b) Trailing edge region.

34



x/c

C
f

0 0.2 0.4 0.6 0.8 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

128 x 64
256 x 128
512 x 256
1024 x 512

Structured, Laminar Flow, Case 1

(a)
x/c

C
f

0.96 0.98 1

-0.004

-0.002

0

0.002

0.004

128 x 64
256 x 128
512 x 256
1024 x 512

Structured, Laminar Flow, Case 1

(b)

Figure 14: Surface skin-friction distributions for Case 1 computed with structured grid method. (a)
Surface skin friction, (b) Trailing edge region.
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Figure 15: Surface skin-friction distributions for Case 1 computed with unstructured grid method.
(a) Surface skin friction, (b) Trailing edge region.
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Figure 16: Leading edge skin-friction distributions for Case 1 computed with structured and un-
structured grid methods. (a) Structured grid, (b) Unstructured grid.
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Figure 17: Mach contours and streamlines for laminar flow over NACA 0012 airfoil. Computed
with structured grid method (Case 1, grid: 1024× 512).

Figure 18: Blowup of streamline pattern in the airfoil trailing edge region. Computed with structured
grid method (Case 1, grid: 1024× 512).
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(a)

(b)

Figure 19: Streamline pattern in the airfoil trailing edge region. Computed with unstructured grid
method (Case 1, grid: 4096× 2048). (a) Global view, (b) Blowup.
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Figure 20: Convergence history and Mach contours for Case 1 computed with the unstructured
grid method using multigrid and LU-SGS smoother (CFL = 5). (a) Convergence history, (b) Mach
contours.
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Figure 21: Surface pressure distributions for Case 2 computed with structured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 22: Surface pressure distributions for Case 2 computed with unstructured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 23: Surface skin-friction distributions for Case 2 computed with structured grid method. (a)
Surface skin friction, (b) Trailing edge region.
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Figure 24: Surface skin-friction distributions for Case 2 computed with unstructured grid method.
(a) Surface skin friction, (b) Trailing edge region.
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Figure 25: Leading edge skin-friction distributions for Case 2 computed with structured and un-
structured grid methods. (a) Structured grid, (b) Unstructured grid.
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Figure 26: Effect of numerical dissipation on surface pressure and skin-friction distributions in
trailing edge region. Case 2 results computed with structured grid method. The symbol * beside
the grid numbers in the legend means that the numerical dissipation has been reduced by a factor of
two. (a) Surface pressure, (b) Skin friction.
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Figure 27: Surface pressure distributions for Case 3 computed with structured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 28: Surface pressure distributions for Case 3 computed with unstructured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 29: Surface skin-friction distributions for Case 3 computed with structured grid method. (a)
Surface skin friction, (b) Trailing edge region.
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Figure 30: Surface skin-friction distributions for Case 3 computed with unstructured grid method.
(a) Surface skin friction, (b) Trailing edge region.
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Figure 31: Leading edge skin-friction distributions for Case 3 computed with structured and un-
structured grid methods. (a) Structured grid, (b) Unstructured grid.
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Figure 32: Surface pressure distributions for Case 4 computed with structured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 33: Surface pressure distributions for Case 4 computed with unstructured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 34: Surface skin-friction distributions for Case 4 computed with structured grid method. (a)
Surface skin friction, (b) Trailing edge region.

x/c

C
f

0 0.2 0.4 0.6 0.8 1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

128 x 64
256 x 128
512 x 256
1024 x 512
2048 x 1024
4096 x 2048

Unstructured, Laminar Flow, Case 4

(a)
x/c

C
f

0.96 0.98 1

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

128 x 64
256 x 128
512 x 256
1024 x 512
2048 x 1024
4096 x 2048

Unstructured, Laminar Flow, Case 4

(b)

Figure 35: Surface skin-friction distributions for Case 4 computed with unstructured grid method.
(a) Surface skin friction, (b) Trailing edge region.
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Figure 36: Leading edge skin-friction distributions for Case 4 computed with structured and un-
structured grid methods. (a) Structured grid, (b) Unstructured grid.
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Figure 37: Mach contours and streamlines for laminar flow over NACA 0012 airfoil. Computed
with structured grid method (Case 4, grid: 1024× 512).
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Figure 38: Blowup of streamline pattern in the airfoil trailing edge region. Computed with structured
grid method (Case 4, grid: 1024× 512).
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Figure 39: Blowup of streamline pattern in the airfoil trailing edge region. Computed with unstruc-
tured grid method (Case 4, grid: 4096× 2048).
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Figure 40: Grid convergence of for Case 1 (α = 0◦) computed with structured grid and unstructured
grid methods.
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Figure 41: Grid convergence for Case 4 (α = 3◦) computed with structured and unstructured grid
methods. (a) CL, (b) CD.
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Figure 42: Surface pressure distributions for Case 5 computed with structured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 43: Surface pressure distributions for Case 5 computed with unstructured grid method. (a)
Surface pressures, (b) Trailing edge region.
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Figure 44: Surface skin-friction distributions for Case 5 computed with structured grid method. (a)
Surface skin friction, (b) Trailing edge region.
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Figure 45: Surface skin-friction distributions for Case 5 computed with unstructured grid method.
(a) Surface skin friction, (b) Trailing edge region.
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Figure 46: Leading edge skin-friction distributions for Case 5 computed with structured and un-
structured grid methods. (a) Structured grid, (b) Unstructured grid.
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Figure 47: Mach contours and streamlines for laminar flow over NACA 0012 airfoil. Computed
with structured grid method (Case 5, grid: 1280× 512).
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Figure 48: Blowup of streamline pattern in the airfoil trailing edge region. Computed with structured
grid method (Case 5, grid: 1280× 512).
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Figure 49: Blowup of streamline pattern in the airfoil trailing edge region. Computed with unstruc-
tured grid method (Case 5, grid: 1280× 512).
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