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Abstract 

The CRISPR/Cas9 system has revolutionized genome editing by providing unprecedented DNA-

targeting specificity. Here we demonstrate that this system can be also applied in vitro to 

fundamental cloning steps to facilitate efficient plasmid selection for transformation and 

selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a 

single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic 

proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as 

well as unwanted ligation byproducts resulting in an unprecedented increase in the 

transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-

Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and 

convenient application to conventional molecular cloning to achieve near-perfect selective 

transformation. 
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Introduction 

Molecular cloning is a fundamental technique in molecular biology to produce plasmid 

constructs (Yoshida & Sato, 2009). Several methods currently exist to minimize or select against 

unwanted plasmid products created during ligation of inserts into vectors, including cross-

incompatible sticky ends (Kim & Szybalski, 1988), X-gal blue/white screening (Ruther, 1980), 

dephosphorylation of backbone sticky ends (Bernard, 1996), the addition of antibiotics (Sutcliffe, 

1978; Hershfield et al., 1974), and agarose electrophoresis/gel extraction (Tabak & Flavell, 

1978). However, in special circumstances existing methods may be insufficient to quickly, 

cheaply, and effectively screen for specific cloning products. This is especially true for plasmids 

with compatible sticky ends. Genes of interest may include restriction sites that would otherwise 

be used to create incompatible sticky ends. A plasmid vector also may simply not include 

multiple restriction sites with incompatible sticky ends. Unwanted byproducts are also difficult 

to control in situations where blunt ends are used (Sambrook & Russell, 2012). 

The Cas9 protein is a component of the clustered, regularly interspaced, short 

palindromic repeats (CRISPR) system. The CRISPR/CRISPR-associated (Cas) system provides 

bacteria with acquired immunity by incorporating fragments of foreign DNA and using the 

transcribed CRISPR-RNA (crRNA) to guide the cleavage of matching dsDNA sequences 

(Garneau et al., 2010; Horvath & Barrangou, 2010; Bhaya et al., 2011; Wiedenheft et al., 2012). 

In type II CRISPR systems, a ternary complex of Cas9, crRNA, and trans-activating crRNA 

(tracrRNA) binds to and cleaves dsDNA sequences that match the crRNA and include a short 

protospacer-adjacent motif (PAM) recognized by Cas9 (Gasiunas et al., 2012; Qi et al., 2013). In 

type II systems, the crRNA and tracrRNA can be combined into a single guide-RNA (sgRNA) 

that is sufficient to lead Cas9 to its target (Jinek et al., 2012). Further, the PAM sequence 



 

 

recognized by the S. pyogenes Cas9 is only three nucleotides in length (NGG), allowing this 

system to be easily adapted to recognize and cut a desired sequence (Mojica et al., 2009). 

The CRISPR/Cas system has previously been used to cleave the genomes of unwanted 

bacterial strains, showing high selectivity even among similar strains (Gomaa et al., 2014). With 

the knowledge that Cas9 can also be used to cleave short (~24 bp) sequences during cloning 

experiments (Karvelis, Gasiunas, & Siksnys, 2013; Wang et al., 2015), we investigated whether 

this system could be adapted to cleave unwanted ligation byproducts. We used the RFP BioBrick 

plasmid BBa_J04450 (Supplementary Table S1) as a starting vector and replaced the RFP insert 

with various genes of interest using restriction enzyme digestion and ligation, before 

transforming into Escherichia coli. We then quantified insertion efficiency based on the presence 

of fluorescent and chromogenic proteins in colonies and culture. We show, for the first time to 

our knowledge, that Cas9 and sgRNAs can be used to increase molecular cloning efficiency by 

cleavage of specific, undesired ligation byproducts; we call this novel technique CRISPR/Cas9-

assisted transformation-efficient reaction (CRATER). 

 

Results 

CRATER enhances the success rate of selective transformation 

We first sought to verify that in vitro Cas9 cleavage specifically selects for and purifies a desired 

plasmid product from an in vitro mixed pool. E. coli is known to have dramatically lower 

transformation efficiency for linear DNA compared with plasmids, due to intracellular 

exonuclease activity (Conley et al., 1986). To test the ability of CRATER to selectively prevent 

the transformation of multiple plasmid vectors in a mixed pool, we prepared a mixture of four 

different plasmids encoding color-producing proteins: RFP, eforRed, amilGFP, and meffBlue. 

We then designed four sgRNAs to selectively target each gene and added all combinations of 



 

 

three sgRNAs to the mixtures of plasmids along with Cas9 nuclease (Fig. 1A). The efficiency of 

the Cas9-sgRNA complex against its target plasmid was verified by gel electrophoresis (Fig. 

1B). We then chemically transformed the resulting reaction mix directly into DH5alpha E. Coli 

competent cells. As a result, the use of multiple sgRNAs in a single Cas9 reaction did not appear 

to interfere with successful target cleavage and therefore we observed highly monoclonal 

colonies after applying CRATER both upon visual inspection (Fig. 1C) and by quantification of 

percentage of desired colonies on transformed plates (Fig. 1D).  

 

Cas9-sgRNA complex can selectively digest unwanted DNA in the ligation reaction  

We next sought to demonstrate that CRATER can remove unwanted plasmids created during the 

ligation reaction. As an example, we began with a plasmid containing an RFP gene and double-

digested the gene out of its vector backbone using EcoRI and SpeI. We then added a sticky end 

compatible preparation of the Ferulic Acid Decarboxylase (FDC) gene, a relatively longer gene 

that does not affect the growth of E.coli (Zago, Degrassi, & Bruschi, 1995), into the mix of 

EcoRI/SpeI digested RFP plasmid and performed ligation. Since we did not remove the RFP 

insert after digestion, we predicted that a significant amount of the vector backbone would ligate 

with the original RFP insert instead of the FDC gene due to the relatively short length. We then 

subjected the ligation reaction to CRATER with and without RFP-specific sgRNA, as a control. 

As a result, CRATER using RFP-specific sgRNA dramatically increased the percentage of 

colonies with the desired FDC insert when the transformed cells were plated and confirmed 

under visual inspection (Fig. 2A) as well as colony quantification. We found that CRATER can 

significantly remove unwanted re-ligated plasmid and increases the transformation success rate 

to near 100% (p < 0.011). To corroborate this result, we analyzed the same transformed cells 

grown overnight in LB liquid culture using flow cytometry. Applying CRATER reduced the 



 

 

percentage of red colonies dramatically from 80% to 0.5% in flow cytometry (Fig. 2C) 

supporting our plate culture results (Fig. 2B). 

 

Discussion 

By experimenting with chromogenic and fluorescent protein gene inserts, we have demonstrated 

the ability of Cas9 to digest and prevent the undesired transformation of plasmids in mixed-

ligation pools. This technique is one of the many new applications of the recently discovered 

CRISPR/Cas system and can be used to augment existing methods for manipulating recombinant 

DNA. CRATER will save time when manipulating DNA and constructing plasmids. Particularly 

in cases when transformation efficiency is very low, such as when transforming large genes (>10 

kb) into plasmids (Hanahan, 1983; Inoue, Nojima, & Okayama, 1990), increasing efficiency will 

reduce the number of colony PCR amplifications and sequencing required to find a colony with 

the desired insert. In addition to streamlining low-efficiency cloning experiments, CRATER 

could allow for tighter control of gene order and orientation during multi-component ligations. 

Designing sgRNAs that target reverse-oriented inserts could facilitate gene orientation control 

even when restriction enzymes give rise to complementary sticky ends. Moreover, sgRNA 

specificity could allow for this same level of control when inserting multiple genes into a single 

vector. By designing sgRNAs that target unwanted orders and orientations of gene inserts, 

efficient construction of complex plasmids is made possible. 

As Gibson assembly (Gibson et al., 2009) can also be used to efficiently construct 

plasmids with multiple genes, we wanted to discern whether the CRATER method was 

comparable to Gibson in terms of cost. To this end, we conducted a market study of 

biotechnology firms including New England Biolabs, Life Technologies, ElimBio, DNA2.0, and 



 

 

Integrated DNA Technologies (IDT). As of August 2015, the market price of a Gibson Assembly 

Kit was $630.00, with primers pairs ranging from $10 to $30 per pair. The combined market 

price of sgRNA synthesis materials and Cas9 digestion materials ranged from $708.80 to 

$874.30, assuming only one type of sgRNA was needed. Each additional sgRNA would cost 

$47.40. Both Gibson assembly and Cas9 digestion costs are for 50 reactions worth of materials, 

while the sgRNA synthesis cost is for 15-75 µg of sgRNA. Based on these estimates, CRATER 

appears to be roughly equivalent in cost to Gibson assembly, and is particularly useful for when 

fragment termini instability or repetitive DNA sequences prevent Gibson from being used, 

Gibson primer design results in primer dimer or hairpin formation (Hillson, 2011), or when only 

one stock sgRNA is needed to prevent a particularly common unwanted ligation product. A good 

example of this last case is plasmid backbones with standardized restriction sites, such as the 

PSB1C3 backbone used in the iGEM BioBrick Registry. This plasmid contains XbaI and SpeI 

restriction sites, so sgRNAs that target XbaI/SpeI-scarred re-ligated plasmids could be mass-

produced and distributed with the standard backbone. 

  

Methods 

Plasmids. All plasmids were obtained from the BioBrick Registry. BioBrick numbers, sizes, and 

descriptions are provided in Supplementary Table 1. 

  

DNA Quantification and Sequencing. DNA concentrations were determined using the 

NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA).  Sequencing of 

DNA samples was completed by Elim Biopharmaceuticals, Inc. (Hayward, CA, USA). 

  



 

 

sgRNA Preparation. The tracrRNA reverse template primer along with crRNA forward primers 

were ordered from Elim Biopharmaceuticals, Inc. The 10 PCR primers used are shown in 

Supplementary Table 2. Single guide-RNA templates were PCR amplified from these primers in 

a 50 µL reaction, with initial denaturation at 98ºC for 30 seconds, annealing at 62ºC for 15 

seconds, and elongation at 72ºC for 10 seconds, repeating for 10 cycles. The templates were 

isolated via the Epoch Life Sciences Inc. (Missouri City, TX, USA) PCR cleanup protocol. 

Transcription of sgRNAs was accomplished using the HiScribe™ T7 High Yield RNA Synthesis 

Kit (New England Biolabs, Ipswich, MA, USA). Last, sgRNAs were purified using the Life 

Technologies (Carlsbad, CA, USA) RNA extraction protocol. 

  

CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER). Single restriction 

enzyme digestion with PstI (NEB catalog: #R3140) was accomplished using the New England 

Biolabs protocol. The MinElute Reaction Cleanup Kit (Qiagen, Limburg, Netherlands) was used 

to purify restriction enzyme digests. Restriction enzyme digests were ligated using the New 

England Biolabs T4 Ligation protocol. The RFP and chromogenic plasmids were digested using 

the New England Biolabs in vitro Cas9 Digestion protocol, with the modification that 2 µL of 

1µM Cas9 nuclease was added to the reaction instead of 1µL. When multiple sgRNAs were 

added to the same mixture, a 300 nM solution containing the sgRNAs was prepared in advance, 

and 3 µL of this solution was added to the reaction mixture. 

  

Transformation. The PSB1C3 BioBrick plasmid backbone was used as a vector with 

chloramphenicol selection, and insert RFP and GFP genes were taken from the Biobrick Registry 

(BBa_J04450 and BBa_I13522, respectively).  E. coli NEB5α chemically competent cells were 

purchased from New England Biolabs. Transformants were plated on LB plates with 



 

 

chloramphenicol selection by adding 50 µL of transformant mixture to the plate and spreading 

evenly using glass beads. 20 µL of transformants were also incubated in 3 mL of LB broth with 

chloramphenicol selection to analyze on the flow cytometer.  Both plates and liquid cultures 

were grown at 37ºC for ~16 hours. 

 

Plate Imaging. Plates were photographed using a Canon EOS 5D Mark II, Canon 100mm f/2.8 

macro lens, and a fluorescent white light box. 

  

Fluorescent Measurement.  Liquid cultures of transformed E. coli were analyzed using Life 

Technologies Attune NxT Acoustic Flow Cytometer.  150 µL of each 5X dilute liquid culture 

was drawn at 12.5 µL/second until at least 500,000 events of single cells were collected 

(Supplementary Figure S2). 
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Figure 1. in vitro CRISPR/Cas9 nuclease cleavage enhances transformation selectively. (A) 

Overview of CRATER method selecting for a chromogenic plasmid in a mixed pool. After 

ligation of chromogenic genes into the pSB1C3 plasmid backbone, plasmids are combined with 

recombinant S pyogenes Cas9 nuclease and mixture of sgRNAs targeting the unwanted gene 

inserts. The targeted plasmids are cleaved in vitro into linear form, but leaving the desired 

plasmid intact. Digested products can be directly transformed into E.coli competent cells. 

Intracellular exonucleases further cleave the linear DNA, leaving only the desired transformants 

(in this case E.coli with amilGFP plasmid). (B) Gel electrophoresis of plasmids with and without 

(-) sgRNA demonstrating cleavage of plasmids to linear DNA. The expected length of linearized 

DNA for each plasmid is ~2.8 kb. (C) E. coli transformants expressing chromogenic proteins 

after transformation with a mixture of four different plasmids with sgRNA-free control (left) and 
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with CRATER using a conbination of three sgRNAs. (D) Bar graph represent the plasmid 

selectivity based on the percent of colonies for each chromogenic protein. Absent bars represent 

no colonies.  Error bars represent standard deviation with n = 3.  CFUs are shown in 

Supplemental Table S3.  

  



 

 

 

Figure 2. CRATER can selectively prevent the transformation of unwanted re-ligation 

product. (A) Outcome of CRATER with (right) and without (left) RFP gene targeting sgRNA. 

Competent E. coli was transformed with FDC insert (1.6 kbp) competing against RFP insert (678 

bp) leftover from RFP plasmid digestion products. White colonies represent successful ligation 

of the FDC gene, while red colonies represent the unwanted RFP re-ligation product. (B) 

Percentage of total colonies on the plates with each insert, n = 2. Error bars represent the 

standard deviation, p-value < 0.011 according to one-way ANOVA test. (C) Flow cytometry data 

of the transformants shown in Fig. 2A after growing overnight in liquid LB culture under 

antibiotic selective pressure. At least 500,000 individual E.coli cells are plotted on the 2D plot 

with forward scatter height signal (FSC-H) on the x-axis and RFP fluorescence signal (YL2-H) 

on the y-axis in log scales. 
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