Introduction: Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general [1]. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W [2] and that Mn may be redox sensitive [3]. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO₂ to study the partitioning of a broad range of trace elements. We compare to existing data [4] and then focus on several elements that exhibit redox dependent partitioning behavior.

Experimental: Experiments were carried out in a non-end loaded piston cylinder apparatus at NASA-JSC, using a BaCO₃ pressure medium, graphite furnaces, and W-Re Type C thermocouples. Starting materials consisted of augite minette (AY-506; [5]) powder that included a small amount of Durango apatite seeds to ensure apatite saturation. All experiments were carried out at 0.8 GPa and 1150 °C. Experiment PhW-2 was done in a graphite capsule (fO₂ controlled to near FMQ-2) for 5.5 hrs. Experiment PhW-3 was done in a Mo capsule (fO₂ controlled to ~IW buffer) for 6 hrs.

Natural samples: We also analyzed phenocryst-matrix pairs from several apatite-bearing volcanic rocks from the Mexican volcanic belt. Olivine minette scoria (Mas-4a) contain apatite, phlogopite, and olivine and glassy regions. Augite minette lava (AY-506) contain apatite and augite phenocrysts in a fine-grained groundmass. The apatite crystals are about 200 μm wide and can be ~1 mm long. These natural samples were analyzed to compare to the experimental results.

Analytical: LA-ICP-MS analyses were performed at FSU using an ESI New Wave UP193FX excimer laser ablation system coupled to a Thermo Element XR™ ICP-MS. The samples were imaged with BSE and reflected light microscope to avoid inclusions or other phases in selected spots or tracks. Spots were 25-microns in diameter, and lines were 15-micron wide, both ablated at 50 Hz. Ablation times of 5 seconds were used for spots, while lines were scanned at 5 microns/second. The abundances of the major elements and 36 other elements were determined using a multi-standard approach discussed elsewhere [6].

Results: Many lithophile elements (Sc, Co, Zn, Rb, Zr, Nb, Mo, Ba, Hf, Ta, and Pb) show incompatible behavior in apatite at both high and low fO₂. REE, Th, Sr, Ga and Cu all exhibit compatible behavior in apatite, as expected from previous studies (Fig. 1). The most interesting results are that Mn, V, Cr, Ni and W change from incompatible to compatible at low fO₂. On the other hand, U and Th change from weakly compatible / incompatible to strongly compatible at high fO₂. Finally, Eu exhibits a positive Eu anomaly (relative to other REE) at low fO₂ and a negative anomaly at high fO₂.

Apatite – matrix measurements on the Mexican minettes reveal much of the same incompatibilities as the FMQ-2 experiment (PhW-2) such as Co, Ni, Zn, Rb, Zr, Nb, Mo, Ba, Hf, Ta, W, Pb, Th and U (Figure 2). The compatibility of W and Th and the positive Eu anomaly seen in the IW experiments (PhW-3) are not evident in the mineral/melt pair analyses. Results for phlogopite/matrix are largely similar to the literature data (Rb, K, Ba are compatible; [7]), but of extra interest is the compatibility of Ni, Co, Cr and Ta, and the positive Eu anomalies for both sets of measurements.

Discussion: Redox sensitivities of trace element partitioning and in particular for phosphates, have been reported previously. For example, Pu exhibits redox sensitive partitioning in whitlockite [8], Mn may exhibit enhanced solubility in apatite at lower fO₂ [3], and we suspect W may be mildly compatible in angrites phosphates which equilibrated near the IW buffer [2,9]. Our data show a larger D(Mn) apatite/melt at low fO₂, consistent with the observations of [3]. We also see higher D(Ni), D(Cr), and D(V) at low fO₂. Although Ni does not experience a valence change across these fO₂, Cr and V do, and the enhanced compatibility may be related to stability of Cr\(^{2+}\) and V\(^{2+}\) at these lower conditions [10,11]. The compatibility of Ni may be related to crustal chemical differences between the low and high fO₂ apatites. Apatite is a key phase for U-Pb geochronology and dating, and the incompatibility of Pb in apatite at all fO₂ is essential to the utility of this system.

D(W) apatite/melt in our experiments is ~1.5 at low fO₂, perhaps consistent with the angrite work. The angrites phosphates are silico-phosphates which may be an important compositional difference; the phosphates produced in our reduced experiment do not contain any more or less silica than the oxidized. Additional work on silico-phosphates may help to resolve this conundrum, but reduced conditions appear to favor W parti-
tioning in apatite, perhaps reflecting the change from W^{6+} to W^{4+} at lower fO_2 [12].

Finally, the positive Eu anomaly in partition coefficients at low fO_2 and the negative at high fO_2 is notable. Previous studies have either included Sr as a proxy for Eu [13], or not included Eu among the REE studied [4]. Therefore, this behavior may have gone unnoticed previously. Even though there are anomalies in Eu for partitioning, the absolute values of $D(Eu)$ are $>>1$ so Eu is still compatible regardless of the negative anomaly in the oxidized experiment.

Conclusions: In addition to offering constraints on chronology, volatile speciation, and REE distribution, apatite can also provide information on redox conditions and apatite/melt partitioning may be sensitive to fO_2 variation. In future work, it will be important to decouple crystal chemical controls from fO_2 controls.

References:

Figure 1: Comparison of apatite/melt Ds from experiments PhW-2 (FMQ-2) and PhW-3 (IW) and exp# 78 from [4].

Figure 2: Comparison of apatite/melt Ds from experiments PhW-2 (FMQ-2) and Mas-4a matrix/melt measurements.