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Outline

 Understanding Systems Engineering

 Systems Engineering Domain
• Primary

‒System Design and Integration

‒Discipline Integration

• Supporting
‒Processes

 Products
• Engineering Elegant Systems: Theory of Systems Engineering

• Engineering Elegant Systems: The Practice of Systems Engineering

 Summary
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Understanding Systems Engineering



Motivation

 Systems Engineering  - should be based on first principles and 
underlying physics
• Key Research Question: What are SE first principles?

 Reemphasize Product in Systems Engineering

 System Engineering of Complex Systems is Challenging
• System Engineering can produce elegant solutions in some instances
• System Engineering can produce embarrassing failures in some instances
• Within NASA, System Engineering is frequently unable to maintain complex 
system designs within budget, schedule, and performance constraints

 “How do we Fix System Engineering?”
• Michael D. Griffin, 61st International Astronautical Congress, Prague, Czech 
Republic, September 27-October 1, 2010

• Successful practice in System Engineering is frequently based on the ability of 
the lead system engineer, rather than on the approach of system engineering in 
general

• The rules and properties that govern complex systems are not well defined in 
order to define system elegance

 4 characteristics of system elegance proposed as:
• System Effectiveness
• System Efficiency
• System Robustness
• Minimizing Unintended Consequences
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Consortium

 Research Process
• Multi-disciplinary research group that spans systems engineering areas 
• Selected researchers who are product rather than process focused
• Space Launch Systems (SLS) provides the observation test bed for the research looking at the full 

development lifecycle of a complex system

 List of Consortium Members
• Schafer Corporation:  Michael D. Griffin, Ph.D.
• Air Force Research Laboratory – Wright Patterson, Multidisciplinary Science and Technology 

Center:  Jose A. Camberos, Ph.D., Kirk L. Yerkes, Ph.D.
• George Washington University:  Zoe Szajnfarber, Ph.D. 
• Iowa State University: Christina L. Bloebaum, Ph.D., Michael C. Dorneich, Ph.D.
• Massachusetts Institute of Technology:  Maria C. Yang, Ph.D.
• Missouri University of Science & Technology:  David Riggins, Ph.D.
• NASA Langley Research Center:  Anna R. McGowan, Ph.D., Peter A. Parker, Ph.D.
• Texas A&M University:  Richard Malak, Ph.D.
• Tri-Vector Corporation:  Joey Shelton, Ph.D., Robert S. Ryan
• The University of Alabama in Huntsville: Phillip A. Farrington, Ph.D., Dawn R. Utley, Ph.D., Laird 

Burns, Ph.D., Paul Collopy, Ph.D., Bryan Mesmer, Ph.D., P. J. Benfield, Ph.D., Wes Colley, Ph.D.
• The University of Colorado – Colorado Springs:  Stephen B. Johnson, Ph.D.
• The University of Dayton:  John Doty, Ph.D.
• The University of Michigan:  Panos Y. Papalambros, Ph.D.
• The University of Texas, Arlington:  Paul Componation, Ph.D.

 Previous Consortium Members
• Stevens Institute of Technology – Dinesh Verma
• Spaceworks – John Olds (Cost Modeling Statistics)
• Alabama A&M – Emeka Dunu (Supply Chain Management)
• George Mason – John Gero (Agent Based Modeling)
• Oregon State – Irem Tumer (Electrical Power Grid Robustness)
• Arkansas – David Jensen (Failure Categorization)

30 graduate students and 3 undergraduate students supported to date 5



Understanding Systems Engineering

 Definition – System Engineering is the engineering discipline 

which integrates the system functions, system environment, and 

the engineering disciplines necessary to produce and/or operate 

an elegant system.
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 Primary Focus
• System Design and Integration

‒ Identify system couplings and 
interactions

‒ Identify system uncertainties and 
sensitivities

‒ Identify emergent properties
‒Manage the effectiveness of the system

• Engineering Discipline Integration
‒Manage flow of information for system 

development and/or operations
‒Maintain system activities within budget 

and schedule

 Supporting Activities
• Process application and execution



System Engineering Framework Mapping
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System Engineering Postulates

 Postulate 1: Systems Engineering is product specific.

 Postulate 2: The Systems Engineering domain consists of 
subsystems, their interactions among themselves, and their 
interactions with the system environment

 Postulate 3: The function of Systems Engineering is to integrate 
engineering disciplines in an elegant manner

 Postulate 4: Systems Engineering influences and is influenced by 
organizational structure and culture

 Postulate 5: Systems Engineering influences and is influenced by 
budget, schedule, policy, and law

 Postulate 6: Systems Engineering spans the entire system life-cycle

 Postulate 7: Understanding of the system evolves as the system 
development or operation progresses
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System Engineering Hypotheses

 Hypothesis 1: If a solution exists for a specific context, then there 

exists at least one ideal Systems Engineering solution for that 

specific context

 Hypothesis 2: System complexity is greater than or equal to the 

ideal system complexity necessary to fulfill all system outputs

 Hypothesis 3: Key Stakeholders preferences can be accurately 

represented mathematically
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Methods of System Design and Integration

Goal:  Techniques to Enable Integrated System 

Design and Analysis by the Systems Engineer



System Physics and System Integrating 
Physics

Goal:  Utilize the key system physics to produce an 

elegant system design



System Integrating Physics

 Consortium is researching the significance of identifying and using the 
System Integrating Physics for Systems Engineering
• First Postulate:  Systems Engineering is Product Specific.

• States that the Systems are different, and therefore, the Integrating Physics for the various 
Systems is different

 SLS is the complex system control for the Consortium
• Thermodynamic System

• Other Thermodynamic Systems
‒ Crew Modules
‒ Fluid Systems
‒ Electrical Systems
‒ Power Plants
‒ Automobiles
‒ Aircraft
‒ Ships

 Not all systems are integrated by their Thermodynamics
• Optical Systems

• Logical Systems
‒ Data Systems
‒ Communication Systems

• Biological Systems

 System Integrating Physics provides the engineering basis for the System 
Model



System Integrating Physics

 What is the Integrating Physics for the System?
• SLS – Propulsion Exergy:  Δ𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕 𝒉𝒑𝒓𝒐𝒑 +

𝑽𝒆
𝟐

𝟐
− 𝑿𝒅𝒆𝒔 = ∆𝑲𝑬𝒗𝒆𝒉𝒊𝒄𝒍𝒆 + ∆𝑷𝑬𝒗𝒆𝒉𝒊𝒄𝒍𝒆

‒Mass is an input to the equation
‒System Exergy provides a useful work metric

• MPCV
‒Life Support System Exergy:   1 −

𝑇𝑐𝑎𝑏𝑖𝑛

𝑇𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝑄𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 +  𝒑𝒓𝒐𝒄𝒆𝒔𝒔∆𝒎𝒂𝒊𝒓  𝒉𝒑𝒓𝒐𝒄𝒆𝒔𝒔 − 𝑇𝑐𝑎𝑏𝑖𝑛 𝒔𝑝𝑟𝑜𝑐𝑒𝑠𝑠 −
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Engineering Statistics

Goal:  Utilize statistical methods to understand 
system uncertainties and sensitivities

Systems Engineering makes use of Frequentist
Approaches, Bayesian Approaches, Information 
Theoretic Approaches as appropriate



Optimal Sensor Information Configuration

 Applying Akaike Information Criteria (AIC) corrected 
(AICc) to assess sensor coverage for a system

 Two Views of Information Content
• AIC Information

‒ Information is viewed as the number of meaningful parameters
• Parameters with sufficient measurements  to be reasonable estimates

• Fisher Information Matrix
‒ Defines information as the matrix of partial second derivatives

• Information is the amount of parameters with non zero values (so 
provides an indication of structure)

• This value converges to a maximum as the number of parameters goes 
to infinity

• Does not contain an optimum, always increases with added parameters

 AIC/AICc has an adjustment factor to penalize 
sensor arrangements where:
number of sensors < 3x(number of measurements)

 Provides an optimization tool for use with System 
Models
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𝑨𝑰𝑪𝒄 𝑭 = −𝟐 𝑰𝑲𝑳 𝑭 𝑮 + 𝟐𝑲 +
𝟐𝑲(K+1)

𝒏 − 𝑲 − 𝟏



System State Variables

Goal:  Utilize system state variables to understand 

the interactions of the system in relation to system 

goals and system execution



System State Models

 System State Models represent the system as a whole in terms of the 

hardware and software states that the system transitions through 

during operation
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 Goal Function Tree (GFT) Model
• “Middle Out” model of the system based on the system State 
Variables

• Shows relationship between system state functions (hardware 
and software) and system goals

• Does not contain system physical or logical relationships and 
is not executable

 System State Machine Model
• Models the integrated State Transitions of the system as a 
whole (i.e., hardware states and software states)

• Confirms system functions as expected
‒Checks for system hazardous, system anomalies, inconsistent state 

progression, missing states, improper state paths (e.g., short circuits 
in hardware and/or software design)

‒Confirms that the system states progress as stated in the system 
design

• Executable model of system



System Design and Optimization

Goal:  Apply system design and optimization tools 

to understand and engineer system interactions



Multidisciplinary Coupling Assessment 
(MCA)

 Investigating Multidisciplinary 
Coupling Assessment (MCA) as a 
technique to analysis integrated 
system behavior coupling
• Based on Multidisciplinary Design 

Optimization (MDO) techniques

• Seeks to identify system couplings and their 
relationships to allow optimization/mitigation 
during design

‒ Quicker assessment of the couplings
‒ Significantly smaller effort to produce 

understanding of coupling and assess design 
options

 SLS is the system control for the 
analysis
• Selected Ares I Thrust Oscillation as a 

representative case to compare across the 
Ares I Integrated Stack (i.e., Ares I and 
MPCV)

 MCA is a form of the system model 
focusing on the coupled behaviors of 
the system as a whole
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Structures 

(FEA)
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System Value

Goal:  Utilize system state variables to understand 

the interactions of the system in relation to system 

goals and system execution



System Value Model

 A System Value Model is a mathematical 
representation of Stakeholders Preferences 
(Expectations) for the system
• The basic structure is straight forward
• The sociology/psychology of representing the 
Preferences can be a challenge

 The System Value Model is the Basis of 
System Validation!!!
• The Requirements and Design Models form the basis 
of System Verification

• The System Value Model forms the basis of System 
Validation

 Constructing an SLS Value Model to compare 
to System Validation results
• Can expand to Integrated Stack with input from MPCV 
and GSDO

 System Value model also provides basis for a 
measure of System Robustness
• How many mission types are supported by the 
system?
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System Cost Model

 System Cost Models are an important tool in both 
Development Phase and Production and Operations Phase 
cost control
• Unit Cost is critical to understand system cost

‒Product Breakdown Structure (PBS) provides unit cost
‒Work Breakdown Structure (WBS) provides common labor structure and can 

mask unit cost

• Parametric models do not properly predict cost
‒Based on historical data

• Accurate prediction based on following the same methods and approach as the historical 
program (NAFCOM using Titan IV)

‒Mass Based parametrics do not properly reflect System Integrating Physics and 
can have inverted relationships
• Predicts higher cost for higher mass, the inverse is often more true

• The cultural impact of cost models is important
‒Does the knowledge of the predicted cost bias decision making?

• Does the predicted cost create a minimum cost mind set or a maximum cost mind set?

‒Is the only result of the cost prediction to forecast what the system will not 
cost??
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Mapping System Capability to Value

“Will it work?”

(Reliability)

“What can it carry?”

• Load Factors

• Shock Loads

• Payload Volume

• Payload Services

• Injection Accuracy

“How expensive is it?”

• Production cost

• Launch cost

• etc.

Missions 

Attempted

Missions 

Succeeded

Total Value 

Delivered by 

Launch 

Vehicle

&
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Methods of Discipline Integration

Goal:  Understand How Organizational Structures 

influence Design and Operations Success of 

Complex Systems



Decision Making and Information Flow

Goal:   Understand the Decision Making Relationship 
to Information Flow in the System Development and 

Operations Organizations

Information Theory
Decision Making Processes
Biased Information Sharing
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Organizational Communications

 Chief Engineer Interviews
• Current  focus is on design and launch (non-recurring 

engineering), not life cycle (recurring) costs
‒ Observed differences in understanding of robustness, efficiency, 

affordability.

‒ Early involvement in M&A, Operations missing

• SE focus on process needs balance with product focus
‒ Skills to cross SE&I technical areas important

• SLS Program currently driven by schedule risk and cost (high 

complexity, constrained time)
‒ Program challenges over time in mission clarity, mission stability, and 

funding stability

‒ Testing still critical to identifying unintended consequences.

 Organizational Communication
• Various design communication models need to be managed.

• Error propagation can occur in communication process.
‒ Communication deficiencies can be reduced through iterative 

discussion and improvement.

• Design engineers maintaining redundant margin early in design 

process. 
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Simulation Results

No margin : 𝒎 = 𝟏

Slide - 27

Static margin, m= 1.3 

Descending margin, 𝑚=1.3−.1∗𝑖 until 𝑚=1  - No margin condition reaches optimality 

quickest

- Descending margin still reaches optimal, but 

requires more iterations

- Margins are an issue

- Interviews highlight real-world 

consequences

- Simulations quantify extent of the 

problem

- Still possible to achieve optimal 

design with descending margin, but 

takes additional time to achieve



Information Flow

 Information Flow through a 
program/project/activity is defined 
by Information Theory
• Organizational communication paths
• Board Structure

 Decision Making follows the First 
Postulate
• Decision Process is specific to the 
decision being made

• Tracked 3 SLS CRs, with 3 separate task 
team processes, all had equally rated 
effectiveness
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 Margin is maintained by the Organization, not in the margin 

management tables
• Biased Information Sharing

• Margin Management is focused on Managing the Disciplines (informed by the 

System Integrating Physics)

 SLS Organizational Structure was defined by the LSE as a 

recommendation to the Chief Engineer and the Program Manager



Decision Structure Information Flow

 Information Theory Model
• Information Theory can be used to 
understand decision making 
structures and information flow

•  𝐼 = 𝐻 = − 𝑛 𝑝𝑛 log 𝑝𝑛

 Practitioner’s Guidance
• Understand and define the scope of 
each needed decision body

• Ensure that each decision body has all affected or contributing disciplines 
represented, including understanding of the types and magnitudes of 
uncertainties affecting decisions within that decision body’s scope, but no more

‒𝐻 𝑝1, 𝑝2, … , 𝑝𝑛, 𝑞1, 𝑞2, … 𝑞𝑚 ≥ 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛)

• Minimize the number of decision bodies based on scope. The efficiency of the 
structure decreases with distributed and overlapping scopes.

‒𝐻 𝑆,𝐷, 𝑋, 𝑌, 𝑍 ≤ 𝐻 𝑆 + 𝐻 𝐷 + 𝐻 𝑋 + 𝐻 𝑌 + 𝐻(𝑍)
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Sociology of Systems Engineering

Goal:   Understand the Relationship of Sociological 

Factors and Cognitive Abilities to Successful 

System Engineering
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Unintended Consequences

 Unintended Consequences are the result of human mistakes.
• Physics do not fail, we do not recognize the consequences.

 Based on cognitive science, followed the work of Robert K. 

Merton in classifying unintended consequences.
• “The Unanticipated Consequences of Social Action”, 1936

 Classification
• Ignorance (limited knowledge of the problem)

• Historical Precedent (confirmation bias)

• Error (mistakes in calculations, working from habit)

• Short Sightedness (imperious immediacy of interest, focusing on near term 

and ignoring long term consequences)

• Cultural Values (cultural bias in what can and cannot happen)

• Self Defeating Prophecy (by stating the hypothesis you induce a set of 

conditions that prevent the hypothesis outcome)
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Cognitive Science

 Research Goal:  Identify some of the key cognitive and 

organizational challenges in engineering complex systems and 

the implications to Systems Engineering 
• University of Michigan, Design Science

‒Topic: Cognitive Science Perspective of Systems Thinking
• Mapping Engineering Terminology to Cognitive Science Terminology to provide a scientific 

basis for the engineering cognitive concepts

• Investigating Mediated Learning as a method to teach system thinking

32

Cognitive Competencies from Frank, 2012 Related Concepts from Cognitive Psychology
Understand the whole system and see the big picture Sensemaking; information integration; mental model formation;

generalization
Understand interconnections Induction; classification; similarity; information integration
Understand system synergy Deductive inference
Understand the system from multiple perspectives Perspective taking (direct mapping)
Think creatively Creativity (direct mapping)
Understand systems without getting stuck on details Abstraction; subsumption
Understand the implications of proposed change Hypothetical thinking
Understand a new system/concept immediately upon

presentation
Categorization; conceptual learning; inductive learning/inference

Understand analogies and parallelism between systems Analogical thinking (direct mapping)
Understand limits to growth Information integration
Ask good (the right) questions Critical thinking
(Are) innovators, originators, promoters, initiators,

curious
Inquisitive thinking

Are able to define boundaries Functional decomposition
Are able to take into consideration non-engineering

factors
Conceptual combination

Are able to “see” the future Prospection
Are able to optimize Logical decision-making



Policy and Law Application

Goal:  Understand How Policy and Law Constrain 

the Design and Operations of a System and How 

the System Engineer Should Interpret These 

Constraints



Space Policy and Systems Engineering

 Impact of Government Oversight Time Allocation Study

• Motivation: Industry and government leaders agree that government oversight leads to 
cost growth, but there is less agreement on how much and through what mechanisms.

• Research:
‒ Developed an empirical basis for measuring the extent and nature of the impact of oversight
‒ Non-invasive “Time Allocation Study:” Statistically valid aggregated observations of how 

engineers actually spend their time throughout a product’s life cycle.
• Part One: Collect time-recall diaries to develop a composite list of activities performed
• Part Two: Survey Population over several months at random times per day to accurately observe amount of 

time spent on activities

 Space Policy Implication on Engineering Decisions
‒ For Example

• Capability driven solutions have soft schedule limits
‒ SLS
‒ Constellation

• International agreements have harder schedule limits
‒ Apollo-Soyuz
‒ International Space Station

• Political implications should be considered at the end of the decision process, not at the beginning

“There is suggestive evidence that the cost of government-driven mission assurance and current Federal 

Acquisition Regulations (FAR) increase costs by factors of 3-5 times, not just 20- 30%” 

-Dr. Scott Pace, National Security Space Launch Programs - Testimony to Senate Committee on Defense Appropriations, 

Dirksen Senate Office Building 192, March 5 2014.  
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System Engineering Supporting Activities

Process Application and Execution for the Specific 

System



System Engineering Standards in 
Practice
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Products

 “Engineering Elegant Systems:  Theory of Systems Engineering”

 “Engineering Elegant Systems:  The Practice of Systems Engineering”

 Each research task individually publishes results (18 journal and conference papers)

 Conference on Systems Engineering Research (CSER) 2016
• 9 Papers on consortium research

‒ “NASA Systems Engineering Research Consortium:  Defining the Path to Elegance in Systems”, Michael D. Watson, 
Phillip A. Farrington, MSFC, University of Alabama in Huntsville

‒ “A New Cognitive Framework for Understanding Engineering Systems Thinking”, Melissa T. Greene, University of 
Michigan

‒ “A Novel Approach to Measuring the Time-Impact of Oversight Activities on Engineering Work”, Samantha Marquart, Dr. 
Zoe Szajnfarber, George Washington University

‒ “Systems Engineering Processes in NASA and Commercial Projects”, Paul J. Componation, Kathryne Schomberg, Susan 
Ferreira, Jordan L. Hansen, University of Texas – Arlington, Iowa State University

‒ “The Representations and Practices of the Discipline of Systems Engineering”,  Stephen B. Johnson, University of 
Colorado at Colorado Springs

‒ “A Capability-Based Framework for Supporting Value-Driven Design”, R. Price, R. Malak, Texas A&M University

‒ “Use of Akaike’s Information Criterion to Assess the Quality of the First Mode Shape of a Flat Plate”, John H. Doty, 
University of Dayton

‒ “A Multidisciplinary Coupling Analysis Method to Support Investigation of Ares 1 Thrust Oscillation”, D. Kis, M. Poetting, C. 
Wenger, and C. L. Bloebaum, Iowa State University

‒ “Uses of Exergy in Systems Engineering”, Andrew Gilbert, Dr. Bryan Mesmer, Dr. Michael D. Watson, University of 
Alabama in Huntsville, MSFC
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Summary

 Systems Engineering Research Consortium has made considerable 
progress in the definition of systems engineering and the approaches to 

 System Engineering is the engineering discipline which integrates the 
system functions, system environment, and the engineering disciplines 
necessary to produce and/or operate an elegant system.

 2 Primary Focuses defined in a Systems Engineering Framework

• System Design and Integration
• Discipline Integration

• Systems Engineering Processes are a supporting function

 Developed Systems Engineering Postulates and Hypotheses

 Developed several methods and tools for conducting integrated system 
design, analysis, and integration, and discipline integration
• System Integration

‒ System Integrating Physics
‒ Engineering Statistics
‒ State Variable Analysis
‒ System Design and Optimization
‒ System Value

• Discipline Integration
‒ Decision Making and Information Flow
‒ Sociology of Systems Engineering
‒ Policy and Law Application

• Processes Application
38
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Systems Engineering Principles

 Principle 1: Systems engineering is driven by the characteristics of the specific system 

 Principle 2: Complex Systems build Complex Systems

 Principle 3: The focus of systems engineering during the development phase is a 
progressively deeper understanding of the interactions, sensitivities, and behaviors of the 
system

• Sub-Principle 3(a): Requirements are specific, agreed to preferences by the developing organization
• Sub-Principle 3(b): Requirements are progressively defined as the development progresses
• Sub-Principle 3(c): Hierarchical structures are not sufficient to fully model system interactions and 

couplings
• Sub-Principle 3(d): A Product Breakdown Structure (PBS) provides a structure to integrate cost and 

schedule with system functions

 Principle 4: Information Theory is a fundamental mathematical concept of systems

 Principle 5: Systems engineering has an essential role during operations and 
decommissioning

 Principle 6: Systems engineering influences and is influenced by organizational structure and 
culture

 Principle 7: Systems engineering maps and manages the discipline interactions within the 
organization that represent the interactions of the system

 Principle 8: Decision quality depends on the system knowledge represented in the decision 
making process

 Principle 9: Both Policy and Law must be properly understood to not over constrain or under 
constrain the system implementation

 Principle 10: Systems engineering decisions are made under uncertainty accounting for risk
40



SLS Organizational Structure Modeling

 Interviewed 12 Marshall 

engineers/designers (w/J. Shelton)
• Understand strategies used to integrate 

subsystems with each other

 Common strategy across subsystems 

– margins
• Keep some percentage of a parameter in 

“back pocket” as hedge for future 

negotiations

• Biased Information Sharing

• (Here, “margins” different from “safety 

margin”)

 How does maintaining a margin affect 

optimality of the final design?
• Model as simple 2 Player System with 3 

design parameters

• 15 problem test suite
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UAH SE Consortium - Comparing the Relationship between Systems 
Engineering Process and Project Success in Commercial and 
Government Research and Development Efforts, 2012 – 2014.

Processes with > 3 

Correlations ≥ .4

Processes with < 3

Correlations ≥ .4

Original Study 

Correlations42

Agriculture

Aerospace

Defense and security

Transportation

Communications

Electronics

Energy

Infrastructure



UAH SE Consortium - Comparing the Relationship between Systems 
Engineering Process and Project Success in Commercial and 
Government Research and Development Efforts, 2012 – 2014.

Processes with > 3 

Correlations ≥ .4

Processes with < 3

Correlations ≥ .4

Original Study 

Correlations43



System Engineering Processes

1. Stakeholder Expectations

2. Technical Requirements Definition
a. Logical Decomposition

3. Design Solution Definition

4. Product Implementation

5. Product Integration

6. Product Verification
a. Product Validation

7. Product Transition

8. Product Operation and Sustainment

9. Technical Planning
a. Technical Risk Management

b. Technical Assessment

c. Decision Analysis

10. Configuration Management
a. Technical Data Management

b. Requirements Management

c. Interface Management

Mission Context

Technical Integration

(Physics Basis Focus)

Organizational

Structure &

Information Flow

Policy

& Law

Focus on the intent of the processes not the processes themselves 44


