Post Launch Calibration and Testing of The Advanced Baseline Imager on the GOES-R Satellite

William Lebair, C. Rollins, John Kline, M. Todirita, J. Kronenwetter

April 5, 2016
Overview

• Geostationary Operational Environmental Satellite R (GOES-R)
 – Next generation NOAA satellite
 – Advanced Baseline Imager (ABI) multi-channel radiometer

• Initial on-orbit calibration and performance characterization of ABI
 – Post Launch Tests (PLT’s) to establish baseline for post launch performance
 – Unique challenges due to large number of detectors for sixteen channels
 – Six month PLT period

• Presentation of planned PLT’s
 – Motivation
 – Details

Advanced Baseline Imager (ABI)
(http://www.goes-r.gov/spacesegment/abi.html)
PLT Introduction

• Health and safety
 – Solar avoidance
 – Detector screening
 – Scanner and scan encoder performance tracking

• Radiometric testing
 – Basic calibration and trending
 – Calibration stability
 – Noise performance
 – Dynamic range
 – Repeatability
 – Desert scene observation

• Final tests
 – Image navigation and registration (INR)
 – Image quality

GOES-R removed from thermal-vacuum chamber (GOES-R Newsletter 2015)
Health and Safety PLT’s
Solar Avoidance

- Motivation: Confirm solar avoidance algorithm prior to Optical Port Cover opening
- Demonstrate avoidance of exclusion zone
 - 0.5 degree margin for FOV reaching edge of sun
 - Demonstrate truncated scan with cover closed with two sun locations
Detector Screening

- ABI channels consist of line Focal Plane Arrays (FPA’s) with multiple columns of detectors for redundancy
 - Best Detector Selection (BDS) used to choose detectors for each row
 - BDS choices may change with cool-down cycles
- Motivation: Screening process for performance on-orbit
 - Image collections
 - Solar Calibration Target (SCT) diffuser
 - On-board thermal reference – Internal Calibration Target (ICT)
 - Space look
 - Ground scene

- Four-step procedure
 - Visual/Near Infrared (VNIR) channel images of SCT
 - Emissive channel images of ICT while adjusting bias voltages on FPA’s
 - 30-second stare at ICT
 - 2.4-second stare at Earth target (large, time-stable area)

- Evaluation
 - Gain and stability, offset and stability, and noise

Typical layout of optimized set of detectors (Padula 2015)
Scan Encoder Fine Track Error Trending

• Motivation: Track changes in commanded versus executed scan mirror position
 – Depends on encoder calibration coefficients and on environmental/aging factors

• Pre-defined pointing scenarios
• Results in telemetry
 – Trended over time

ABI Scan Mirror (Mandt 2009)
Radiometric PLT’s
IR Radiometric Calibration Stability

15-minute Mode 3 timeline with 3 CONUS images and ICT look (Gerth 2014)

- **Motivation:** Demonstrate channel-to-channel repeatability
 - Requirement for thermal channels < 0.2
- **Mode 3 timeline**
 - 15 minute duration
 - 3 Continental United States (CONUS) images and ICT look
- **Comparison of Mode 3 timelines over 24 hours**
 - Spatial average of CONUS images before and after ICT look
 - Difference tracked as effective delta temperature
 - Determine drift in calibration coefficients needed for 0.2 K specification failure
Alignment Assessment

Footprint of Landsat-8 data for Sonoran Desert/Gulf of California coastline (USGS 2016)

- **Motivation:** Determine and correct for misalignment between ABI and S/C attitude determination system
 - Ties navigated LOS to S/C attitude determination
 - No star positions for this PLT (later PLT will refine using stars)

- **Comparison between Landsat and ABI**
 - Landsat Ground Control Point (GCP) residuals
 - 3-axis navigation offsets
 - Diurnal profiles
 - Line of site motion compensation (LMC) coefficients
IR NEdT and Dynamic Range Characterization

- **Motivation:** Establish beginning-of-life (BOL) performance
 - Noise Equivalent delta Temperature (NEdT)
 - Dynamic Range (DR)
 - Quantization Step Size (QSS)
- **Long-duration (2-second) ICT and space looks**
 - NEdT at single ICT temperature compared to ground test
 - 2-scene measurement extrapolated to saturation for DR
 - QSS calculated assuming linearity based on ground test

3-bounce ICT for emissive channel calibration (Griffith 2016)
System Linearity

Measurement of linearity using digital counts versus integration time for Landsat thermal IR sensor, TIRS (Montanaro 2014)

- Motivation: Demonstrating linearity over operational DR
- Changing integration time while starting at target
 - SCT for VNIR channels and ICT for emissive channels
 - Constant increments except for 3.9 micron channel (different step size for higher sensitivity)
 - To demonstrate < 1% nonlinearity

Unlike Landsat TIRS, ABI is expected to behave linearly over operational DR
IR Radiometric Repeatability Characterization

- **Motivation:** Measure repeatability of adjacent pixels and between swaths/channels/images
 - Specifications are < NEDT difference
 - Typical operational use would be CONUS (every 5 minutes) or full disk images (every 15 minutes)
- **Synthetic images using ICT looks**
 - Pixel to pixel: local RMS row deviation from mean of 3 R x 10 C sub-images
 - Swath to swath: boundaries of swaths in CONUS images (comparison of neighboring rows from two swaths)
 - Channel to channel: Successive CONUS images in two channels; average temperature difference
 - Image to image: Successive CONUS images; average temperature differences

ABI scan patterns (Griffith 2016) simulated by ICT stares
VNIR Radiometric Calibration Trending

• Motivation: Baseline trending measurements and calibration stability
• Frequent solar calibrations during PLT phase to establish baseline
 – Two-point (solar diffuser and space) calibration
 – BDS detectors for each row of VNIR channels
 – Comparison to ground test
 – Long-term trending and information on appropriate decrease in solar calibration frequency post-PLT
Desert VNIR Monitoring

Desert validation target for routine PLT north/south scan (NSS) collections

• Motivation: Vicarious ground-truth validation of on-board calibration
 – Trending of detector performance
 – Alternative calibration methodology in case of SCT failure

• NSS over three targets
 – Sonoran Desert, White Sands Missile Range, Uyuni Salt Flats, Bolivia
 – Six NSS – one for each VNIR channel
 – ~ 200 km ground track; collected within +/- 7.5 minutes local solar noon
Image Quality and Image Navigation and Registration (INR) PLT’s
Coherent Noise

Landsat-8 Band 3 coherent noise off coast of Gulf of Panama (USGS)

• Motivation: Compare coherent noise performance with ground measurement
 – Identifying spatial frequencies > 25% NEdN
 – Looking for in-family performance

• Synthetic full disk images using ICT and space observations
 – Timeline to mimic full disk collection
 – 2D Fourier transforms
Spatial Uniformity Characterization over Field of Regard

Possible locations for spatial uniformity characterization (Griffith 2016)

• Motivation: Measure BOL spatial variation in response over Field Of Regard (FOR)
 – Confirm validity of scan mirror emissivity/reflectivity coefficients
 – Check against required 0.3% uniformity

• Characterized using space looks
 – ICT calibration, followed by eight locations equally spaced around Earth
 – Long duration looks (25 seconds)
 – Repeated every four hours for a total of 24 hours
 – Run Spatial Uniformity Calibration PLT if needed
Motivation: Orbital measurements for Line-of-Sight (LOS) estimation filter
- Characterize performance
- Characterize LOS diurnal profile for use in computing tuning parameters

Star measurements
- Navigated to fixed grid with current INR parameters
- Navigation errors and measurement noise parameters extracted to use in LOS filter

ABI Image Navigation and Registration (INR) Process (Ellis 2008)
Co-registration Characterization Analysis (MWIR/LWIR offset)

- **Motivation:** Measure co-registration error between Mid-Wave IR (MWIR) and Long-Wave IR (LWIR) channels
 - Difference in navigation between spectral channels for a given pixel in the same frame
 - Check against required limit of 11.2 microradians

- **Star measurements**
 - MWIR 3.9 micron channel compared to an LWIR channel (TBD)
 - Offset extracted using star measurement residuals

False detection of fog on GOES-13 due to ~1 pixel misalignment between 10.7 um and 3.9 um bands (Grotenhuis 2013)
INR Earth Pointing Platform Deployment Assessment

- Motivation: Assess INR performance before and after EPP launch locks are released
- INR assessments using Landsat comparison
 - Landsat GCP’s and image-to-image tie-points from Level 1B ABI imagery
 - Navigation assessment (comparison with GCP)
 - Within frame (distance between pairs of control points in image with GCP’s)
 - Frame-to-frame, swath-to-swath, and channel-to-channel (distances between GPC’s or tie-points in each)
Spatial Resolution Characterization

Edge sampling in early AHI-8 lunar images (courtesy of Japan Meteorological Agency, JMA) used to demonstrate that AHI-8 met or exceeded ABI requirements

• Motivation: Measure BOL Modulation Transfer Function (MTF) performance
 – Check if within family of ground performance baseline
 – Determine if ABI focus adjustment is needed

• Lunar edge as on-orbit target for East/West (E/W) and North/South (N/S) MTF
 – Sharp edge with large brightness contrast
 – Sub-pixel Edge Spread Function (ESF) assembled from one or a concatenation of images
 – Spatial derivative (ESF) \rightarrow Line Spread Function (LSF); Norm. mag. Fourier Transform (LSF) \rightarrow MTF
 – E/W MTF at full scan and 1/10 scan rates & N/S MTF at 1/10 scan rates to compare to ground test
Lunar Trending for Performance

Lunar image from AHI-8 (Takahashi 2015)

• Motivation: VNIR calibration target
 – VNIR calibration trending
 – Relative spectral response of scan mirrors across FOR

• Lunar imagery when moon in FOR but outside Earth limb
 – Two images per month (one per Earth side)
 – At least one set of images of Moon transiting through North or South end of FOR to evaluate scan mirror spectral response
3.9 Channel Stray Light Characterization

GOES-R proxy data created from 2004 MODIS data (Gurka 2014)

• Motivation: Characterize and quantify stray light due to known sneak path
 – Hardware approach developed to mitigate sneak path past field stop and scattering off beam splitter
 – Strongest on 390 channel, but may be detectable throughout VNIR
 – Present for solar incidence angles between 10 and 15 deg. south of nadir Line of Sight (LOS)
 – Verify accuracy of stray light modeling predictions

• Full disk images at appropriate times and beta angles
 – S/C local midnight +/- 1 hour (every five minutes)
 – Beta angles between -14.44 deg and -7.5 deg (sun position from 19 deg south to 10 deg south)
 – Image differencing to suppress Earth radiance and identify stray light
Summary

• Large and varied assortment of PLT’s planned
• Health and safety
• Quantify and characterize performance
 – Radiometric
 – Image quality
 – Navigation
 – Comparison to ground test
• Tune and trend performance
 – Optimize selected parameters
 – Trending to confirm performance or need for changes in parameters
• Goal is a well-characterized, optimized, state-of-the-art instrument
References

www.goes-r.gov.

Padula, Francis, Steve Goodman, Changyong Cao, and Xiangqian Wu. 2015. GOES-R Field Campaign: Addressing the Validation Challenges of Geostationary Satellite Observations. CALCON.

Japan Meteorological Agency (JMA); image courtesy of Mr. Masaya Takahashi, Scientific Officer at JMA.

U.S. Geological Survey (USGS) Products; data available from the U.S. Geological Survey