Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

J. Michael Pereira¹, William Emmerling², Silvia Seng³, Charles Frankenberger³, Charles R. Ruggeri¹, Duane M. Revilock¹, Kelly S. Carney¹

¹ NASA Glenn Research Center, Cleveland, Ohio
² FAA William J. Hughes Technical Center, Atlantic City, NJ
³ Naval Air Warfare Center, Weapons Division, China Lake, CA
Outline

• Background
• Pre-test analysis
 – Test Configuration Design
 – Panel thickness design
• Blade-off Test
 – Test Setup
 – Instrumentation
 – Test Video
 – Test Results
 – Comparison with pretest predictions
• Conclusion
Background

- In the 1980s open rotor engines were developed for improved fuel efficiency
- Technical challenges and lower fuel prices eventually reduced interest
- There has been recent renewed interest in these engines
- FAA goal is equivalent level of safety as ducted fan engines
- FAA investigating feasibility of fuselage shielding for open rotor engines
FAA Feasibility Study

- FAA selected a medium range aircraft configuration with a high wing and wing mounted open rotor engines

- Trajectory analyses conducted at NASA/GRC to predict the blade release angles for the worst case impact scenario
- Computational analyses conducted at NASA/GRC to predict required composite shield thickness
- LS-DYNA predictions based on model correlation with small scale ballistics testing
- Test configuration design – worst case scenario
- Full scale subcomponent test conducted at China Lake Naval Air Warfare Center
FAA Feasibility Study

- Trajectory analysis predicted blade release angles for the blade to impact the fuselage with a normal velocity vector aligned with the long axis of the blade.

Worst case

Test Configuration
Pre-test Predictions

- Computational analyses used material properties and impact test data for resin transfer molded T700S/PR520 triaxially braided composite.
- Composite shields for the full scale test utilized the same fiber and architecture and a similar resin (Cytec MTM45-1), hand laid up.
- Shields were curved panels with a radius of 6.5 ft, an axial length of 4 ft and an arc length of 8 ft.
Pre-test Predictions

- Pre-test simulations predicted that a 20 ply composite panel would allow the blade to penetrate and a 24 ply panel would prevent penetration.
- Predictions for additional weight assumed a nominal fuselage thickness, shield thickness varying on circumferential position.
- For counter-rotating blades (2 rotors) shielding weight added estimated to be less than 250 lb.
Open Rotor
Dynamic Blade Release Test

Naval Air Warfare Center-WD
FAA Technical Center
NASA Glenn Research Center
Blade

Overall length: 41.25”
Weight: 15.11 lb
Instrumentation

- High speed cameras for qualitative assessment
- Three pairs of cameras for photogrammetric measurements
- Six accelerometers on each test frame
- Assorted instrumentation for monitoring engine conditions
Photogrammetry Setup

Camera holes in blast shield
Dynamic Open Rotor Composite Shield Test
Test Observations

• Blade separation occurred at desired clock position
• Blades separated cleanly from root section
• Blades traveled to target panels impacting end on (~90 degree impact)
• Both blades impacted the target panels
• Impact
 – 24 ply panel - Deflected blade with no through crack
 – 20 ply panel – Blade penetrated panel
Test Results – 20 Ply Panel

- Blade release angle: 188 degrees
- Trajectory of blade cg: 4 degrees above horizontal
- Blade impacted tip first, with long axis aligned with velocity vector
- Blade caused one long longitudinal tear and four front side cracks that did not extend to backside
- Blade completely penetrated the panel
Test Results – 24 Ply Panel

- Blade release angle: 8 degrees
- Trajectory of blade cg: 4 degrees below horizontal
- Blade impacted tip first, with long axis aligned with velocity vector
- Blade did not penetrate panel
- Tears on both front side and back side
- Front and back tears not aligned – no through penetration of cracks
24 Ply Panel Backside Displacement
24 Ply Panel – Movement Correction

- Compressive failure between points 0 and 1
- Second crack initiated at boundary
Test Conclusions

- Good correlation with pretest predictions
- 24 Ply panel deflected the blade and did not have a thru failure
 - Good agreement with analysis
- 20 Ply panel was cracked completely through
 - Blade penetrated panel
 - Crack was longer than pretest prediction.
Conclusions

• Composite shielding may be a feasible solution to fuselage shielding for open rotor engines
• Advances in composite impact models needed to predict accurate failure modes and to be predictive rather than correlative
Future Work

• Material properties of actual composite shield material are being measured
• Open Rotor Shield Test will be used as a validation case for improved composite impact models