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I. PRD Risk Title: Risk of Radiation Carcinogenesis 

 

Description: In space, astronauts are exposed to ionizing radiation that is quantitatively and 

qualitatively different from terrestrial radiation. This environment includes protons and high-Z 

high-energy (HZE) ions together with secondary radiation, including neutrons and recoil nuclei 

that are produced by nuclear reactions in spacecraft materials or tissue. Space radiation exposure 

increases cancer morbidity and mortality risk in astronauts. This risk may be influenced by other 

space flight factors including microgravity, environmental contaminants, nutritional issues, and 

psychological and physiological stress. Current space radiation risks estimates are based on human 

epidemiology data for X-rays and gamma-ray exposure scaled to the types and flux-rates in space 

using radiation quality factors and dose-rate modification factors, and assuming linearity of 

response. There are large uncertainties in this approach and experimental models imply additional 

detriment due to the severity of the phenotypes of cancers formed for the heavy ion component of 

the galactic cosmic rays compared to cancers produced by terrestrial radiation. A Mars mission 

may not be feasible (within acceptable limits) unless uncertainties in cancer projection models are 

reduced allowing shielding and biological countermeasures approaches to be evaluated and 

improved, or unless mission durations are constrained. 

 

II. Executive Summary  

 

Astronauts on missions to the International Space Station (ISS), the moon or Mars are 

exposed to ionizing radiation with effective doses in the range from 50 to 2000 mSv (milli-Sievert) 

projected for possible mission scenarios (Cucinotta and Durante 2006; Cucinotta et al. 2008). The 

evidence of cancer risk from ionizing radiation is extensive for radiation doses above about 50 

mSv. Human epidemiology studies that provide evidence for cancer risks for low linear energy 

transfer (LET) radiation such as X-rays or gamma-rays at doses from 50 to 2000 mSv include the 

survivors of the atomic-bomb explosions in Hiroshima and Nagasaki, nuclear reactor workers 

(Cardis et al. 1995, 2007) in the US, Canada, Europe, and Russia, and patients treated 

therapeutically with radiation. Ongoing studies are providing new evidence of radiation cancer 

risks in populations accidentally exposed to radiation from the Chernobyl accident and from 

Russian nuclear weapons production sites. Results from the Japanese atomic bomb survivors also 

continue to be analyzed and integrated into risk projection models (Preston et al. 2004, 2007; 

Cucinotta et al. 2013). These studies provide strong evidence for cancer morbidity and mortality 

risks at over 12 tissue sites, with the largest risks for adults found for leukemia and tumors of the 

lung, breast, stomach, colon, bladder, and liver. There is also strong evidence for sex-dependent 

variations in risks estimates due to the due to differences in natural incidence of cancer and the 

additional cancer risks for the breast and ovaries and higher risk from radiation for lung cancer in 

females (NCRP 2000). Human studies also provide evidence for a declining risk with increasing 

age at exposure; however, the magnitude of the reduction above age 30 years is uncertain (NCRP 

2000; BEIR 2006). Genetic and environmental factors, including possible healthy worker effects 

for never-smokers (Cucinotta et al. 2011; NCRP 2012), that contribute to radiation carcinogenesis 

are also being explored to support identification of individuals with increased or reduced risk.   

In space, astronauts are exposed to protons and high energy and charge (HZE) ions along 

with secondary radiation, including neutrons and recoil nuclei, produced by nuclear reactions in 

spacecraft or tissue. Whole body doses of 1-2 mSv/day accumulate in interplanetary space, and 
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approximately half this value on planetary surfaces (Cucinotta et al. 2006; NCRP 2006; Slaba et 

al. 2011, 2013a; Zeitlin et al. 2013). In traveling to Mars, it is estimated that every cell nucleus 

within an astronaut will be traversed by a proton or secondary electron every few days and an HZE 

ion every few months (Cucinotta et al. 1998). In spite of their lower cell nucleus hit frequency as 

compared to protons, the large ionization power of HZE ions makes them an important contributor 

to the risk.  Likewise, light ions and neutrons are additional components that make up a significant 

percentage of the space radiation environment (Norbury and Slaba 2014). Radiation shielding is 

an effective countermeasure for solar particle events (SPEs), which are largely protons with 

energies below a few hundred MeV.  The energy spectrum of the galactic cosmic rays (GCRs) 

peaks near 1 GeV/n, and consequently, these particles are so penetrating that shielding can only 

partially reduce the doses absorbed by the crew (Cucinotta et al. 2006). Current shielding 

approaches do not effectively mitigate exposure from GCR. Increasing shielding thickness poses 

significant mass constraints to spacecraft launch systems and may actually increase exposures 

beyond certain thicknesses due to neutron build-up and electromagnetic cascades (Slaba et al. 

2013a).  

 Epidemiological data, largely from the Atomic bomb survivors in Japan (Preston et al. 2003, 

2004, 2007), provides a basis for risk estimation for low-LET radiation. Models for cancer 

incidence and mortality based on these data are assumed to be scalable to other populations, dose-

rates, and radiation types (Cucinotta et al. 2013). However, because there is a lack of human data 

for protons and HZE ions, current space risk estimates must rely entirely on experimental model 

systems and biophysical considerations.  The scaling of mortality rates for space radiation risks to 

astronauts to the Atomic bomb survivors introduces many uncertainties (Cucinotta et al. 2001; 

Cucinotta and Durante 2006) into risk estimates, and there are important questions with regard to 

the correctness of any scaling approach because of qualitative differences in the biological effects 

of HZE ions and gamma-rays. The two scaling parameters with largest uncertainties are the 

radiation quality factor, which estimates the increased effectiveness of HZE nuclei compared to x-

rays or gamma-rays for the same dose, and the dose- and dose-rate effectiveness factor (DDREF), 

which reduces estimates of cancer risk at high dose- and dose-rates when the dose- and dose-rate 

are low (< 0.05 Gy/hr). The mixed field GCR environment in space, predominantly composed of 

protons with a smaller percentage attributed to more damaging heavy ions, further complicates 

risk estimation.  

 Acceptable levels of risk are often guided by societal or ethical norms. There is continued 

debate on what level is acceptable for space radiation cancer risks for exploration of the moon or 

Mars. A historical perspective is summarized herein; however, we note that other non-cancer 

mortality and morbidity risks associated with space radiation exposure must also be considered for 

Mars or other long-duration missions (i.e. central nervous system effects and circulatory disease) 

as well as confounding spaceflight factors such as microgravity and immune system impacts 

(Crucian et al. 2015). Improvements in safety in other areas of spaceflight will also place additional 

pressure on radiation protection efforts to reduce astronaut risk. 

Ground-based experimentation is a critical requirement to provide the scientific evidence 

needed to improve space radiation cancer risk estimates. Flight experiments have not been a high 

priority because historically these have been expensive and poorly reproducible (Sihver 2008; 

Durante et al. 2007, Durante and Cucinotta 2008). In general, the low dose rates on the ISS 

preclude collection of useful data in a reasonable time and with a reasonable sample size, and 

experiments in the past have yielded no major findings (Kiefer and Pross 1999; Schimmerling et 
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al. 2003; Durante and Kronenberg 2005). Ground-based radiobiology and physics studies are 

performed at the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National 

Laboratory (Upton, NY, USA). This facility is able to simulate the high-energy protons and HZE 

particles in space. NSRL opened for research in October 2003, and has produced experimental 

data of great relevance for reducing uncertainties in risk assessment. The NSRL is currently being 

upgraded to a GCR simulator capable of delivering a mixed field environment consisting of 

protons and ions at doses and dose rates that are more representative of the space environment 

(Norbury et al. 2016).  

Mechanistic research performed at NSRL with 2D and 3D human cell culture and models, and 

animal studies in murine models is being pursued to establish level of risk, provide biological 

knowledge required to reduce uncertainties in risk projection models, guide the extrapolation from 

experiment to astronauts, and pave the way for biomarker discovery and biological countermeasure 

development. Studies with animals are an important component of space radiation research; 

however, they are time consuming and expensive in light of the large number of radiation types, 

doses, and dose rates of concern to NASA and the need to extrapolate results across species (NCRP 

2005). Systems biology models of cancer risk that could be used to extrapolate radiation quality 

over the broad range of nuclear types, energies, and fluence rates in space are a promising new 

approach to these problems.  

 

III. Introduction 

 

As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation 

is now generally considered a main hindrance to interplanetary travel for the following reasons: 

large uncertainties are associated with the projected cancer risk estimates; no simple and effective 

countermeasures are available, and significant uncertainties prevent scientists from determining 

the effectiveness of countermeasures. Optimizing operational parameters such as the length of 

space missions, crew selection for age and sex, or applying mitigation measures such as radiation 

shielding or use of biological countermeasures can be used to reduce risk, but these procedures 

have inherent limitations and are clouded by uncertainties. 

Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy 

(E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in 

molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays 

and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation.  

Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small 

component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, 

Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n 

make important contributions to the total exposure.  

Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from 

X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are 

important uncertainties and on-going scientific debate about cancer risk at lower doses and at low 

dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and 

the probability of cancer in humans is poorly understood, and it is this missing knowledge that 

leads to significant uncertainties in projecting cancer risks during space exploration (Cucinotta and 

Durante 2006; Durante and Cucinotta 2008).  
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A. Uncertainties in Cancer Projections  

 

 The uncertainties that occur in cancer risk projection models for space radiation include: 

 

 Uncertainties in determining the qualitative and quantitative differences between the 

biological damage induced by space radiation compared to X-rays 

 Uncertainties in human epidemiological data including statistical, record keeping, 

dosimetry, and bias resulting from mis-reporting of cancer deaths 

 Uncertainties in transferring radio-epidemiology data to other populations, including 

cancer rates and survival data in the population of interest for space applications 

 Uncertainties in transferring radio-epidemiology data to other radiation types and dose-

rates of interest to space applications  

 Uncertainties in the shape of the dose-response curve at low doses (i.e. linear, linear-

quadratic) and the possibility of dose thresholds 

 Uncertainties associated with extrapolation of experimental data from animals to humans  

 Uncertainties associated with individual radiation sensitivity factors, including age, 

genetic, epigenetic, dietary, and “healthy worker” effects 

 Uncertainties in space radiation environmental models, transport codes, geometry models, 

and dosimetry methods 

 Uncertainties associated with predicting SPE occurrence, energy spectrum, and magnitude 

 Possible inter-dependence of any of the uncertainties mentioned above 

 

 Quantitative methods have been developed to propagate uncertainties for several factors 

that contribute to cancer risk estimates (NCRP 1997; Cucinotta et al. 2013). Current estimates of 

levels of uncertainty represented as fold changes over the median risk projection are described in 

detail in Cucinotta et al. (2013). Comparison of risks for adults for terrestrial and space exposures 

is shown in Figure 1.  Microgravity and the effects of other spaceflight stressors such as altered 

immune function, chronic inflammation and depressed nutritional status during a mission 

timeframe are unknown modifiers of radiation cancer risk and may confound the effects of 

radiation impacting the risk projection, and are potentially additional sources of uncertainty in 

current risk estimates.  Several studies have been performed on the ISS and on the ground using 

apparatus that simulate the space environment.  However these studies provide conflicting results 

with respect to radiation effects on chromosomal aberrations and DNA damage and repair, early 

endpoints relatable to the carcinogenic process (Yatagai and Ishioka 2014).   

Radiation affects cells and tissues either via direct damage to cellular components or via the 

production of highly reactive free radicals from water (Goodhead 1994). Both of these mechanisms 

can result in sufficient damage to cause cellular death, DNA mutation, chromosomal aberrations, 

genomic instability or abnormal cellular function. The extent of damage is generally believed to 

be dependent upon the dose and type of particle with a linear dose-response curve (Goodhead 

1994). This is true for high and moderate radiation exposure, but is extremely problematic to 

measure for lower doses where difficulty exists in discerning the effects of radiation exposure from 

those that are triggered by normal oxidative stress that cells and tissues deal with on a constant 

basis. The HZE nuclei are unique components of space radiation, which produce densely ionizing 

tracks as they pass through matter. When they traverse a biological system, they leave streaks or 

tracks of damage at the biomolecular level, which are fundamentally different than those left by 
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low LET radiation such as gamma and X-rays.  In the nucleus of a cell where genetic material is 

stored, the traversal of a heavy ion can produce tracks of clustered DNA damage (Cucinotta and 

Durante 2006) as illustrated in Figure 2. 

 

 

  
Figure 1.  Uncertainties in risk projection for terrestrial and space exposures. This figure shows the current 

estimates of cancer risks and 95% confidence bands for adults of age 40 yrs, the typical age of astronauts 

on space missions, for several terrestrial exposures and missions on the International Space Station, a lunar 

colony, and the projections for a Mars mission. The uncertainties are larger for astronauts in space compared 

to typical exposures on Earth.   

 
 

HZE nuclei impart damage via the primary energetic particle as well as from fragmentation 

events that produce a spectrum of other energetic nuclei, including protons, neutrons and heavy 

fragments (Wilson et al. 1995; Cucinotta et al. 1998, 2006; Durante and Cucinotta 2011). 

Therefore, a large penumbra of energy deposition exists that extends outward from the primary 

particle track (Cucinotta et al. 2000). Secondary radiation produced in shielding materials can be 

reduced through usage of materials with light atomic constituents such as hydrogen and carbon. 

However, a large percentage of secondary radiation is produced within tissue and is therefore not 

practically avoidable. Due to the large amount of energy deposited as these particles traverse 

biological structures, HZE nuclei are capable of producing the greatest amount of cellular damage 

and are therefore a large concern for astronaut safety. The lack of epidemiological data and sparse 

radiobiological data on effects for these radiation types leads to a high level of uncertainty in risk 

estimates for long term health effects following exposure to GCR and SPEs. 
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Figure 2. A comparison of particle tracks in nuclear emulsions and human cells (Cucinotta and Durante 

2006). The right panel shows tracks of different ions, from protons to iron, in nuclear emulsions, clearly 

showing the increasing ionization density (LET = dE/dx) along the track by increasing the charge Z. The 

left panel shows three nuclei of human fibroblasts exposed to γ-rays, Si-, or Fe-ions, and immunostained 

for detection of γ-H2AX. Each green focus corresponds to a DNA DSB. While in the cell exposed to 

sparsely ionizing γ-rays foci of the  histone variant, H2AX are uniformly distributed in the nucleus, the 

cells exposed to HZE particles present DNA damage along tracks (one Si- and three Fe-particles, 

respectively), and the spacing between DNA DSB is reduced at very high LET. 

 

 

B. Types of Cancer Caused by Radiation Exposure 

 

Data from the Atomic Bomb survivors shows that an acute exposure to ionizing radiation 

increases the mortality from cancer across a wide range of tumor types typical of the spectrum 

observed in a population (Barcellos-Hoff et al. 2015). The tissue types that contribute to the overall 

cancer risk observed with low LET radiation include lung, colorectal, breast, stomach, liver, brain, 

ovarian, esophageal, and bladder cancers, and several types of leukemia, including acute 

lymphocytic leukemia, acute myeloid leukemia and chronic myeloid leukemia  (NCRP 2000; 

Preston et al. 2003; BEIR 2006). It is not fully established if the same spectrum of tumors will 

occur for high LET radiation as with low LET radiation, although results thus far have not shown 

novel tumor types generated from HZE ions compared to low LET (Bielefeldt-Ohmann et al. 2012; 

Barcellos-Hoff et al. 2015). However evidence suggests that HZE ions may induce cancers with 

unique characteristics compared to low-LET induced cancers, with differences in incidence and 

latency as well as in malignant potential. There may also be distinct radiation quality effects for 

HZE ions in terms of the cytogenetic and molecular subtype of the induced tumor, all factors that 

may impact disease surveillance, progression, treatment and ultimately outcome. Further 

investigation is required to fully understand these differences. Relative biological effectiveness 
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factors (RBE) describe the ratio of a dose of high LET radiation to that of X-rays or gamma-rays 

that produce the identical biological effect. In general, the RBE values observed for solid cancer 

induced by HZE particles are high. However these values, as well as those observed in mice 

exposed to neutrons, are highly dependent on tissue type and genetic background of the animal. In 

contrast, the RBE values observed for leukemia are close to one, which may indicate that the 

mechanisms underlying tumor induction for leukemias are distinct from those controlling solid 

tumor formation (Bielefeldt-Ohmann et al. 2012; NCRP 1990; Fry and Storer 1987).  Detailed 

review and discussion of HZE ion animal carcinogenesis studies can be found in recently published 

articles (Bielefeldt-Ohmann et al. 2012; Barcellos-Hoff et al. 2015).      

 

C. Age, Latency, Sex, and Individual Sensitivity Issues 

 

Because cancer is a genetic disease with important epigenetic factors, individual susceptibility 

issues are an important consideration for space radiation protection, and NASA’s current cancer 

risk prediction model considers both sex dependence and how age at exposure effects the excess 

relative risks for radiation induced cancers (Cucinotta et al. 2013). Females have a higher cancer 

risk from radiation induced cancer compared to males, largely due to the additional risks to the 

lung, breast and ovaries (BEIR 2006, NCRP 2000). Mechanisms responsible for increased lung 

cancer incidence in females have not been elucidated.  In contrast, females are at a lower risk for 

development of radiation induced CMLs, with a recent analysis of Surveillance, Epidemiology 

and End Results Program (SEER) and A-bomb survivor data suggesting  that this difference is due 

to changes in inherent risk rather than disease latency (Radivoyevitch et al. 2014).    

It is generally accepted that the risk of radiation induced cancer is highest for individuals 

exposed in childhood and decreases with increasing age at time of exposure. At a sufficiently high 

age, risk would be expected to decrease with age at exposure because the distribution of latency 

for tumor development would extend beyond the expected lifespan at older exposure ages. Also, 

there may be a possible reduction in the number of cells at risk at older age due to senescence or 

other biological factors (Campisi 2003; Campisi; d'Adda di Fagagna 2007).  Age related changes 

in the host tissue microenvironment may impact the ability of a tissue to support tumor growth or 

alter tumor properties (Nguyen et al. 2014; Beheshti et al. 2015). Shuryak et al. (2010) reported 

that age related risks in younger populations are dominated by initiation processes while at later 

ages, radiation induced cancers may also result from promotion of preexisting malignant cells. 

Overall, the balance between initiation and promotional effects varies by tissue target and by host 

age, and complicates the dependence of cancer risk on age at exposure.  

Genetic and environmental factors also impact risk of cancer from radiation exposure (NCRP 

2010; Barcellos-Hoff et al. 2015). Studying the mechanisms of genetic sensitivity provides 

important insights into understanding the radiation risks to astronauts (Durante and Cucinotta 

2008). Studies of historical data sets such as the atomic-bomb survivors show that subsets of the 

exposed cohorts could have a higher than average radiation risk (Ponder 2001). A well-known 

example is ataxia-telangiectasia (AT) patients that dramatically demonstrated the importance of 

genetic susceptibility to radiation damage in cancer treatment. Other examples related to DNA 

repair genes include BRCA1&2, p53 (Ponder 2001), NBS (Pluth et al. 2008), Artemis (Wang et 

al. 2005), and many other so-called high-penetrance genes involved in cancer susceptibility 

(Ponder 2001).  
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Ataxia-Telangiectasia-Mutated (ATM) homozygous individuals represent only a small 

fraction of radiosensitive patients, although they appear to be the most sensitive. ATM 

heterozygotes, who are also cancer-prone, are suspected to represent a large fraction of the extreme 

radiosensitive patients (Thompson et al. 2005). It has been shown that cells heterozygous for ATM 

mutations are slightly more sensitive to radiation-induced neoplastic transformation than the wild-

type (Smilenov et al. 2001). An increased sensitivity of ATM heterozygotes has been also proven 

in vivo, measuring the induction of cataracts in ATM homozygotes, heterozygotes, and wild-type 

mice exposed to 0.5-4 Gy X-rays (Worgul et al. 2002).  Interestingly, although there is a clear 

increase in breast cancer risk in individuals who carry deleterious BRCA1/BRCA2 mutations, 

there is no indication that these individuals are at an increased risk for contralateral breast cancer 

following radiotherapy (Bernstein et al. 2013). 

An important issue is how low penetrance genes impact sensitivity to radiation-induced cancer. 

A study on subjects exposed to high radiation doses to treat ringworm of the scalp (tinea capitis) 

in Israel revealed a strong familial risk of radiation-induced meningioma (Flint-Ritcher and 

Sadetzki 2007), suggesting that radiation carcinogenesis might be an issue for a genetically 

predisposed subgroup of the general population, rather than a random event (Hall 2007; Sigurdson 

2012). This is also supported by identification of genetic variants associated with increased 

occurrence of second cancers in survivors of childhood Hodgkin’s lymphoma through the use of 

a genome wide association study (Best et al. 2011) and similarly, the identification of variants 

associated with radiation related papillary thyroid carcinoma in individuals exposed during the 

Chernobyl accident (Takahashi et al. 2010).  

It is not known if individuals displaying hypersensitivity to low-LET radiation will also be 

equivalently hypersensitive to HZE nuclei, or if findings at high dose and dose-rates will hold at 

low doses and dose-rate. Mice heterozygous for the ATM gene are more sensitive to 

cataractogenesis than wild-types not only after exposure to X-rays, but also after localized 

irradiation with high-energy Fe-ions (Hall et al. 2006). However, there are other studies that show 

that high LET irradiation has a reduced dependence on genetic background compared to low LET 

irradiation (George et al. 2009) while other evidence suggests that variability in the susceptibility 

of different mouse strains for radiation induced cancers observed for low-LET radiation extends 

to tumors induced by heavy ions (Bielefeldt-Ohmann et al. 2012; NCRP 2014) 

In contrast to hypersensitivity, certain individuals also exhibit reduced sensitivity and risk due 

to environmental or other personal factors. An analysis of lung cancer and other smoking-

attributable cancer risks has shown significantly reduced lung cancer risk and overall cancer risk 

for never-smokers compared to the U.S. population. Since 90% of the astronauts are never-

smokers, and the remainder former smokers, such empirical observations are applicable for space 

radiation risk projections. Other healthy worker effects may also be relevant for space missions 

and possibly modify risk projections or reduce uncertainties (Cucinotta et al. 2013). A predictive 

assay able to identify radiation hypersensitive, cancer-prone subjects could be useful in crew 

selection for long-term spaceflights. Alternatively, identifying resistant or reduced-risk individuals 

could substantially lower mission costs. However, as the models used currently at NASA to project 

space radiation risks are based on mortality data from population studies and do not include 

analysis of risk based on individual sensitivity, it is not currently recommended that genetic testing 

be performed on astronauts  (NCRP 2010). Given the rapid advancement in genomics and 

personalized medicine, this type of assessment is likely scientifically achievable within the 

timeframe currently planned for a human deep exploration mission. Ultimately, for a high risk and 
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high cost endeavor such as a mission to Mars, screening astronauts for increased resistance to 

space radiation may be sought in order to reduce the costs of the missions or to support post mission 

disease surveillance. 

 

D. Current NASA Permissible Exposure Limits (PELs) 

 

Permissible Exposure Limits (PELs) for short-term and career astronaut exposures to space 

radiation have been approved by the NASA Chief Health and Medical Officer, and requirements 

and standards for mission design and crew selection have been set (NASA STD-3001 Vol 1, Rev 

A). This section describes the cancer risk section of the PELs. 

 

1. Career Cancer Risk Limits 

 

Career exposure to radiation is limited to not exceed 3% risk of exposure induced death (REID) 

from fatal cancer. NASA policy is to assure that this risk limit is not exceeded at a 95% confidence 

level using a statistical assessment of the uncertainties in the risk projection calculations to limit 

the cumulative effective dose (in units of Sievert) received by an astronaut throughout his or her 

career (NASA STD-3001 Vol 1, Rev A) Methods for determining REID, including the 

uncertainties discussed previously, are summarized in Section VI.  

 

2. The Principle of As Low as Reasonably Achievable (ALARA) 

 

The ALARA principle is a requirement intended to ensure astronaut safety. An important 

function of ALARA is to ensure that astronauts do not approach radiation limits and that such 

limits are not considered as “tolerance values.”  ALARA is especially important for space missions 

in view of the large uncertainties in cancer and other risk projection models. Mission programs 

and terrestrial occupational procedures resulting in radiation exposures to astronauts are required 

to find cost-effective approaches to implement ALARA (NASA STD-3001 Vol 1, Rev A). 

 

IV. Evidence 

 

The evidence and updates to projection models for cancer risk from low LET radiation are 

reviewed periodically by several prestigious bodies, which include the following organizations: 

 

 The National Academy of Sciences Committee on the Biological Effects of Ionizing 

Radiation (BEIR) 

 The United National Scientific Committee on the Effects of Atomic Radiation 

(UNSCEAR) 

 The International Commission on Radiological Protection (ICRP) 

 The National Council on Radiation Protection and Measurements (NCRP) 

 

These committees release new reports on cancer risks applicable to low LET radiation 

exposures about every 10 years. Overall, the estimates of cancer risks between the different reports 

of these panels will agree to within a factor of two or less. However, there is continued controversy 

for doses below 50 mSv and for low dose-rate radiation because of debate over the linear no-
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threshold hypothesis often used in statistical analyses of these data. The BEIR VII report (BEIR 

2006) and the UNSCEAR 2006 Report (UNSCEAR 2008) are the most recent major reports, and 

the reports are used in the summary that follows. Evidence for low LET cancer effects must be 

augmented by information on protons, neutrons and HZE nuclei, which is only available in 

experimental models. Such data has been reviewed several times in the past by the NCRP (1989, 

2000, 2006, 2012). (Category IV) 

 

A. Epidemiology data for low LET radiation 

 

The human evidence presented in this section is Category III unless otherwise noted.   

 

1. Life-span studies of atomic bomb survivors 

 

The life-span study (LSS) of the survivors of the atomic-bombs in Hiroshima and Nagasaki, 

Japan, includes 120,321 persons that were registered in 1950. Amongst these were 82,214 from 

Hiroshima and 38,107 from Nagasaki that were either within 2.5 km of the hypocenters, between 

2.5 and 10 km from the hypocenters, or not in the cities at the time of the bombings. The data is 

currently maintained by the Radiation Effects Research Foundation (RERF).  RERF has an 

extensive list of publications using the LSS data and makes the data freely available to all 

researchers.  The most recently published mortality data is from the LSS Report 14 and has follow-

up from October 1, 1950 to December 31, 2003 (Ozasa 2012). The most recently published solid 

cancer incidence data has follow-up from January 1, 1958 with the establishment of the Hiroshima 

and Nagasaki population-based tumor registries to December 31, 1998 (Preston 2007).  This 

incidence data was also used by BEIR VII and the UNSCEAR committees to develop cancer site 

specific excess risk models (BEIR 2006, UNSCEAR 2008).  The most recently published leukemia 

incidence data has follow-up from October 1, 1950 to December 31, 2001 (Hsu 2013).  There is a 

gap in knowledge of the earliest cancer that developed in the first few years after the war, which 

impacts the assessment of leukemia to an important extent and for solid cancers to a minor extent. 

Of these persons censures occur, leading to about 86,000 persons when the persons not in the cities 

are excluded and 113,000 persons when they are included in the analyses. Table 1 shows summary 

statistics of the number or persons and deaths for different dose groups. These comparisons show 

that the doses received by the LSS population overlap strongly with the doses of concern to NASA 

exploration mission (i.e. 50 to 2000 mSv).  

 
Table 1 Number of persons, solid cancer deaths, and non-cancer deaths for different dose groups in the 

LSS study as of January 1, 2004 (Ozasa 2012). 

 Known DS02 Weighted Colon Dose, mSv 
 Total 0-5 5-100 100-200 200-500 500-1000 1000-2000 >2000 

No. Subjects 86,611 38,509 29,961 5,974 6,356 3,424 1,763 624 
Cancer Deaths 10,929 4,621 3,653 789 870 519 353 124 
Non-cancer 
deaths 

35,685 15,906 12,304 2,504 2,736 1,357 657 221 

 

Figure 3 shows the dose response for the excess relative risk (ERR) for all solid cancers from 

Ozasa et al. (2012). The most recent publications from BEIR and UNSCEAR have used the 

incidence data to develop site specific cancer models. The main differences in the preferred models 
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from RERF, BEIR and UNSCEAR are the parameterization of the modification terms for age at 

exposure, attained age, and time since exposure. BEIR VII made the assumption that most 

individual cancer sites should have similar modification terms for age at exposure and attained 

age.  Hence they used the parameters from the all solid cancer model for an individual site unless 

there was evidence of departure from the all solid cancer parameter.  UNSCEAR however did not 

make that assumption and only included modification terms that improved the individual sites fit.  

UNSCEAR also characterized the age at exposure parameter differently than RERF and BEIR.   
 

 
Figure 3.  From Ozasa et al. (2012): Excess relative risk (ERR) for all solid cancer in relation to radiation 

exposure. The black circles represent ERR and 95% CI for the dose categories, together with trend 

estimates based on linear (L) with 95% CI (dotted lines) and linear-quadratic (LQ) models using the full 

dose range, and LQ model for the data restricted to dose <2 Gy. 

 

 

Table 2 compares the ERR per Gy for subjects at the attained age of 70 years after exposure at age 

30 for males and females calculated using the models developed by Ozasa et al. 2012, Preston et 

al. 2007, BEIR VII, and UNSCEAR 2006 for selected major cancer sites.  Similarly, Table 3 

compares the EAR per person years per Gy for subjects at the attained age of 70 years after 

exposure at age 30 for males and females.  The National Cancer Institute has extended the results 

from BEIR VII to include more cancer sites in the RadRAT tool, an online calculator for estimating 

the lifetime risk of cancer incidence from exposure to ionizing radiation (doses below 1 Gy), for 

members of the U.S. population and other selected countries they have developed (Berrington de 

Gonzalez 2012; https://irep.nci.nih.gov/radrat). 

RERF is continually updating the LSS data and it is beneficial to review the latest publications 

from their researchers.  An update to the incidence data should be released soon.  The most recent 

publications from RERF have focused more closely on several major cancer sites and looked at 
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potential confounders to the radiation effects.  Most notable is the publication from Furukawa et 

al. (2010) that looked at the combined effects of radiation and smoking on lung cancer incidence. 

 
Table 2.  Male and Female ERR per Gy for subjects at the attained age of 70 years after exposure at age 30 

using models with effect modification.  Models including modifications for age at exposure and attained 

age are available for mortality from Ozasa et al. 2012 and for incidence from Preston et al. 2007, BEIR VII, 

and UNSCEAR 2006. * indicates the model does not include modifications.  ** indicates that mortality 

data was used for the UNSCEAR all solid cancer model.  NA indicates that a model is not available. 

 

 

2. Other Human Studies  

 

The BEIR VII report (BEIR 2006) and the UNSCEAR 2006 report (UNSCEAR 2008) contain 

extensive reviews of data sets from human populations, including nuclear reactor workers and 

patients treated with radiation. The report from Cardis (Cardis et al. 2007) described a 

multinational study for reactor workers in several countries. Pooled analysis from several studies 

have been performed at specific cancer sites, including breast and thyroid (BEIR 2006). These 

studies require adjustments for photon energy, dose-rate, and country of origin as well as 

adjustments made in single population studies. The preferred models from the BEIR VII 

committee implement the results from the pooled analyses for breast and thyroid cancer.  Preston 

et al. (2010) reanalyzed the Mayak workers data and the data for people who lived along the Techa 

River using Bayesian methods to estimate site-specific risk estimates for the two studies 

separately.  The two studies were compared to results from similar methods applied to the LSS 

data.  These types of analysis lend confidence to risk assessments as well as show limitations of 

such data sets. Of special interest to NASA is the age at exposure dependence of low LET cancer  

 

 Ozasa et al. 2012 Preston et al. 2007 BEIR VII UNSCEAR 2006 

 Male 
ERR/Gy 

Female 
ERR/Gy 

Male 
ERR/Gy 

Female 
ERR/Gy 

Male 
ERR/Gy 

Female 
ERR/Gy 

Male 
ERR/Gy 

Female 
ERR/Gy 

All solid cancer 0.27 0.57 0.35 0.58 0.27 0.46 0.32** 0.58** 

Esophagus 0.23 0.97 0.52* 0.52* NA NA 0.53* 0.53* 

Stomach  0.14 0.52 0.21 0.47 0.17 0.39 0.28 0.28 

Colon  0.28 0.40 0.73 0.34 0.51 0.35 0.46 0.46 

Liver  0.29 0.47 0.32 0.28 0.26 0.26 0.40* 0.40* 

Gallbladder  0.68 0.28 -0.05* -0.05* NA NA NA NA 

Lung  0.41 1.09 0.28 1.33 0.26 1.13 0.32 1.40 

Breast   0.90  0.98 NA NA  0.84 

Bladder  0.88 1.57 0.61 1.90 0.40 1.33 0.90* 0.90* 

Brain  NA NA 0.62* 0.62* NA NA 0.26 0.26 

Ovary   0.20  0.61*  0.31 NA NA 

Prostate   0.33* 0.11*  0.10  NA NA 

Uterus   0.22*  0.10*  0.04 NA NA 

Thyroid NA NA 0.49 0.65 0.53 1.05 0.75 0.75 
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Table 3.  Male and Female EAR per 10^4 person years (PY) per Gy for subjects at the attained age of 70 

years after exposure at age 30 using models with effect modification.  Models including modifications for 

age at exposure and attained age are available for mortality from Ozasa 2012 and for incidence from Preston 

2007, BEIR VII, and UNSCEAR 2006. * indicates the model does not include modifications. ** indicates 

that mortality data was used for the UNSCEAR all solid cancer model.  NA indicates that a model is not 

available. 

 Ozasa et al. 2012 Preston et al. 2007 BEIR VII UNSCEAR 2006 
 Male 

EAR/10^
4 PY/Gy 

Female 
EAR/10^
4 PY/Gy 

Male 
EAR/10^
4 PY/Gy 

Female 
EAR/10^
4 PY/Gy 

Male 
EAR/10^
4 PY/Gy 

Female 
EAR/10^
4 PY/Gy 

Male 
EAR/10^
4 PY/Gy 

Female 
EAR/10^
4 PY/Gy 

All solid 
cancer 

25.14 27.66 43.00 60.00 33.87 43.11 **28.61 **28.61 

Esophagus  NA NA 0.58* 0.58* NA NA 0.15* 0.15* 
Stomach  2.93 5.27 9.40 9.70 7.54 7.54 9.37 9.37 
Colon  1.62 1.58 13.00 3.00 4.93 2.46 3.91 3.91 
Liver  4.02 2.78 6.40 2.10 4.14 1.88 2.72 2.72 
Gallbladder  NA NA -0.01* -0.01* NA NA NA NA 
Lung  7.30 5.70 6.00 9.10 5.13 7.58 5.93 8.86 
Breast   2.30  5.30 NA 10.90  10.66 
Bladder  1.71 0.69 3.80 2.60 3.03 1.89 2.47 2.47 
Brain  NA NA 0.51* 0.51* NA NA *0.49 *0.49 
Ovary   0.20  0.56*  1.08 NA NA 
Prostate   NA 0.34*  0.17  NA NA 
Uterus   NA  0.56*  1.85 NA NA 
Thyroid NA NA 0.50 1.90 NA NA 0.70 2.74 

 

 

risk projections. The BEIR VII (BEIR 2006) models show a 50% reduction in risk over the range 

from 35 to 55 years, while the NCRP Report No. 132 (NCRP 2000) showed about a two-fold 

reduction over this range. This trend was observed in the most recent report of mortality 

assessments in the Atomic bomb survivors where the excess relative risk per Gy exposure for solid 

cancers decreased by 29% per decade increase of age at exposure (Osaza et al. 2012). Another 

study of particular interest is the recently organized Million Worker Study of U.S. radiation 

workers and veterans focused on estimation of radiation health risks following continuous, low 

dose-rate exposures, which are relatable to the space environment and are expected to provide 

important knowledge for improving the accuracy of NASA’s risk models (Bouville et al. 2015). 

 

B. Review of Spaceflight Issues 

 

In considering radiation risks for astronauts, it is useful to consider historical recommendations 

that NASA has received from external advisory committees. These recommendations have formed 

the basis for dose limits and risk projection models (Cucinotta et al. 2002). Early radiation effects 

usually are related to a significant fraction of cell loss, exceeding the threshold for impairment of 

function in a tissue. These are “deterministic” effects, so called because the statistical fluctuations 

in the number of affected cells are very small compared to the number of cells required to reach 

the threshold (ICRP 1991).  Maintaining dose limits can ensure that no occurrence of early effects 
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take place; these are expected to be accurately understood. Late effects can result from changes in 

a very small number of cells, so that statistical fluctuations can be large and some level of risk is 

incurred even at low doses. Referring to them as “stochastic” effect recognizes the predominance 

of statistical effects in their manifestation. 

Recommendations by NAS/NRC in 1967 (NAS/NRC 1967) noted that radiation protection in 

manned spaceflight is philosophically distinct from protection practices of terrestrial workers 

because of the high-risk nature of space missions. The report by NAS from 1967 did not 

recommend “permissible doses” for space operations, noting the possibility that such limits may 

place the mission in jeopardy and instead made estimates of what the likely effects would be for a 

given dose of radiation.   

In 1970, the NAS Space Science Board made recommendations of guidelines for career doses 

to be used by NASA for long-term mission design and manned operations. At that time, NASA 

employed only male astronauts and the typical age of astronauts was 30-40 years. A “primary 

reference risk” was proposed equal to the natural probability of cancer over a period of 20 years 

following the radiation exposure (using the period from 35 to 55 years of age) and was essentially 

a doubling dose. The estimated doubling dose of 382 rem (3.82 Sv), which ignored a dose-rate 

reduction factor, was rounded to 400 rem (4 Sv). The NAS panel noted that their recommendations 

were not risk limits, but rather a reference risk, and that higher risk could be considered for 

planetary missions or a lower level of risk for a possible space station (NAS/NRC 1970). Ancillary 

reference risks were described to consider monthly, annual, and career exposure patterns. 

However, the NAS recommendations were implemented by NASA as dose limits used 

operationally for all missions until 1989. 

At the time of the 1970 NAS report, the major risk from radiation was believed to be leukemia. 

Since that time the maturation of the data from the Japanese atomic bomb (AB) survivors has led 

to estimates of higher levels of cancer risk for a given dose of radiation, including the observation 

that the risk of solid tumors following radiation exposure occurs with a higher probability than 

leukemia, although with a longer latency period before expression. Figure 4 illustrates the 

changing estimates of cancer risks since 1970 for an average adult worker. Along with the 

maturation of the AB data, re-evaluation of the dosimetry of the AB survivors, scientific 

assessments of the dose response models, and dose-rate dependencies have contributed to the large 

increase in the risk estimate over this time period (1970-1997). The possibility of future changes 

in risk estimates can, of course, not be safely predicted today, and it is possible that such changes 

could potentially impact NASA mission operations. Thus protection against uncertainties is an 

ancillary condition to the ALARA principle, suggesting conservatism as workers approach dose 

limits. 

By the early 1980’s, several major changes had occurred leading to the need for a new approach 

to define dose limits for astronauts. At that time NASA requested the NCRP to re-evaluate dose 

limits to be used for LEO operations. Considerations included the increases in estimates of 

radiation-induced cancer risks, the criteria for risk limits, and the role of the evolving makeup of 

the astronaut population from male test pilots to a larger diverse population (~100) of astronauts, 

including mission specialists, female astronauts, and career astronauts of higher ages that often 

participate in several missions. In 1989, the NCRP Report No. 98 recommended age and sex 

dependent career dose limits using as a common risk limit of a 3% increase in cancer mortality. 

The limiting level of 3% excess cancer fatality risk was based on several criteria, including 

comparison to dose limits for ground radiation workers and to rates of occupational death in the 
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less-safe industries. It was noted that astronauts face many other risks, and adding an overly large 

radiation risk was not justified. It also should be noted that the average years of life loss from 

radiation induced cancer death, about 15 years for workers over age 40-y, and 20 years for workers 

between 20 and 40 years, is less than that of other occupational injuries. A comparison of radiation-

induced cancer deaths to cancer fatalities in the US population is also complex because the smaller 

years of life loss in the general population where most cancer deaths occurring above age 70. 

 

 
Figure 4. Estimates of the risk per Sv delivered at low dose-rates for the average adult worker from 1970 

to 1997 

 

In the 1990’s, the additional follow-up and evaluation of the AB survivor data led to further 

increases in the estimated cancer risk for a given dose of radiation. Recommendations from the 

NCRP (NCRP 2000), while keeping the basic philosophy of risk limitation in their earlier report, 

advocate significantly lower limits than those recommended in 1989 (NCRP 1989).  Table 4 lists 

examples of career radiation limits for a career duration of 10 years with the doses assumed to be 

spread evenly over a career. The values from the previous report are also listed for comparison. 

Both of these reports specify that these limits do not apply to exploration missions because of the 

large uncertainties in predicting the risks of late effects from heavy ions.  

 
Table 4. Career dose limits (in Sv) corresponding to 3% excess cancer mortality for 10-year careers as a 

function of age and sex as recommended by the National Council on Radiation Protection and 

Measurements (NCRP 1989; NCRP 2000). 
 

 NCRP Report No. 98 NCRP Report No. 132 

Age, yr Male Female Male Female 

25 1.5 Sv 1.0 Sv 0.7 Sv 0.4 Sv 

35 2.5 1.75 1.0 0.6 

45 3.2 2.5 1.5 0.9 

55 4.0 3.0 3.0 1.7 
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The NCRP Report No. 132 (NCRP 2000) notes that the use of comparisons to fatalities in the 

less-safe industries advocated by the NCRP in 1989, was no longer viable because of the large 

improvements made in ground-based occupational safety. Table 5 shows an update to such a 

comparison, and indeed the decreased rate of fatalities in the so-called less safe industries, such as 

mining and agriculture, would suggest a limit below the 3% fatality level today compared to the 

1989. The most recent reviews of the acceptable levels of radiation risk for LEO, including a 1996 

NCRP symposium (NCRP 1997), and the recent report on LEO dose limits from the NCRP (2000) 

instead advocate that comparisons to career dose limits for ground-based workers be used. It is 

also widely held that the social and scientific benefits of spaceflight continue to provide 

justification for the 3% risk level for astronauts participating in LEO missions.  

In comparison to the NASA limits, the US nuclear industry uses age-specific limits that neglect 

any sex dependence. Here career limits are set at a total dose equivalent equal to the individuals 

Age  0.01 Sv. It is estimated by the NCRP that ground workers that reach their dose limits would 

have a lifetime risk of about 3%, but note the differences in dose values corresponding to the limit 

due to differences in how the radiation doses are accumulated over the worker’s career.  NASA’s 

short-term (30 day and 1-year) dose limits are several times higher than that of terrestrial workers 

because they are intended to prevent acute risks, while annual dose limits of 50 mSv (5 rem) 

followed by US terrestrial radiation workers control the accumulation of career doses.  

 

Table 5. Occupational death rates (National Safety Council) and life-time risks for 40-yr careers for the 

less-safe and safe industries. 

Occupation Deaths per 10,000  Workers 

per year 

Life-time Risk (%) of 

Occupational Death 

 1977 1987 2002 1977 1987 2002 

Agriculture 5.4 4.9 2.1 2.2 2.0 0.8 

Mining 6.3 3.8 2.9 2.5 1.5 1.2 

Construction 5.7 3.5 1.3 2.3 1.4 0.6 

Transportation 3.1 2.8 1.0 1.2 1.1 0.5 

Manufacturing 0.9 0.6 0.28 0.4 0.2 0.1 

Government 1.1 0.8 0.26 0.4 0.3 0.1 

All 1.4 1.0 0.36 0.6 0.4 0.2 

 

The exposures received by radiation workers in reactors, accelerators, hospitals, etc. rarely 

approach dose limits with the average annual exposure of 1 to 2 mSv, which is a factor of 25 below 

the annual exposure limit, and significantly less than the average dose for a 6-month ISS mission 

(100 mSv). Similarly, transcontinental pilots, although not characterized as radiation workers in 

the US, receive annual exposures of about 1 to 5 mSv and enjoy long careers without approaching 

exposure limits recommended for terrestrial workers in the US.  Under these conditions, ground-

based radiation workers are estimated to be well below the career limits, even if a 95% confidence 

level is applied. Because space missions have been relatively short in the past, requiring minimal 

mitigation, the impact of dose limits when space programs actually approach such boundaries, 

including the application of the ALARA principle, has been unexplored. 
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Summary of Approaches for Setting Acceptable Levels of Risk 

 

The various approaches to setting acceptable levels of radiation risks are summarized here (IOM 

2014): 

 

1. Comparison to Occupational Fatalities in Less-Safe Industries: The life-loss from attributable 

radiation cancer death is less than from most other occupational deaths. Also, at this time this 

comparison would be very restrictive on ISS operations because of continued improvements 

in ground based occupational safety over last 20 years. 

2. Comparison to Cancer Rates in General Population: The life-loss from radiation-induced 

cancer deaths can be significantly larger than from cancer deaths in the general population, 

which often occur late in life >70 years. 

3. Doubling dose for 20-yrs following exposure: Provides a roughly equivalent comparison based 

on life-loss from other occupational risks or background cancer fatalities during the worker’s 

career; however, this approach negates the role of mortality effects later in life. 

4. Use of Ground-based worker limits: Provides a reference point equivalent to standard set on 

Earth and recognizes that astronauts face other risks. However, ground workers remain well 

below dose limits, and are largely exposed to low-LET radiation where the uncertainties of 

biological effects are much smaller than for space radiation.  

 

A review of cancer and other radiation risks is provided by the NCRP Report No.153 (2006). 

The stated purpose of this Report is to identify and describe information needed to make radiation 

protection recommendations for space missions beyond LEO. The report contains a 

comprehensive summary of the current body of evidence for radiation-induced health risks and 

makes recommendations on areas requiring future experimentation. NCRP Report 23 (2014) 

provides a supplement to previous recommendations.  

 

C. Past Space Missions  

 

The doses on past space missions may be characterized using a variety of physical and 

biological dosimetry and radiation transport models (Wilson et al. 2004; Ballarini et al. 2006; 

Bernabeu and Casanova 2007; Cucinotta et al. 2008; Walker et al. 2013). Phantom torso 

experiments have also been performed on ISS and space shuttle (Badhwar 2000; Yasuda 2000; 

Cucinotta et al. 2008). The combined accuracy, or uncertainty, of these models is determined 

through validation against ground-based experiments (Walker et al. 2011; Sihver et al. 2012; 

Norman and Blattnig 2013) and space-flight measurements (Sato et al. 2006; Mrigakshi et al. 2012; 

Slaba et al. 2013b; Wilson et al. 2014; Wilson et al. 2015) as well as verification through inter-

code comparisons and benchmarking (Heinbockel et al. 2011a, 2011b; Lin et al. 2012; Slaba et al. 

2013b). Such studies continue to be pursued so that computational models can be confidently used 

to assess exposure levels where measurements are unavailable and overall physics uncertainty can 

be more rigorously quantified.  In addition, until 2013, cytogenetic biodosimetry was performed 

on US crewmembers of most ISS missions and on four astronauts who participated in Mir 

missions. Measureable increases in the yield of chromosome damage have been detected in the 

blood lymphocytes of astronauts after space missions of 3 to 6 months and this provides an 

alternative evaluation of organ dose equivalents that includes individual radio-sensitivity in the 
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presence of confounding factors such as microgravity. Cancer risk projections can also be obtained 

directly from cytogenetic data using the quantitative approach derived from the European Study 

of Cytogenetic Biomarkers and Health, a study of several thousand persons, which has shown 

healthy individuals with Medium (M), and High (H) levels of chromosome aberrations in their 

lymphocytes have a significant increase in cancer incidence and mortality compared to the Low 

(L) group (Hagmar et al. 1998). This approach has been used to assess cancer risk for astronauts 

(George et al. 2013a).  Figure 5 shows tertile risk rankings for 30 astronauts before flight and 

within three weeks of return from their ISS missions (panels A and B, respectively). Individual 

tertile rankings increased after space flight and only one individual remained in the low category.  

Analysis of follow up samples from 26 of the original 30 astronauts, taken at least 6 months after 

their respective flights (Figure 5, panel C), show that the tertile rankings remained in the high 

category for more than 50% of these individuals.  Crewmembers with increases that remain in the 

high category are projected to have a significant increase in life-time cancer risk.  

 

 

 
 

Figure 5.   Age adjusted tertile risk rankings for astronaut assessed before (panel A), a short time after 

(panel B), and 6 to 18 months after (panel C) a space mission. Age adjusted yield of total chromosome 

damage is plotted for each individual. Solid lines indicate the cut off for the low, medium, and high groups. 

Individual tertile rankings increased after space flight and only one individual remained in the low category. 

Follow up analysis show that 50% of these individuals remained in the high category at least 6 months after 

the mission.   

 

 Biodosimetry has also been performed on five astronauts who participated in two separate ISS 

missions, and results show consistent increases in chromosome aberration yield in lymphocytes 

after the second flight as shown in Figure 6.  The five plots in Figure 6 represent individual 

astronauts (A to E) and show a time course of aberration yields per 1000 cells plotted against time 

after first blood draw and supports the assumption of additivity of biological doses is generally 

valid for ISS crew exposures.  
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Figure 6.  From George et al. (2013a). A time course of aberration yields per 1000 cells plotted against 

time after first blood draw for five astronauts (A to E) and show and supports the assumption of additivity 

of biological doses is generally valid for ISS crew exposures. The shaded areas indicate the time spent in 

space during the mission and the line on plot A signifies the timing of a short duration shuttle mission 

lasting 11 days. This preliminary study supports the assumption of additivity of biological doses is generally 

valid for ISS crew exposures. 

 

 

Figure 7 shows results for the pre-flight and post-flight frequency of translocations, complex 

aberrations, and total exchanges. Total exchanges are increased post-flight over pre-flight values 

in all cases, and translocations increase in all ISS astronauts, but not for two astronauts - one 

returning from the Mir station and one on a Hubble repair mission. To test if the overall frequency 

of complex aberrations was increased by space radiation, Cucinotta et al. (2008) pooled results 

into two groups:  all ISS data and all ISS data plus results from other NASA missions. The 

observed increase in complex aberrations is highly significant (P<10-4), as is the increase in 

translocation frequency.   
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Figure 7. From Cucinotta et al. (2008) the frequency of translocations, complex aberrations, or total 

chromosome exchanges measured in each astronaut’s blood lymphocytes before and after their respective 

space missions on ISS, Mir, or STS. An increase in total exchanges was observed for all astronauts. 

Translocations (22 of 24) and complex aberrations (17 of 24) were increased in the majority of astronauts.  

 

 

Figure 8 provides a summary of the crew doses for all NASA missions through 2007. The cancer 

projection model of NCRP Report No. 132 (NCRP 2000) can be applied to these effective doses 

and indicate REID values approaching 1% for many astronauts that have flown on ISS or the 

Russian space station Mir (Cucinotta et al. 2001). 
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Figure 8. Summary of mission personnel dosimetry from all past NASA crew (Cucinotta et al. 2008). 

Effective dose, and population average Biological Dose Equivalent for astronauts on all NASA space 

missions, including Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Space Shuttle, NASA-Mir and ISS 

missions 

 

V. Radiobiology Evidence for Protons and HZE nuclei 

 

Transferring risk estimates derived from low-LET radiation to risk from exposure to the high-

LET radiation environment found in space requires new knowledge on the fundamental differences 

in biological responses (the so-called radiation quality effects) triggered by heavy ion particle 

radiation versus low-LET radiation associated with Earth-based exposures. The analysis of 

radiation quality takes into consideration the spatial pattern of energy distribution between 

different types of radiation and how this relates to the biological effects. Because the energy 

transferred per unit distance along a heavy ion track is much higher than that deposited for the 

same dose of low-LET radiation, the amount and type of damage and subsequent activation of 

damage response systems in the cell are expected to be different and studies with protons and HZE 

nuclei of RBEs for molecular, cellular and tissue endpoints, including tumor induction, document 

the higher risk for space radiation components (NAS 1996; NCRP 2006; Cucinotta and Durante 

2006). This evidence must be extrapolated to the chronic conditions in space and from the mono-

energetic beams used at NSRL and other accelerators to the complex mixed radiation types in 

space. Sufficient proof that experimental models represent cancer processes in humans, including 

estimating the effectiveness of shielding and biological countermeasures, must be obtained for 

high risk missions where acceptable levels of cancer risks are approached or perhaps exceeded. 

Evidence and progress in these areas is described next. 
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A. Cancer Induction by Space Radiation 

 

 A necessary step for improving space radiation cancer risk assessment are studies on the 

molecular pathways causative of cancer initiation and progression, and to extend these studies to 

learn how such pathways can be disrupted by HZE ions, including both genetic and epigenetic 

modifications noted as the hallmarks of cancer (Figure 9) (Hanahan and Weinberg 2000, 2011).  

Recent studies have provided insight into what has become known as the cancer niche, which 

involves the tumor microenvironment comprising cancer cells, and surrounding stromal and 

immune cells and their interactions, all of which are necessary to support tumor growth and cancer 

progression (Barcellos-Hoff et al. 2013; Illa-Bochaca et al. 2014; Turley et al. 2015).  This has 

generated a deeper understanding of tumor properties, and knowledge on how these interactions 

are modulated by radiation may lead to potential target for future countermeasure approaches. The 

goal of space radiation research is to establish a more mechanistic approach for understanding the 

biological impacts in order to better estimate risk and to answer questions, including whether HZE 

effects be can scaled from those of gamma-rays, whether risk is linear with low dose-rate, and how 

individual radiation sensitivity impacts risks for astronauts, a population selected for many factors 

related to excellence in health. 

 

  

Figure 9.  The hallmarks and emerging hallmarks of cancer (Hanahan and Weinberg 2011), enabling characteristics 

and possible mechanisms of radiation damage that lead to these changes observed in all human tumors.  

 

1. The Initial Biological Events 

 

Energy deposition by HZE ions is highly heterogeneous with a localized contribution along 

the trajectory of each particle and lateral diffusion of energetic electrons (δ-rays) many microns 

from the ion path (Goodhead 1994; Cucinotta et al. 2000). These particles are therefore 

characterized by a high-LET; however, they contain a low-LET component due to the high-energy 
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electrons ejected by ions as they traverse tissue. Biophysical models have shown that the energy 

deposition events by high-LET radiation produce differential DNA lesions, including complex 

DNA breaks, and that there are qualitative differences between high- and low-LET radiation both 

in the induction and repair of DNA damage (Prise et al. 1998; Sutherland et al. 2000; Rydberg et 

al. 2005; Wang and Wang 2014; Saha et al. 2014). Regarding cell survival curves, the low-dose 

region exhibits a repair shoulder for low-LET radiation, whereas the survival curve is generally a 

straight line for high-LET radiation (Hall 2006). High-LET radiation has also been shown to cause 

much more complex chromosome rearrangements than low-LET radiation, with the aberrations 

involving a greater number of chromosomes and breakpoints, as well as both intra- and inter-

chromosome exchanges (Durante et al. 2002; George et al. 2003; Johannes et al. 2004; Hada 2007). 

Furthermore, other studies have suggested that more complex clustered DNA lesions are produced 

by high-LET radiation compared with low-LET radiation, as evidenced by, for example, the 

smaller DNA fragments found following high-LET irradiation (Lobrich et al. 1996; Prise et al. 

2001; Rydberg et al. 2002; Belli et al. 2002) and the demonstration that ionizing particles (e.g., 

protons and iron ions) yield more lesion clusters relative to double strand breaks (DSB) compared 

with X-rays or -rays (Hada 2006). This complex clustered damage is characterized by clusters 

containing mixtures of two or more of the various types of lesions (e.g., SSB, DSB) within a 

localized region of DNA. Complex damage is an uncommon consequence of endogenous damage 

or low-LET radiation, and it has been associated with the increased relative biological 

effectiveness (RBE) of densely ionizing radiation.  

The repair of DSB is known to occur through direct end-joining and homologous 

recombination processes. Indications are 1) that for high-LET radiation, where complex DSBs 

occur with high frequency, little repair occurs, leading to cell death, or 2) that the mis-rejoining of 

unrepairable ends with other radiation-induced DSB leads to large DNA deletions and 

chromosome aberrations. In particular, it has been demonstrated that, regardless of radiation 

quality, the overall level of misrepaired damage significantly exceeds that of unrepaired damage 

(Loucas 2013). While the high effectiveness in cell killing provides the rationale for heavy-ion 

cancer therapy (hadrontherapy), residual damage in surviving cells is of concern for 

carcinogenesis. A comprehensive review by Sridharan et al. (2015) provides an examination of 

current knowledge on DNA damage and repair, associated oxidative stress and inflammation, and 

potential links and interplay between these early responses following HZE radiation and 

development of genomic instability associated with cancer development. Figure 10, from the 

Sridharan review, illustrates repair of simple and complex DNA lesions produced by low and high-

LET radiation and their relationship to genomic instability. 
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Figure 10. Repair of simple and complex DNA lesions induced by low- and high-LET radiation exposure. 
A majority of the DNA lesions induced by low-LET irradiation are simple lesions and are repaired within 
hours of induction via NHEJ- and HR-mediated repair pathways, with pathway preference dependent on 
cell cycle. On the other hand, a majority of the high-LET radiation-induced DNA damages are clustered 
lesions, which may impede DNA repair pathways, causing damage to remain unrepaired for longer 
periods (days to weeks). In addition to radiation-induced ROS, unrepaired DNA lesions may also increase 
the ROS levels in cells, causing further generation of simple to complex DNA lesions. 
Unrepaired/misrepaired lesions in mitochondrial or nuclear DNA (dotted line) may also further enhance 
and perpetuate ROS levels. Ultimately, the unrepaired/ misrepaired DNA lesions may promote genomic 
instability, leading to initiation of carcinogenesis (Sridharan et al. 2015). 

 

2. Chromosomal Damage and Mutation 

 

Heavy charged particles are very effective at producing chromosome exchanges with the yield 

of chromosome aberrations increasing linearly with dose (Hada et al. 2011; Ritter and Durante 

2010).  RBE values, estimated from total chromosome exchanges in human lymphocytes at the 

first post-irradiation mitosis, increase with LET, peaking around 100-200 keV/µm with an RBE of 

35, and then decrease sharply at higher LET (George et al. 2007). The detailed RBE versus LET 

relationship found for chromosome exchanges is similar to studies of mutation (Kiefer et al. 2002; 

Liber et al. 2014), in vitro neoplastic transformation (Yang et al. 1985), and induction of solid 

tumors in mice (Bielefeldt-Ohmann et al. 2012).  Additional studies of radiation quality 
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dependences of chromosome aberrations indicate that at a fixed value of LET, particles with lower 

charge number (Z) have a higher RBE compared to particles with a higher Z, and a saturation cross 

section was observed for different radiation qualities (George et al. 2013b). RBE values for 

mutation induction and chromosome damage indicate that low energy protons are significantly 

higher than unity and values are LET dependent (Belli et al.1993; Schmid et al.1998).  Yields of 

chromosome damage are similar for acute exposures of higher energy protons (5 to 2500 MeV), 

with RBE values for total exchanges close to unity and approaching an RBE of 2 for low dose 

exposures due to an increased number of complex exchanges at all proton energies compared to γ-

rays (George et al. 2015).   

The quality of chromosome damage is different when heavy ions are compared to sparsely 

ionizing radiation. Multi-color fluorescence painting techniques of human chromosomes have 

clearly demonstrated that HZE ions and protons induce a higher percentage of complex-type 

chromosome exchanges when compared to acute doses of low-LET radiation, and the complexity 

of observed rearrangements increases with increasing LET. Most of these complex chromosomal 

rearrangements will ultimately lead to cell death. In fact, only a small fraction of the initial damage 

is transmitted in mice 2 to 4 months after the exposure to energetic iron ions. Large differences in 

gene expression are observed between X-rays and HZE ions reflecting differences in damage 

response pathways (Ding et al. 2005, 2013, 2015). Qualitative differences in the type of gene 

mutations have also been reported (Kronenberg et al. 1994, 1995; Hryciw et al. 2015). A low RBE 

for the induction of late chromosomal damage has been measured in the progeny of human 

lymphocytes exposed in vitro to energetic iron ions, with the interesting exception of terminal 

deletions, that occurred with much higher frequency in the progeny of cells exposed to heavy ions 

compared to gamma-rays (Durante et al. 2002). Persistent loss of heterozygosity (LOH) on 

multiple chromosomes and severe karyotypic instability has been observed in the progeny of 

mammary epithelial cells that survived X-ray or iron-ion exposure (Sudo et al. 2008), while LOH 

on multiple chromosomes has also been detected in vivo following exposure to high energy protons 

(Grygoryev et al. 2014).  

 

3. Genomic Instability 

 

Genomic instability in the progeny of cells irradiated with heavy ions has been observed both 

in vitro and in vivo in several model systems (Nagar and Morgan 2005; Mao et al. 2005; Hu et al. 

2012; Werner et al. 2014). This high rate of abnormal genetic change includes single nucleotide 

mutations, structural alterations in chromosomes as well as numerical changes in whole 

chromosomes, and is considered a major driver of the carcinogenic process (Hanahan and 

Weinberg 2011). Sabatier et al. (1992; 2005) found that rearrangements involving telomere regions 

are associated with chromosomal instability in human fibroblasts many generations after exposure 

to accelerated heavy ions. Telomere dysfunction plays a crucial role in initiating or sustaining 

genomic instability (Sishc et al. 2015).  Cells containing telomere-deficient chromosomes will 

either senesce, or undergo B/F/B cycles, promoting genetic instability. The fate of normal cells 

containing a single terminal deletion is not known, but it has been shown that the loss of a single 

telomere in cancer cells can result in instability in multiple chromosomes (Shim et al. 2014, Feldser 

et al. 2003; Mase and DePinho 2002). These recent results suggest that telomere instability could 

be an important early event in the pathway to cancer induction by HZE nuclei. Shortened telomeres 
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are currently being examined as biomarkers of the development of secondary malignant neoplasms 

(Shay 2014). 

 

4. Cancer and Tissue Effects 

 

The number of studies of animal carcinogenesis with HZE nuclei is growing (Bielefeldt-

Ohmann et al. 2012; Rivina and Schiestl 2013; Sridharan et al. 2015; Barcellos-Hoff et al. 2015) 

and summarized in Table 6. In general, these animal studies demonstrate that the tumor spectra 

observed in irradiated animals is similar between low and high-LET irradiated animals and is 

dependent on the susceptibility of the specific model strain used, and HZE nuclei in general exhibit 

a higher carcinogenic effectiveness compared to low-LET radiation for induction of solid tumors. 

Relative biological effectiveness factors comparing gamma-rays to HZE ions have been measured 

in mice or rats for incidence for tumors of the skin (Burns et al. 1993), Harderian gland (Fry et al. 

1985; Alpen et al. 1993), mammary gland (Dicello et al. 2004), lung (Delgado et al. 2014; Wang 

et al. 2015), blood and liver (Weil et al. 2014). RBE values reported for tumor induction range 

from 6-10 for lung adenocarcinomas to values as high as 25-50 for other solid cancers.  RBE 

dependence on HZE radiation quality has been most extensively characterized in studies of mouse 

Harderian gland tumorigenesis. In this model, the RBE increases with LET and plateaus in the 193 

- 953 keV µm-1 range (Fry et al. 1985; Alpen et al. 1993). RBE values for acute myeloid leukemia 

are closer to 1 (Weil et al. 2009), with acute myeloid leukemias from both low-LET and high-LET 

animals exhibiting similar molecular characteristics (Steffen et al. 2013).  

 

 
Table 6 High-let Mouse Model Studies (Sridharan et al. 2015) 
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Table 6 Extended. 

 
 

There have been several recent reports of increased metastatic potential of tumors in models of 

HZE carcinogenesis (Trani et al, 2010, 2014; Datta et al. 2013, Weil et al. 2014; Illa-Bocacha et 

al. 2014); and reports of acceleration of cancer progression with dose fractionation  (Delgado et 

al. 2014). However, the risk and detriment of cancer will not be fully characterized until the 

relationship between radiation quality, dose, and latency, where tumors appear earlier after high-

LET irradiation, is adequately described. The earlier latency and increasing effectiveness found 

with HZE ions similar to earlier studies with neutrons (Ullrich 1984; Fry and Storer 1987), along 

with the lack of response of gamma-rays seen in many low dose studies, suggests that the scaling 

concepts using in current risk assessment approaches are unable to describe important qualitative 

effects and that relative biological effectiveness factors may in principle be indefinable or a faulty 

concept.  

Further studies employing additional animal models will be necessary to understand the risk 

of radiation carcinogenesis due to HZE ions along with studies to protect against initiation or 

progression of the disease.  Some key questions still unanswered are outlined in the recent review 

by Barcellos-Hoff et al. (2015). 

It is clear that ionizing radiation acts not only as a cancer initiator, where it directly imparts 

DNA damage and mutation, but it acts also as a cancer promoter, where it influences cancer 

development through a variety of indirect mechanisms that foster growth of pre-initiated cells 

through changes in the tissue microenvironment. Several studies have debated the relative 

importance of these effects comparing low and high-LET radiation impacts on direct DNA damage 

and mutation or on microenvironment effects such as extracellular matrix remodeling, intercellular 

communication and other non-targeted effects as contributors to carcinogenesis (Barcellos-Hoff et 

al. 2005, 2013; Illa-Bochaca et al. 2014). Tissue effects independent of DNA damage that have 
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been associated with cancer initiation or progression include genomic instability (Park et al. 2003), 

extracellular matrix remodeling, persistent inflammation, oxidative damage (Mothersill et al. 

2004; Werner et al. 2014) and cell migration and invasion (Patel et al. 2012). Other studies are 

exploring possible relationships between radiation and the activation of dormant tumors and 

modulation of angiogenesis (Folkman et al. 1989). Barcellos-Hoff et al. (2015) summarize the 

current status of the field of space radiation carcinogenesis and highlight the importance of 

elucidating the impact of radiation quality in experimental systems at the mechanistic level.  

 

5. Bystander Effects 

 

Bystander or non-targeted effects are defined as “effects manifesting in non-irradiated cells 

that received a signal(s) communicated from an irradiated cell” (Morgan and Sowa 2015), 

including induction of DNA damage responses in un-hit bystander cells (Klammer et al. 2015). 

These non-targeted effects, illustrated in Figure 11 from Li et al. (2014), may lead to supra-linear 

dose-response curves at low doses, perhaps reducing the effectiveness of spacecraft shielding, but 

they may also be protective by removing damaged cells from the organism. Both effects challenge 

the conventional linear no-threshold risk model assumption, which is currently adopted for 

radioprotection on Earth and in space. They also suggest important targets for biological 

countermeasures that are likely to be more effective than countermeasures targeting DNA damage.  

To date, at least two modes of bystander signal transmission have been identified, namely, via 

gap junctions between cells in direct contact with each other and medium-mediated diffusion 

(Nelson 2003). Recent studies have focused on elucidating the nature of the transmittal agent and 

have identified several molecules as potential mediators of the response, such as calcium (Lyng et 

al. 2006), nitric oxide (Shao et al. 2008), reactive oxygen species (ROS) (Yang et al. 2005; 

Narayanan et al. 1997; Autsavapromporn et al. 2013), cytokines such as interleukin-8 (Narayanan 

et al. 1999) and transforming growth factor-β (Shao et al. 2008), and enzymes such as Cox-2 (Zhou 

et al. 2005), NADPH oxidase (Azzam et al. 2002) and DNA damage response (Yang et al. 2011). 

The varied results from these studies suggest that the transmission mode is likely dependent on 

several factors, such as cell density, cell type, radiation dose, and the biological endpoint assessed. 

Cells have been shown to exhibit several responses to bystander signals, including genomic 

instability or delayed death, induction of apoptosis, enhanced cell growth, and mutations 

(Mothersill and Seymour 1997; Lorimore et al. 1998; Wu et al. 1999; Ponnaiya et al. 2011). 

Additionally, a generalized stress response and alterations in protein levels have also been detected 

(Lyng et al. 2000; Mothersill et al. 2001; Azzam et al. 1998). 
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Figure 11 (from Li et al. 2014) HZE-particle irradiation induces targeted and nontargeted (bystander) 

effects. Communication of stress-inducing molecules from cells exposed to an HZE particle (cells in red) 

and its fragmentation products (cells in orange or green) propagate stressful effects that lead to induction 

of oxidative stress in bystander cells (yellow). The progeny of the targeted and bystander cells may also 

experience oxidative stress. Cells in white are nonaffected bystander cells. 

 

Results in tissues suggest that biological responses differ between high and low LET radiation 

depending on the model context considered (2D vs. 3D vs. animal). Because of the many types of 

particles, energies, and doses of interest in space, extensive animal experimentation has been 

prohibited by costs in the past. Studies involving 3D human co-culture have been an effective 

method to study cancer risks in a more realistic context (Barcellos-Hoff et al. 2005; Riballo et al. 

2006; Yang et al. 2007). However, the results obtained from 2D and 3D cell culture models have 

been conflicting. For example, some studies have demonstrated decreased radiosensitivity and 

bystander effects in 3D compared with 2D models (Olive et al. 1994; Su et al. 2010), some have 

demonstrated no significant differences between models (Lin et al, 2009), and still other studies 

have revealed increased radiosensitivity in 3D models (Roig et al. 2009). The conflicting results 

from these studies, which employed a wide range of cell types and model parameters, highlight 

not only the importance of tissue architecture when evaluating radiation effects including 

bystander responses, but also the importance of investigating these responses in different cellular 

and tissue systems.  

Several investigations have explored bystander effects in animal models. In these studies 

(Koturbash et al. 2006; Mancuso et al. 2008), shielding was placed over a portion of the bodies of 

mice prior to irradiation, and bystander effects (e.g., DNA damage, DNA methylation, and 

apoptosis) were noted in this shielded region. Jain et al. (2011) observed late changes in molecular 

signaling pathways in liver mitochondria from head only irradiated animals, further solidifying the 

importance of non-targeted responses in vivo. Further studies in animal models are needed to better 

elucidate the contribution of non-targeted effects to cancer risk.  

Although many unknowns remain regarding the bystander effect and its implications, an 

important characteristic of this effect is that it is triggered by low radiation doses, irrespective of 

radiation quality, and saturates with increasing dose, usually by 10-30 cGy (Yang et al. 2005; 

Schettino et al. 2005;Yang et al. 2011). Thus, bystander effects are particularly important at low 

doses and low particle fluences and may have important consequences for astronauts on long-
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duration missions due to the low particle fluences that characterize the space radiation field. 

However, generalizations regarding the potential risk of bystander effects cannot yet be made due 

to the challenges of combining bystander study results from the literature into a cohesive 

framework and uncertainties in extrapolating results from in vitro studies to predict human cancer 

risk. 

 

6. Adaptive Response 

 

There is general agreement that significant differences exist in cellular responses to low-dose 

compared to high-dose radiation exposure, which may indicate distinct underlying mechanisms. 

There have been several studies performed that indicate an adaptive response to low-dose ionizing 

radiation can provide a level of protection against future exposures (Bhattacharjee and Ito 2001; 

Mortazavi et al. 2003; Elmore et al. 2008; Rithidech et al. 2012). This may be particularly 

important for understanding risks in the space environment because the GCR environment is 

comprised predominantly of protons, and it is realistic to expect that cells will be exposed to 

multiple hits of protons prior to being traversed by an HZE particle.  Several studies have begun 

examining whether prior exposure to protons provides any level of adaptive protection prior to the 

HZE exposure with diverse results that are dependent on the model system, the order of ions, time 

between exposures, doses used, and the endpoints being measured. For example a recent study by 

Buonanno et al. (2015) shows a low dose exposure to protons (20 cGy) provided protection against 

chromosomal damage induced by a subsequent exposure to iron ions (50 cGy). However, Elmore 

et al. (2011) reported no evidence for adaptive effects on cell transformation when they examined 

combinations of low dose iron (10 cGy) followed by 1 Gy proton or low dose proton (10 cGy) 

followed by 1 Gy iron.  Other studies examined the dependence on LET (Sowa et al. 2011); the 

impact of order or particle delivery (Sutherland et al. 2005) and impact of time intervals (Zhou et 

al. 2006; Bennett et al. 2007). These studies highlight the difficulties and as well as importance of 

development of realistic GCR simulator capabilities, described at the end of this report, to 

accurately assess biological impact of the mixed field environment in space.  

 

7. Oxidative stress and inflammation  

 

Oxidative stress is an imbalance between the production of reactive oxygen species (ROS) and 

the ability of the body to mitigate their harmful effects.  It is a well-known byproduct of radiation 

exposure and impacts all components of the cell including proteins, DNA and lipids through the 

production of free radicals or peroxides, illustrated in Figure 12. It has been linked to numerous 

diseases, premature aging, and persistent ROS are thought to play a critical role in DNA damage, 

telomere dysfunction and fuel inflammatory processes which can lead to the development of 

cancer (Azzam et al. 2012; Sridharan et al. 2015; Li et al. 2014). Genomic instability has been  
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Figure 12. Effects of high atomic number (Z) and high-energy (E) (HZE) ion irradiation in mammalian 

cells. Traversal of a cell by a densely ionizing HZE particle results in direct and indirect cellular effects on 

macromolecules. Absorption of ionizing radiation by living cells directly disrupts atomic structures, 

producing chemical and biological changes and indirectly through radiolysis of cellular water and 

generation of reactive chemical species by stimulation of oxidases and nitric oxide synthases. Ionizing 

radiation may also disrupt mitochondrial functions significantly contributing to short- and long-term effects 

leading to persistent alterations in lipids, proteins, nDNA, and mtDNA(From Li et al. 2014) 

 

 

highlighted as an evolving hallmark of cancer (Coleman and Tsongalis 1999; Negrini et al. 2010), 

and has been reported in a number of studies as a result of persistent ROS (Werner et al. 2014; 

Kim et al. 2006; Azzam et al. 2012).  Datta et al. (2012) reported the LET-dependent presence of 

markers of chronic oxidative stress in intestinal tissue of mice up to one year post exposure, with 

higher elevation of intracellular ROS and mitochondrial superoxide in cells exposed to high LET 

compared to low LET.  A similar study by Cheema et al. (2014) revealed distinct LET-dependent 

metabolomics changes related to inflammatory signaling in mouse intestinal tissue at 2 months 

post exposure. Additional evidence indicates that other factors associated with spaceflight, such as 

microgravity, may be associated with an increase in ROS production, cellular antioxidants and 

tissue remodeling due to a shift in biological and metabolic homeostasis which may have important 

implications in the context of space radiation exposure (Mao et al. 2014). A summary of ROS 

related studies using high-LET radiation is provided in Table 7 from Sridharan et al. 2015. 
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Table 7. Summary of ROS Related High-LET Studies (from Sridharan et al. 2015) 

 
Notes. MN ¼ micronuclei, CE ¼ cloning efficiency. Folds not provided in article are estimated based on graphs to make 

comparisons possible. 
* Energy is MeV/u except where indicated as kVp. 
** Bystander experiment indicates paper is looking at indirect effects in cells not directly exposed. 
 
 

Along with chronic oxidative stress, inflammation has been identified as a critical pathway in 

the development of cancer and other chronic diseases. Inflammatory responses triggered after 

radiation exposure can act directly, or indirectly via the tissue microenvironment, to promote 

sustained oxidative damage, alterations in cellular gene expression and signaling pathways that 

enhance cell proliferation and cell survival and support other abnormal changes associated with 

cancer development (Hayashi et al. 2003; Colotta et al. 2009; Del Prete et al. 2011; Barcellos-Hoff 

et al. 2014). Several studies provide evidence for chronic inflammatory responses following HZE 

ion exposure at relatively long times post exposure. Lorimore and Wright (2003) exposed 

hematopoietic stem cells to ionizing radiation and reported genomic instability as a result of 
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inflammatory responses.  In a more recent study by Jangiam et al. (2015), mice exposed to 48Ti 

ions exhibited a dose dependent increase in both oxidative stress and inflammation in liver tissue 

that persisted up to 6 months following exposure, and Tungjai et al. (2013) reported similar 

evidence for chronic inflammation in both the heart and bone marrow of mice at 6 months post 

exposure to 28Si ions. A summary of high-LET inflammation related studies is Table 8 from 

Sridharan et al. 2015. 

 
Table 8. Summary of high-LET inflammation related studies (from Sridharan et al. 2015). 

 
 

 

Of critical interest for space radiation risk assessment are studies that suggest that the complex 

DNA damage produced by heavy ion radiation is associated with persistent oxidative stress, 

chronic inflammation, and genomic instability at levels not observed following exposure to similar 

doses of low-LET radiation. These biological responses may underlie the observations of 

decreased latency and the potential for increased aggression of tumors induced by heavy ion 

exposure. Also, their potential contribution to the etiology of cardiovascular and CNS diseases, 

the other major radiation risk areas of concern for spaceflight, make them potentially relevant 

targets for cross-risk biological countermeasure development. 
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8. Animal Models for Carcinogenesis  

 

A significant challenge for studying the development of cancer due to space radiation is in 

observing the effect in relevant experimental models.  Many studies have been performed using 

traditional cell culture in both two dimensional and more recently, three dimensional forms to 

study the effect of various doses, qualities and dose rates due to space radiation. Data from 

exposure to ionizing radiation from nuclear disasters or radiotherapy aids in understanding some 

effects however, it is not possible to recreate an exposure to the space radiation environment in 

humans on the ground. Therefore, it is critical to use relevant animal models to help further 

understand the risk of carcinogenesis and develop suitable biological countermeasures to help 

mitigate the initiation or promotion of carcinogenesis.  A recent review by Rivina et al. (2013) 

discussed the value and relevance of using common laboratory mice to study cancer.  They argue 

that due to its molecular and physiological similarities to man, small size, ease of breeding in 

captivity and a fully sequenced genome the Mus musculous remains one of the best animal model 

systems for cancer research. Studies on radiation carcinogenesis due to HZE ions have been 

performed with rat strains and stocks, inbred mouse strains and their F1 hybrids, genetically 

diverse stock, and genetically engineered mouse models (Barcellos-Hoff et al. 2015, Sridharan et 

al. 2015). Genetically engineered models have provided insight into the development of lung 

cancer and colon cancer (Delgado et al. 2014; Moding and Kirsch 2012; Trani et al 2014) while 

the development of a collaborative cross inbred mouse has provided a model to better represent 

the heterogeneous human population (Threadgill et al. 2011). 

 

VI. Models of Cancer Risks and Uncertainties 

 

A. Track-structure based Risk Model 

 

This section describes the revisions to the NASA cancer risk model and associated 

uncertainties. NASA’s previous estimates of radiation risk were based on cancer mortality, 

background mortality, and models of excess relative risk (ERR) and excess absolute risk (EAR) 

from the Japanese LSS cohort (Cucinotta et al. 2006). More recently, the BEIR VII report (BEIR 

2006) has suggested that cancer mortality risk should be estimated by utilizing incident cancer 

rates, transferring that risk to the cohort of interest, and scaling the transferred risk by the ratio of 

the cancer morality and incident rates of the host population. The discussion that follows is taken 

from Cucinotta et al. (2013).    

The risk of radiation exposure induced cancer (REIC) is calculated by folding the instantaneous 

hazard rate for cancer incidence, I , with the probability of surviving to age t  free of cancer: 

 

(1)  
max

0, ) ( , , ) ( ) exp ( ,REIC( , )
E E

a

E T I E T M E T
a a

H dt a a H S t z aa d Hzl l
é ù

= -ê ú
ê úë û

ò ò , 

 

where a is the age, aE is the age at exposure, t is the time, amax is the maximum attained age, 0( )S t

is the survival function of the background population, TH  is the organ dose equivalent for each 

tissue, T , and λM is the cancer mortality rate. The tissue specific instantaneous cancer incidence 

rate is given by 
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(2) 0( , , ) [ ERR( , ) ( (1-) )EAR( , )]
DDREF

T
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H
H a a a a a a al n l n= + , 

 

where νT is a parameter used to allow contribution for multiplicative (ERR) and additive risk 

models (EAR), λI0 is the cancer incidence rate of the background population, and DDREF is the 

dose-rate and dose reduction factor. 

Likewise, the risk of radiation exposure induced death (REID) is determined by folding the 

instantaneous cancer mortality hazard rate, λM, with the probability of surviving to age t free of 

cancer (Cucinotta et al. 2013) 

 

(3) 
max

0REID( , ) ( , , ) ( ) exp ( , , )
E E

a

E T M E T M E T
a a

a H dt a a H S t dz z a Hl l
é ù

= -ê ú
ê úë û

ò ò , 

 

with  

 

(4) 0
0

0

(1-( , , ) [ ( , ) ( , ]) ) T
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H
H a a ERR a a EAR a a

DDREF

l
l n l n

l
= + .  

 

In equation (4), λM0 is the cancer mortality hazard rate for the background population. 

 

 Generalized ERR and EAR models were fitted to LSS cancer mortality and incidence data with 

Poisson likelihood methods and include latency (UNSCEAR 2008). The ERR is linear-quadratic 

in dose response and is given as  

 

(5) 
2

1 2 3 4ERR( , , ) ( ) exp[ ln( ) ln( ) ln( )]D
s E Ea aE D D D e l a a a aga b k k k k= + + - + + , 

 

where α, β, γ, κ1, κ2, κ3, κ4, and ls are cancer specific parameters (UNSCEAR 2008).  A similar 

generalized EAR model is used with a different set of parameters.  Although the above ERR and 

EAR models are used for most tissues, there are some exceptions. The BEIR VII, 2006 models are 

used for breast and thyroid cancer risks and the Preston et al. (2007) models are used for the 

prostate, uterus, ovary, oral cavity, non-melanoma skin risks, as well as for other tissues that were 

not included in the BEIR VII and UNSCEAR models. 
  

1. Biological Effects Related to Track Structure 

 

The tissue dose equivalents appearing in equations (1) - (4) may be obtained by folding the 

physical tissue fluence with a radiation quality factor, Q, representing the increased effectiveness 

of HZE particles, as compared to γ-rays, for the same biological endpoint. These factors are based 

on subjective assessment of maximum RBE values for relevant endpoints from radiobiology 

experiments. In the past, NASA has utilized the LET-dependent quality factor, Q(L), 

recommended by the ICRP (ICRP 1991).  
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Animal studies generally demonstrate that HZE nuclei have higher carcinogenic effectiveness 

than low-LET radiation. However, the number of studies of animal carcinogenesis made with HZE 

nuclei is extremely limited. These studies used one or only a few ion types, providing little 

information on the possible radiation quality dependence of RBE. Both the ICRP and NCRP have 

noted limitations in radiobiology data to assess radiation quality factors (ICRP 2003; NCRP 2006). 

Despite the limitations in available data, an improved description of the quality factor for the 

particles found in space was provided by Cucinotta et al. (2013) by considering track-structure 

effects. Track structure descriptions are used in theoretical models of biological response to 

understand and extrapolate limited radiobiology data to other radiation qualities and doses. More 

recently, Borak et al. (2014), have presented strong arguments for revised quality factors that are 

new functions of LET for solid cancers and leukemia. This revisits the method NASA used 

previously where quality factor was dependent on LET under the ICRP (ICRP 1991) 

recommendations. A significant difference in the work by Borak et al. (2014) and the ICRP (ICRP 

1991) is the ability to distinguish between solid cancers and leukemia.      

Observations by Goodhead et al. (1980) and earlier arguments from Katz (1970) predict that 

biological effects would be highly influenced by δ-ray effects rather than by LET alone. The 

number of δ-rays created by an ion with charge Z traversing a biological target is proportional to 

the track structure parameter XTR = (Z*/β)2, where Z* is the effective charge number that adjusts Z 

by atomic screening effects important at low kinetic energies and high Z, and β is the ion velocity 

relative to the speed of light. Figure 13 shows such a description comparing the frequency of 

energy deposition above 300 eV in a volume the size of the nucleosome. The comparisons illustrate 

that the parameter (Z*/β)2 provides an improved descriptor of energy deposition in small volumes 

compared to LET. Deviations from a unique (Z*/β)2 dependence occur at low energy where the 

curves branch for distinct charge numbers.  

 

 

 
 

Figure 13. Number of nucleosomes per cell receiving 300 eV or more as a function of LET (left panel) or (Z*/β)2 

(right panel). Calculations are shown for H, He, Si, and Fe nuclei using methods of Cucinotta et al. (2000). 
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Figure 14. Comparison of quality factor based on track structure to quality factor based on LET propagated through 

aluminum and water for A) solid cancers and B) leukemia (Borak et al. 2014) 

 

For identical LET values, the ion with the lowest charge is predicted to be more effective at 

energies above a few MeV/u (Cucinotta and Kim 2013).  The recent work by Borak et al. (2014) 

indicates that quality factor can be determined as a function of LET without taking into 

consideration charge or energy of the incident radiation.  A comparison of NASA’s quality factor 

and the quality factor calculated using the method of Borak et al. (2014) propagated through 

aluminum and water for solid cancers and leukemia demonstrate good agreement (Figure 14). 

Research at the NSRL is making new estimates of radiation quality effects for a variety of 

endpoints with the focus on approaches to mechanistic understanding of biological effectiveness. 

However, very few comprehensive studies have been completed at this time. Here we note that, in 

the past, very detailed studies of radiation quality were made for DNA breaks, as well as for cell 

inactivation and mutation for a large number of ion types. Such extensive studies would be difficult 

to repeat today because of the higher costs of many current experimental approaches, and certainly 

would take many years to complete. These older studies are useful to consider in terms of track-

structure models.  

 

2. Risk Cross Section and NASA Quality Factor 

 

The biological action cross section, σ, is the probability for a given endpoint - such as mutation 

or induction of tumors - per unit fluence and is useful when exponential and linear dose response 

curves are suitable. The following parametric model of the risk cross section is recommended for 

low doses (Wilson et al. 1993; Cucinotta and Wilson 1995; Cucinotta et al. 2013) 

 

(6) 0( , ) ( , ) [1 ( , )]
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(7) exp(( , ) [1 / )]m

TRP Z E X   .  

In equation (7), β is the ratio of the particle speed to the speed of light, XTR is the track structure 

parameter. The parameters Σ0, κ, and m are estimated from radiobiology experiments. Note that Σ0 

is the maximum value of the risk cross section and is related to maxRBE (Cucinotta et al. 2013). 

The recommended NASA radiation quality factor is defined by using the risk cross section in 

equation (6), and is given by (Cucinotta et al. 2013, Cucinotta 2015) 

 

(8) ( )TH
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where αγ is the low LET slope parameter, which is estimated from human epidemiology data from 

 radiation. The extra term in parentheses on the far right of equation (8) modifies the quality 

factor (or action cross section) at low energies to account for thindown. The value of ETH has been 

set at 0.2 based on experimental data for H and He. Thindown results when the spatial distribution 

of δ-rays from an ion becomes limited by kinematics to a size smaller than the biological target. 

The revised radiation quality factor may be used to compute tissue dose equivalents for space 

radiation environments, allowing the cancer incidence and mortality rates to be computed in terms 

of particle-specific charge and kinetic energy, instead of LET alone. (Cucinotta et al. 2013).  Borak 

et al. (2014), however, have demonstrated good agreement between NASA’s quality factor and an 

LET dependent quality factor for solid cancers and leukemia suggesting this may be a revised 

method to consider for determining quality factor in general. 

  

3. Uncertainties in the Projection Model 

 

There are various sources of uncertainty in assessing the risk associated with radiation 

exposure. In the current risk model, these are classified as uncertainties in the low-LET risk model, 

risk cross section (quality factor), and physics (fluence). The following section discusses various 

probability distribution functions that are used for propagating uncertainty in the estimation of 

REIC and REID.  

 

Uncertainties in Low-LET Epidemiology Data  

 

Low-LET risk uncertainties are incorporated into the hazard rate by sampling quantiles 

(random variables) from probability distribution functions (PDF) that represent dosimetric, 

statistical, bias, risk transfer, and risk coefficient uncertainties (Cucinotta et al. 2013): 
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where λ0 is the baseline hazard rate per Sv, and xα are the quantiles whose values are sampled from 

the associated PDF. Note that the DDREF applies only to the solid cancer risk and not the leukemia 
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risk under the stated assumptions. Cucinotta et al. (2013) defines the following subjective PDFs, 

Pα(xα), for  each factor that contributes to the acute low LET-risk projection: 

1. PD represents the random and systematic errors in the estimation of the doses received by 

atomic-bomb blast survivors. It is represented by a log-normal distribution with a 

geometric mean of 0.9 and a geometric standard deviation of 1.3; 

2. Ps represents the distribution in uncertainty in the risk coefficient that is associated with 

the increase in risk with increasing radiation exposure. It is assumed as a normally 

distributed PDF with a mean of one and a tissue specific standard deviation;   

3. PB represents any bias resulting for over- or under-reporting cancer incidents. It is assumed 

as a normal distribution with a mean of 1.0 and a standard deviation of 0.05; 

4.  PT represents the uncertainty in the transfer of cancer risk following radiation exposure 

from the Japanese population to the US population. Both additive and relative risk models 

were considered by NCRP 126 in assessing the uncertainties in such transfer. PT is a 

uniform distribution about the preferred weight (Cucinotta et al. 2013) 

5. PDr represents the uncertainty in the knowledge of the extrapolation of risks to low dose 

and dose-rates, embodied in the dose and dose-rate reduction factor (DDREF).  Based on 

a Baysian analysis, Cucinotta et al. (2013) have recommended a t-distribution with a central 

estimate of 1.5 for the PDr. 
 

Uncertainties due to Dose-Rate and Protraction Effects for Ions 

 

It is not feasible to perform long duration (months) exposure to space relevant radiation doses 

and dose-rates.  For low dose-rate and protracted proton and HZE radiation exposure of more than 

a few months, new biological factors may influence risk assessments, including redistribution in 

the cell cycle, repopulation, or promotional effects, especially when particle fluences are large 

enough to lead to multiple hits of target cells or surrounding cells and tissue environments. With 

the increase in proton and carbon ion therapy treatment centers, there is a limited amount of human 

data on high-dose, high dose-rate protons and carbon ions, however, no human data exists on other 

HZE ions and there is very little experimental data at space relevant doses and dose-rates for these 

particle types.  Confidence in using radio-epidemiological data for acute (A-bomb survivors) or 

fractionated (patient) data is decreased when applied to protracted exposure. Experimental data for 

protracted proton or heavy ion irradiation in experimental models of carcinogenesis is almost non-

existent. Burns et al. (1994) found split doses of argon ions separated by a few hours up to one-

day increased the risk of skin cancer in rats. Alpen et al. (1994) found using seven two-week 

fractions of 0.07 Gy of iron an increase in risk of 50% compared to a single acute dose of 0.4 Gy 

for Harderian gland tumors in mice.  A study of chromosomal aberrations in human lymphocytes 

(George et al. 2001) for acute and low dose-rates (0.08 Gy/hr) with 250 MeV protons, showed less 

sparring than found for gamma-rays.  The Skyhook study of Ainsworth et al. (1986) considered 

life-shortening in mice comparing single acute with weekly fractions of several ions; however, the 

results were unclear with regards to any increase or decrease in risk.  

For gamma-rays and neutrons, a good number of studies for cancer induction or life-shortening 

in mice exists, showing sparing effects for gamma-rays, and that neutron effects may be increased 

due to protraction under certain conditions in some tissues (Ullrich 1984; NCRP 1990). Contrary 

to these reports, Daniels and Schubauer-Berigan (2011) performed a meta-analysis across multiple 

studies involving human workers exposed to protracted low-dose gamma radiation with doses 
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ranging between 5.6-810mGy  and found it to be significantly associated with the incidence of 

leukemia.  Other studies did not find an increase in tumor incidence low doses and dose-rates of 

0.05 mGy/d (20 mGy total dose) or 1.1 mGy/d (400 mGy total dose), but noted an increased 

incidence of several tumor types affecting both sexes at 21 mGy/d (8000 mGy total dose) (Tanaka 

et al. 2007).   Important questions related to the differences in life-span, cell turn-over rates, or 

mechanisms of initiation or promotion in humans and mice, make estimates of the effects of 

protraction on risk difficult. If protraction effects do increase the risk from high LET radiation, 

then such effects would be more important for a Mars mission than the shorter lunar missions. In 

space, each cell will be traversed about every two to three days by a proton or delta-ray produced 

by ions in adjacent cells, with a decreasing frequency from weeks to months as the charge of the 

HZE nuclei increases (Cucinotta et al. 1998). Studies of mixed-fields of protons and HZE ions are 

needed to understand uncertainties in dose-rate and protraction effects from space radiation. 

Efforts are underway to incorporate a mixed field GCR simulated environment at the NSRL in 

order to address these questions (Norbury et al. 2016).  Uncertainties related to radiation quality, 

dose-rate, and protraction could lead to correlations that will be difficult to describe when based 

on limited experimental data. Methods to treat correlation effects will be needed when additional 

data on protraction effects become available. 
 

Radiation Quality and Latency or Temporal Patterns of Risk  

 

There is an additional radiation quality uncertainty introduced assuming the time dependence 

for low and high LET radiation is identical.  Data on tumors or genomic instability in mice with 

neutrons (Ullrich et al. 1984, 1998; NCRP 1990) and the studies of rat or mammary carcinogenesis 

with HZE nuclei (Burns et al. 1994; Dicello et al. 2004; Barcellos-Hoff et al. 2015), suggest that 

the latency time is appreciably reduced for high LET compared to low LET radiation.  There is 

sparse data available to estimate the impact of these differences on uncertainties. A radiation 

quality dependent latency is more important in the additive transfer model than the multiplicative 

transfer model, especially at younger ages of exposure. We ignore these uncertainties; however, 

we replace the 10 year minima latency assumption made for low LET by the step-in latency model 

(Pierce et al. 1996) used for the leukemia risk. The effects of these assumptions will need to be 

addressed when data and knowledge on underlying mechanisms become available.  

 

Uncertainties in Quality Factor (Risk Cross Section) 

 

Uncertainties in the quality factor are incorporated by Monte Carlo samples of quantiles from 

PDF associated with m, κ, and Σ0 / αγ from equations (7) and (8). There is an additional PDF that 

multiplies NASAQ  and is used as a correction to the quality factor for high energy protons. The PDF 

for each of the uncertainties are described below, and parameter estimates have been provided 

elsewhere (Cucinotta et al. 2013). 

 

1.  Slope parameter m: A discrete distribution for the slope parameter is used, with slope m = 

[1, 2.5, 3, 3.5, 4] and corresponding weights [0.15, 0.20, 0.40, 0.20, 0.05]. 

2. Track structure parameter κ: A normal distribution with mean of 1 and standard deviation 

of 1/3 is used.  
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3. PDF for Qmax = Σ0 / αγ: A log normal distribution with geometric mean (GM) of 1 and 

geometric standard deviation (GSD) of 1.4 is used for solid cancer; for leukemia, a normal 

distribution with mean of 1 and standard deviation of 1.6 is used.  

3.  High energy proton correction: For protons with energies greater than 150 MeV, a normal 

distribution with mean of 1 and standard deviation of 0.15 modifies NASAQ . 

Uncertainties in Fluence (Physics) 

 

Uncertainty in determining the radiation environment within radiosensitive tissues includes 

uncertainties in estimating the ambient radiation field in space (boundary condition), shielding 

geometry and human phantom model, nuclear and atomic physics, and particle transport. In the 

current NASA cancer risk projection model, these combined uncertainties have been subjectively 

represented with a normal distribution with mean 1.05 and standard deviation of 1/3 is used light 

ions (Z < 4). For heavy ions (Z > 4), a normal distribution with mean 1 and standard deviation of 

1/4 is used. Ongoing verification and validation efforts are focused on more rigorously quantifying 

combined physics uncertainties used in risk projection models.  

 

B. Systems Biology Modeling 

 

Systems biology is a rapidly growing field due to the advances in the various -omics techniques 

over the last decade. Along with it, computational biology has emerged as a useful path to reconcile 

the various -omics relationships and draw conclusions from the vast data sets generated.  This area 

has become a focus for radiation carcinogenesis and several groups have begun implementing 

systems biology to understand different biological organizations along different time-scales to 

uncover relationships of the key processes involved (Barcellos-Hoff et al. 2014).  Gene and 

molecular networks focus on mapping mechanistic and structural properties of the system (Conesa 

and Mortazavi 2014).  Using these techniques, Del Prete et al. (2011) revealed two molecular 

pathways involved in cancer development due to inflammation.  In a study involving low dose 

radiation (10cGy X-rays), researchers applied a comprehensive –omics analysis including 

proteomic, phosphoproteomic and metabolomic platforms to determine the temporal impact on 

human tissue using in vitro 3D full thickness human skin models (Tilton et al. 2015).  Their 

research uncovered signaling mechanisms and common molecular and pathway responses to low 

dose ionizing radiation.  Comprehensive   -omics characterization of cancers that arise due to heavy 

ion exposure will support systems biology risk modeling efforts, extrapolation of results to human 

cancers, and also help to drive biomarker identification for disease monitoring and future 

countermeasure development and testing.   

Computational and theoretical models are currently being developed to describe mechanistic 

or structural behavior of systems and networks as well.  Several researchers have employed agent 

based modeling (ABM) to better understand stasis of specific diseases.  Mukhopadhyay et al. 

(2010) used ABM to simulate cancer processes while von Neubeck et al. (2013) developed an 

ABM to determine the effects of heavy ion radiation on skin homeostasis.  Others have developed 

mathematical models to extrapolate risks from high-dose to low-dose based on radiation induced 



Risk of Radiation Carcinogenesis 

  

 

   

46 

 

foci (Neumaier et al. 2012), analyze the NHEJ repair pathway (Li et al. 2014) and to study radiation 

induced base excision repair (Rahmanian et al. 2014).   

Multi-scale systems approaches that relate molecular damage and modifications of signal 

transduction pathways to cellular and tissue effects are important to achieve the required levels of 

accuracy in risk estimation required for long duration space flight. An integrated systems biology 

based risk assessment model using multiscale modeling approaches will provide the accuracy to 

predict individual based risk in support of long duration space travel. The integration of high 

throughput genomics and proteomics data sets for critical cancer development processes identified 

through mechanistic studies into a systems biology understanding of biomedical and fundamental 

biological processes is a critical aspect in achieving this overall goal.  It is anticipated that this risk 

assessment model or computational framework will ultimately result from the assembly of distinct 

modular components, or building blocks, that connect across multiple levels of biological 

organization.  The ultimate goal is to develop these models to provide information on the individual 

level.  This will be important for future exploration missions since the size of the crew will be 

limited and individual response will be critical to their health and the mission.  Personalized 

medicine is on the forefront of research.  Schmidt and Goodwin (2013) describe an -omics based 

systems analysis to facilitate development of personalized countermeasures for astronauts.  It is 

likely that this area will be advanced enough to be of benefit to NASA and the crew by the time a 

deep exploration mission occurs involving humans. 
 

VII. Risk for Exploration Mission Operational Scenarios 

 

The accuracy of GCR environmental models, transport codes, and nuclear interaction cross 

sections described above allow NASA to make predictions of space environments and organ 

exposures to be encountered for missions to the moon or Mars. However, there are major questions 

that arise due to the lack of knowledge on biological effects. For cancer risk projections, 

propagating individual uncertainties in factors that enter risk model calculations is used to place 

reasonable bounds on cancer risks to be encountered.  

 

A. Risk Estimates for Space Exploration Missions 

 

In implementing a numerical procedure for propagating the uncertainties discussed in section 

3, equation (9) is inserted into the expression for REID (or REIC), and a large number of Monte 

Carlo trials (~105) are performed. In each trial, deviates are sampled from the uncertainty 

distributions and applied to the radiation quality factor or hazard rate. Results for the REID 

estimates are binned and the median values and confidence intervals found. Table 9 gives estimates 

for the number of safe days in space for various age groups and populations. The number of safe 

days is defined as the maximum number of days in space to be below 3% REID at a 95% 

confidence level (CL). 
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Table 9. Safe days in space, which is defined as the maximum number of days to be below 3% REID at a 

95% CL. Calculations are for average solar minimum with 20 g/cm2 aluminum shielding. Values in 

parentheses are for the case of the deep solar minimum of 2009 (Cucinotta et al. 2013). 

 

aE, y 

Females Males 

U.S. Avg. 

Population 

Never-

smokers 

U.S. Avg. 

Population 

Never-

smokers 

35 106 (95) 187 (180) 209 (205) 271 (256) 

45 139 (125) 227 (212) 232 (227) 308 (291) 

55 161 (159) 277 (246) 274 (256) 351 (335) 
 
 

B. Biological and Physical Countermeasures 

 

Identifying effective countermeasures to reduce the biological damage produced by radiation 

remains a long-term goal of space research. As noted by Durante and Cucinotta (2008), such 

countermeasures may not be needed for a lunar base, but probably for the Mars mission, and 

definitely for exploring Jupiter or Saturn’s moon Titan or the nearby satellites. In all basic 

radioprotection textbooks, it is stated that there are three means to reduce exposure to ionizing 

radiation: increasing the distance from the radiation source, reducing the exposure time, and by 

shielding. Distance plays no role in space, as space radiation is omnipresent. Time in space is likely 

to be increased rather than decreased given plans for exploration and colonization. Shielding 

remains a plausible countermeasure, albeit a prohibitively costly one in light of current launch 

mass capabilities and may actually increase exposures beyond certain thicknesses due to neutron 

build-up and electromagnetic cascades (Slaba et al. 2013a).  

 Other strategies can be effective in reducing exposure, or the effects of the irradiation, in 

space. These strategies include the choice of an appropriate time of flight, administration of drugs 

or dietary supplements to reduce the radiation effects, and crew selection.  

Biomarkers will aid in determining when and if a biological countermeasure is required based 

on individual exposures and sensitivities.  This is a rapidly expanding area of research.  Biomarkers 

have currently been developed in support of mass triage for potential nuclear disasters or radiation 

terrorism. The primary method to assess radiation exposure previously was by analyzing 

chromosome aberrations: dicentric for short-lived damage and translocations for long-lived.  This 

is a time consuming method and is being replaced by biomarkers that are based on genetic damage 

identified from peripheral blood mononuclear cells (Dressman et al. 2007; Paul and Amundson 

2008; Lucas et al. 2014), breath (Phillips et al. 2015), protein (Bazan et al. 2014) and more recently 

metabolites (Laiakis et al. 2015).  These biomarker methods offer rapid assessment, providing 

information quickly that will facilitate treatment options.  

 

1. Radioprotectors and Mitigators 

 

The search for efficient radioprotectors and mitigators is a major goal of research in radiation 

protection and therapy. Both radiation injury and oxygen poisoning occur through the formation 

of reactive oxygen species (ROS); therefore, antioxidants have been heavily studied as a way to 

mitigate the damage resulting from ROS (Weiss and Landauer 2003).   
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The ideal biological countermeasure will provide cross-risk mitigation or protection through 

antioxidants that provide free radical scavenging, common pathways (eg., inflammatory) or other 

biological pathway that intersects multiple risks. Several biological countermeasures have been 

developed and studied in support of acute radiation exposure.  WR-2721 (amifostine or Ethyol®, 

MedImmune Oncology, Inc.) is a phosphorothioate that confers radioprotection and is approved 

by the FDA. It has been investigated extensively as an antioxidant that scavenges free radicals 

(Xiao and Whitnall 2009; Langell et al. 2008). Although it has demonstrated positive results as a 

radioprotector, it has shown toxicity at the levels required to induce a radioprotective effect with 

undesirable side effects (Bogo et al. 1985; Whitnall 2012). An analog to WR-2721 is an 

aminothiol, PrC-210 (ProCertus BioPharm, Inc.), offering the same benefits of WR-2721 without 

the adverse side effects and toxicity (Peebles et al. 2012; Soref et al. 2011; Whitnall 2012). Natural 

occurring antioxidants are less effective than phosphorothioate agents in protection against high-

dose acute radiation burden. However, nutritional antioxidants have a low toxicity, can be used for 

prolonged time, and they seem to play a key role in the prevention of cancer (Halliwell 2000; 

Bingham and Riboli 2004). A diet rich in fruit and vegetables significantly reduced the risk of 

cancer in the A-bomb survivor cohort (Sauvaget et al. 2004). Retinoids and vitamins (A, C, and 

E) are probably the most well-known and studied natural radioprotectors, but hormones (e.g. 

melatonin), glutathione, superoxide dismutase, phytochemicals from plant extracts (including 

green tea and cruciferous vegetables), and metals (especially selenium, zinc, and copper salts) are 

also under study as dietary supplements for individuals overexposed to radiation (Weiss and 

Landauer 2000), including astronauts. In addition, there is evidence of a reduced antioxidant 

capacity during spaceflight, as shown by reduced superoxide dismutase (SOD) and total 

antioxidant activity in some astronauts returning from missions on the International Space Station 

(Smith et al. 2005). 

Understanding the effectiveness of antioxidants in space is complicated by the presence of 

HZE particles. In principle, antioxidants should provide reduced or no protection against the initial 

damage from densely ionizing radiation, because the direct effect is more important than free 

radical-mediated indirect radiation damage at high LET. However, there is an expectation that 

some benefits should occur for persistent oxidative damage related to inflammation and immune 

responses. Recent experiments suggest that an efficient radioprotection by dietary supplements 

can be achieved even in case of exposure to high LET radiation. Ascorbate reduces the frequency 

of mutations in human-hamster hybrid cells exposed to high LET C-ions (Waldren et al. 2004). 

Vitamin A strongly reduces the induction of fibroma in rats exposed to swift 56Fe ions (Burns et 

al. 2007). Dietary supplementation with Bowan-Birk protease inhibitors (BBI) (Guan et al. 2006; 

Kennedy 2014), L-selenomethionine or a combination of selected antioxidant agents (Kennedy et 

al. 2007) could partially or completely prevent the decrease in the total antioxidant status in the 

plasma of mice exposed to proton or HZE particle radiation, and neoplastic transformation of 

human thyroid cells in vitro.  Eskiocak et al. (2010) reported that CDDO-Me (Methyl-2-cyano-

3,12 dioxoolean-1,9 diene-28-oate), an antioxidative, anti-inflammatory modulator,  protected 

human colon epithelial cells against radiation induced neoplastic transformation after exposure to 

2 Gy protons followed by 0.5 Gy 56Fe ions or the ions delivered individually.  The latest in vivo 

studies using space relevant radiation dose levels of 0.5 Gy, 1-GeV/n 56Fe ions, showed treatment 

with antioxidant combination or BBI decreased the levels of malignant lymphoma (Kennedy et al. 

2008) and decreased the incidence of rare tumors (such as Harderian gland) (Kennedy et al. 2011).  

However, because the mechanisms of biological effects may be different for low dose-rate 
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compared to acute irradiation, new studies for protracted exposures will be needed to understand 

the potential benefits of biological countermeasures.    

Even if antioxidants can act as radioprotectors or mitigators, this does not necessarily translate 

as an advantage for cancer risk. If antioxidants protect cells by rescuing them from apoptosis, then 

this may allow the survival of damaged cells, which eventually can initiate tumor progression. 

Concern about this possibility is sustained by a recent meta-study of the effects antioxidant 

supplements in the diet of normal subjects (Bjelakovic et al. 2007). The authors did not find 

statistically significant evidence that antioxidant supplements have beneficial effects on mortality. 

On the contrary, they concluded that -carotene, vitamin A, and vitamin E seem to increase the 

risk of death. Concerns not only include rescuing cells that still sustain DNA mutations, but also 

the altered methylation patterns that can result in genomic instability (Kovalchuk et al. 2004). An 

approach to target damaged cells for apoptosis may be advantageous for chronic exposures to 

galactic cosmic radiation (GCR). Radioprotectors and mitigators tested for acute exposures at high 

doses should be used with care – rescuing cells may make the problem worse in the long term. 

Non-steroidal anti-inflammatory drugs (NSAIDS) have been shown to alter tumors and the 

tumor microenvironment by blocking cell proliferation and promoting apoptosis.  (Rayburn et al. 

2009; Balkwill et al. 2012). Epidemiological evidence has indicated the incidence of breast, colon 

and lung cancers is inversely related to the use of aspirin or NSAIDS (Rayburn et al. 2009).  

NSAIDS are commonly used to reduce cardiovascular events potentially offering cross-risk 

mitigation, however, dose and duration are important factors to consider when employing the use 

of these drugs.  Other anti-inflammatory targets include chemokine-receptor antagonists, cytokine-

receptor antagonists, and COX inhibitors with several clinical trials currently underway to 

investigate the therapeutic effect of agents on these targets (Mantovani et al. 2008).   

 

2. Shielding 

 

For terrestrial radiation workers, additional protection against radiation exposure is usually 

provided through increased shielding. Unfortunately, shielding in space is problematic, especially 

when galactic cosmic rays (GCR) are considered. High-energy radiation is very penetrating: a thin 

or moderate shielding is generally efficient in reducing the exposure, but as the thickness increases, 

shield effectiveness drops. This is the result of the production of a large number of secondary 

particles, including neutrons, caused by nuclear interactions of the GCR with the shield. These 

particles have generally lower energy, but can have higher quality factors than incident cosmic 

primary particle. Radiation shielding effectiveness depends on the atomic constituents of the 

material used. Shielding effectiveness per unit mass is the highest for hydrogen, and decreases 

with increasing atomic number (Wilson et al. 1995; Wernerth et al. 2013). Liquid hydrogen would 

display the maximum performance as shield material but is not practical, since it is a low 

temperature liquid. Instead, polyethylene (CH2) could be a good compromise. Secondary neutron 

production increases with the mass number of the atomic constituents of the material and can grow 

to be large values for materials such as aluminum or the regolith on the Martian surface, or for 

heavier materials such as lead. For SPE shielding, the situation is much better and the majority of 

events on record can be reduced to reasonable dose levels (< 100 mSv) with localized shielding of 

polyethylene inside a lightly shielded vehicle or habitat (Figure 15).   
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Figure 15.  Effective doses versus depth in several materials for GCR at solar minimum and the 1972 SPE 

(Slaba et al. 2013). 

 

 

VIII. Gaps 

 

There are 15 gaps associated with the risk of radiation carcinogenesis and several gaps related to 

this risk including acute radiation exposure, degenerative tissue effects and impact on the central 

nervous system.  

 

Risk:             Given that crewmembers are exposed to radiation from the space environment, 

there is the possibility for increased cancer morbidity or mortality. 

Gaps: 

Cancer - 1:     How can experimental models of tumor development for the major tissues (lung, 

colon, stomach, breast, liver, and leukemias) be developed to represent the major 

processes in radiation carcinogenesis and extrapolated to human risk and clinical 

outcome projections? 

Cancer - 2:     How can experimental models of tumor development for the other tissues 

(bladder, ovary, brain, esophagus, skin, etc) be developed to represent the major 

processes in radiation carcinogenesis and extrapolated to human risk and clinical 

outcome projections? 

Cancer - 3:     How can experimental models of carcinogenesis be applied to reduce the 

uncertainties in radiation quality effects from SPE’s and GCR, including effects 

on tumor spectrum, burden, latency and progression (e.g., tumor aggression and 

metastatic potential)? 
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Cancer - 4:     How can models of cancer risk be applied to reduce the uncertainties in dose-

rate dependence of risks from SPE's and GCR? 

Cancer - 5:     How can models of cancer risk be applied to reduce the uncertainties in 

individual radiation sensitivity including genetic and epigenetic factors from 

SPE and GCR? 

Cancer - 6:     How can models of cancer risk be applied to reduce the uncertainties in the age 

and sex dependence of cancer risks from SPE's and GCR? 

Cancer - 7:     How can systems biology approaches be used to integrate research on the 

molecular, cellular, and tissue mechanisms of radiation damage to improve the 

prediction of the risk of cancer and to evaluate the effectiveness of 

countermeasures? How can epidemiology data and scaling factors support this 

approach? 

Cancer - 8:    What are the most effective biomedical or dietary countermeasures to mitigate 

cancer risks from exposure to SPE and GCR? What side effects should be 

tolerated versus mission risks? 

Cancer - 9:     Are there significant effects from other spaceflight factors (microgravity, stress, 

altered circadian rhythms, changes in immune responses, depressed nutrition, 

bone loss, etc.) that modify the carcinogenic risk from space radiation? 

Cancer -10:   Are space validation experiments needed for verifying knowledge of 

carcinogenic or other risks prior to long-term deep space missions, and if so what 

experiments should be undertaken? 

Cancer -11:    What are the most effective shielding approaches to mitigate cancer risks? 

Cancer -12:   What quantitative models, numerical methods, and experimental data are needed 

to accurately describe the primary space radiation environment and transport 

through spacecraft materials and tissue to evaluate dose composition in critical 

organs for mission relevant radiation environments (ISS, Free-space, Lunar, or 

Mars)? 

Cancer - 13:   What are the most effective approaches to integrate radiation shielding analysis 

codes with collaborative engineering design environments used by spacecraft 

and planetary habitat design efforts? 

Cancer - 14:   What biodosimetry methods are required for exploration missions and how can 

biomarker approaches be used for outcome prediction and surveillance? 

Cancer-1 5:     Given that the majority of astronauts are never smokers, are there research 

approaches that can elucidate the potential confounding effects of tobacco use 

inherent in population-based epidemiology data on space radiation cancer risk 

estimates? 
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The SRPE overlaps with several of the gaps within other HRP Elements as outlined in the HRP 

Integrated Research Plan (IRP).  SRPE works with the other HRP Elements to integrate gaps as 

necessary in accordance with the IRP. 

 

IX. Conclusion 

 

The evidence for cancer risks from humans exposed to low LET radiation is extensive for doses 

above 100 mSv. There are important uncertainties for low LET radiation at lower doses (<100 

mSv), for low dose-rates, and in transferring risks between populations with different genetic, 

dietary, etc, attributes. Human epidemiology can be applied to space exposures; however, there 

are additional uncertainties related to the quality of radiation in space that is known to produce 

both qualitative and quantitative differences compared to low LET radiation in experimental 

models.  The doses to be expected on space missions, and the nuclear type and energies are well 

understood. NASA has existing models that quite accurately determine radiation physics 

parameters in space. Reducing the uncertainties in risk assessment is required before a mission to 

Mars can be undertaken and has led to a number of investigations guided by molecular and genetic 

research on carcinogenesis and degenerative diseases. The large uncertainties in risk projection 

models will only be reduced by improving basic understanding of the underlying biological 

processes and their disruption by space radiation. There are unique aspects involved in this 

approach due to the specific challenges to biological systems presented by space radiation, 

especially HZE ions. It is unlikely that the radiation risk problem for space exploration will be 

solved by a simple countermeasure, such as shielding or radioprotective drugs. The risk will be 

understood and controlled only with more basic research in the field of cancer induction by charged 

particles (Cucinotta and Durante 2006). 
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XII. List of Acronyms 

 

2D   Two-Dimensional 

3D   Three-Dimensional 

AB   Atomic Bomb 

ABM  Agent Based Modeling 

ALARA As Low as Reasonably Achievable  

AT   Ataxia-Telangiectasia  

ATM  Ataxia-Telangiectasia-Mutated 

BEIR  Biological Effects of Ionizing Radiation  

BRCA  Breast Cancer Gene 

CI   Confidence Intervals  

CML  Chronic Myeloid Leukemia 

DDREF Dose- and Dose-Rate Effectiveness Factor  

DNA  DeoxyriboNucleic Acid  
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DNA-PK DNA-dependent Protein Kinase 

DSB  Double Strand Break 

EAR  Excess Absolute Risk  

ERR  Excess Relative Risk  

GCR  Galactic Cosmic Rays  

GSD  Geometric Standard Deviation 

Gy    Gray 

H2AXP Histone H2AX Phosphorylated 

HF   Human Fibroblasts 

HPBL  Human Peripheral Blood Lymphocytes 

HZE  High Charge and Energy  

HZETRN High-Charge-and Energy TRaNsport 

ICRP  International Commission on Radiological Protection  

IOM  Institute of Medicine 

ISS   International Space Station  

keV/μm kilo-electron Volt per micrometer 

LEO  Low Earth Orbit  

LET  Linear Energy Transfer 

LLE   Loss of Life-Expectancy 

LLE-REID Loss of Life-Expectancy amongst Exposure Induced-Death 

LSS  Life-Span Study  

MeV  Megaelectron Volt 

mGy  milliGray 

mSv   milliSievert 

NAS  National Academy of Sciences  

NCRP  National Council on Radiation Protection and Measurements 

NSRL  NASA Space Radiation Laboratory  

PDF  Probability Distribution Function 

PEL  Permissible Exposure Limit 

Q   radiation Quality factor 

QMSFRG Quantum Multiple Scattering FRaGmentation 

RBE  Relative Biological Effectiveness  

REID  Risk of Exposure Induced Death 

REM  Röntgen Equivalent Man 

SEER  Surveillance, Epidemiology and End Results Program 

siRNA  silencing RNA 

SPE  Solar Particle Event  

SSB  single strand break 

STS  Space Transportation System 

Sv   Sievert 

TEPC  Tissue Equivalent Proportional Counter 

TLD  ThermoLuminescent Dosimeters 

UNSCEAR United National Scientific Committee on the Effects of Atomic Radiation 

Z   Atomic number 
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