NASA/TM—2016-219089 ATAA-2016-1425

Benchmarking Model Variants in Development of a
Hardware-in-the Loop Simulation System

Eliot D. Aretskin-Hariton
Glenn Research Center, Cleveland, Ohio

Alicia M. Zinnecker
N&R Engineering, Cleveland, Ohio

Jonathan L. Kratz and Dennis E. Culley
Glenn Research Center, Cleveland, Ohio

George L. Thomas
N&R Engineering, Cleveland, Ohio

April 2016

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space science.
The NASA Scientific and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

*+ TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

*+ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

+ CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

* SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

« TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

» Access the NASA STI program home page at
http://www.sti.nasa.gov

* E-mail your question to help@sti.nasa.gov

* Fax your question to the NASA STI
Information Desk at 757-864-6500

* Telephone the NASA STI Information Desk at
757-864-9658

* Write to:
NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM—2016-219089 ATAA-2016-1425

Benchmarking Model Variants in Development of a
Hardware-in-the Loop Simulation System

Eliot D. Aretskin-Hariton
Glenn Research Center, Cleveland, Ohio

Alicia M. Zinnecker
N&R Engineering, Cleveland, Ohio

Jonathan L. Kratz and Dennis E. Culley
Glenn Research Center, Cleveland, Ohio

George L. Thomas
N&R Engineering, Cleveland, Ohio

Prepared for the

Scitech 2016

sponsored by the American Instititue of Aeronautics and Astronautics
San Diego, California, January 4-8, 2016

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

April 2016

Acknowledgments

This work was sponsored by the Transformative Aeronautics Concepts Program (TACP) at the NASA Glenn Research Center.

This report contains preliminary findings,
subject to revision as analysis proceeds.

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program National Technical Information Service
Mail Stop 148 5285 Port Royal Road
NASA Langley Research Center Springfield, VA 22161
Hampton, VA 23681-2199 703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Benchmarking Model Variants in Development of a
Hardware-in-the Loop Simulation System

Eliot D. Aretskin-Hariton
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Alicia M. Zinnecker
N&R Engineering
Cleveland, Ohio 44130

Jonathan L. Kratz and Dennis E. Culley
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

George L. Thomas
N&R Engineering
Cleveland, Ohio 44130

Distributed engine control architecture presents a significant increase in complexity over
traditional implementations when viewed from the perspective of system simulation and
hardware design and test. Even if the overall function of the control scheme remains the
same, the hardware implementation can have a significant effect on the overall system
performance due to differences in the creation and flow of data between control elements.
A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn
Research Center that enables the exploration of these hardware dependent issues. The
system is based on, but not limited to, the Commercial Modular Aero-Propulsion System
Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the
self-contained baseline model to the hardware in the loop model, and the validation of each
step. As the control model hardware fidelity was improved during HIL system develop-
ment, benchmarking simulations were performed to verify that engine system performance
characteristics remained the same. The results demonstrate the goal of the effort; the new
HIL configurations have similar functionality and performance compared to the baseline
C-MAPSS40k system.

Nomenclature
ADC Analog-to-Digital Converter
C-MAPSS40k Commercial Modular Aero-Propulsion System Simulation 40k
CSP Control System Platform
DAC Digital-to-Analog Converter
ECU Engine Control Unit
EPM Engine Plant Model

NASA/TM—2016-219089 1

EPR Engine Pressure Ratio

FMV Fuel Metering Valve

HIL Hardware-in-the-Loop

HPC High-Pressure Compressor

LPC Low-Pressure Compressor

MAE Mean Absolute Error

NCAP Network-Capable Application Processor
ODE Ordinary Differential Equation
PLA Power Lever Angle

SM Surge Margin

STIM Smart Transducer Interface Module
SXD Smart Transducer

TEDS Transducer Electronic Datasheet
UDP User Datagram Protocol

Ul User Interface

VBV Variable Bleed Valve

VSV Variable Stator Vane

I. Introduction

ISTRIBUTED architectures for control systems are widely-used in the automotive industry, but adop-
tion by the aerospace industry has been slow due to the perception that the risks associated with such
implementations outweigh the potential benefits.':? Traditional engine control systems have a centralized ar-
chitecture, wherein the control algorithm and data conversion and processing functionality (such as averaging
sensor measurements) reside in the Engine Control Unit (ECU). A distributed architecture is characterized
by off-loading of the conversions between the analog and digital domains to processors local to the actuator
and sensor hardware. This requires a digital control network and electronics capable of operating in the
harsh engine environment. This need for high-temperature electronics represents a primary barrier in the
progress toward a distributed engine control system.

If the technological capability existed to enable off-loading the data processing functionality, the physical
appearance of the entire control system could be changed. In particular, the overall size and weight of the
system could be reduced because the multitude of wires connecting sensors and actuators to the controller
could be replaced by a smaller, lighter network bus. The presence of this network creates inherent modularity
in the system, wherein hardware nodes can be added, removed, or replaced without the need for costly control
system redesign, as opposed to typical centralized control architectures, which require extensive modification
when design changes are made. For example, in a centralized architecture, replacing a sensor may require
modifying multiple wiring harnesses, as well as circuit board modifications and software reprogramming
inside the ECU. In a distributed control system, any physical modifications would be isolated to the module
level. This will encourage the development of a ‘partial’ certification process that does not require a control
system, once certified, to undergo full re-certification after a hardware change. Instead, only the new module
requires certification, since its interface with the system did not change. Modularity will also provide benefits
in fault isolation and maintenance logistics throughout the engine life cycle.!:2

One more-encompassing barrier in the development and implementation of distributed control for an
aerospace application is related to the design process as a whole: the design, testing, and implementation
of a controller are often the final steps in the development of an engine system, and often subject to strict
time and budgetary constraints.®> This limits the risks designers are willing to incur in developing new
technologies and testing new ideas for the control system. The Hardware-in-the-Loop (HIL) system at the
NASA Glenn Research Center is being used to develop different engine control architectures to decrease
the risk inherent in developing distributed control systems. The system uses the Commercial Modular
Aero-Propulsion System Simulation 40k (C-MAPSS40k) as a baseline engine simulation. Modifications of
the system, with the eventual goal of adding network modeling capability, are explored through a series of
benchmarking tests. This paper describes the step by step conversion from the self contained baseline model
to the hardware in the loop model, and the validation of each step.

The paper is organized as follows: details about the HIL simulation system, including the physical imple-

mentation and the models under consideration, are provided in Section II. The results of the benchmarking
simulations performed to date are presented in Section III, and discussion of these results is given in Sec-

tion IV.

NASA/TM—2016-219089 2

II. HIL simulation system details

An effort toward building a real-time Hardware-in-the-Loop (HIL) system is ongoing at NASA Glenn
Research Center.5 This system provides a framework for testing various controller architectures and was
developed around C-MAPSS40k, a closed-loop zero-dimensional dynamic simulation of a twin-spool, high-
bypass turbofan engine capable of producing up to 40,000 lbs of thrust.®” The controller in this simulation
tracks an Engine Pressure Ratio (EPR) demand, mapped from the Power Lever Angle (PLA) input pro-
file, and includes limiters to protect against surge in the two compressors, overspeed on the two spools,
and combustor blowout.® Inputs to the model include the flight profile, defined by individual profiles for
each environmental condition and PLA, along with profiles for the engine health parameters and controller
parameters. Internal engine variables, such as pressures and temperatures, and controller-related variables,
such as tracking references and actuator demands, in addition to flags indicating which limiters are active
at each step in the simulation, are available as outputs from the simulation. These inputs and outputs
are consistent across each of the system configurations considered in this benchmarking effort; however, the
models themselves may be modified to produce additional outputs, as required.

In the general framework (Fig. 1), the Engine Plant Model (EPM) and Control System Platform (CSP)
perform the calculations required of the closed-loop system, while the User Interface (UI) acts as a wrapper
for the simulation by providing input profiles to, and collecting output data from, both the EPM and CSP.
Smart sensors and actuators are then introduced to the controller, increasing the fidelity of the model.
These Smart Transducer (SXD) models are considered ‘smart’ because they have been modeled around
the IEEE 1451 specifications and because the signal conditioning, conversion, and processing functionality
resides local to the hardware elements.? *®> The SXD model library was initially implemented in the same
MATLAB/Simulink® (The Mathworks, Inc.) environment as C-MAPSS40k.!6 The SXD library was then
expanded to be used for creating SXD models on micro controller boards integrated with the HIL system,
representing a distributed controller architecture.

In order to make the baseline C-MAPSS40k more representative of a networked HIL system, benchmark-
ing tests were performed. These tests helped to verify that the restructuring of C-MAPSS40k did not impact
overall system functionality. Five configurations of the CSP were considered: four implementations exclu-
sively in the MATLAB/Simulink environment, and one case, demonstrating distributed hardware, where
external microcontrollers were integrated with the system. Given a test flight profile, five simulations of
each configuration were performed to validate system performance. The increasing complexity of the control
models does result in an increase in the run time and this is noted for comparison.

A. Physical implementation

The baseline C-MAPSS40k is designed to be simulated on a single computer and therefore is implemented
in a single Simulink model file. For the HIL simulation system, the model was modified so that each block
indicated in Fig. 1 resides in its own file. This allows the system to take advantage of semi-parallel simulations
by running each model on a separate computer.* The three components (EPM, CSP, and UI) communicate
via the exchange of six data arrays at each time-step; all communication is completed by a model before
beginning its calculations. Because of its low overhead and fast transfer speeds, the User Datagram Protocol
(UDP) was chosen as the means for this communication; more detail on the setup of the HIL simulation
system can be found in Refs. 4,5.

Further decomposition of the CSP is performed through integration of microcontroller boards with the
HIL simulation system. Each board contains an Ethernet port that allows it to communicate directly with
the CSP Simulink model. This is illustrated in Fig. 2 for a single board; other boards are connected in a
similar fashion. For sensor models, data from the EPM are routed by the CSP to the appropriate board,
where they are processed and routed back; for actuator models, the controller command from the CSP is
routed appropriately and the data returned are packaged to be sent to the EPM. When a controller network
is integrated, the communication scheme will be altered slightly. This is due to the fact that a master node
will be responsible for routing the sensor and controller output data appropriately. However, input data
to the sensors and output data from the actuators will still be transferred to the EPM over UDP, as this
represents the physical interface between the hardware and engine.

NASA/TM—2016-219089 3

:- User Interface
(UD

[
1
1
[
system input: 1
1
1
1
[

environmental
flight profile
health parameters
controller parameters

system
outputs

: Engine
' Plant
: Model
' (EPM)

A 4
VvV

P,T,W,N controller FMV, VSV, VBV

Control System Platform (CSP)

! |
1 »
1 »
1 L
., > I—}
1 Sensors: N actuators:

L] L

1

1

1

1

[]

Figure 1. Block diagram illustrating the HIL simulation system framework. The sensed values (Pressure, P,
Temperature, T, Flow Rates, W, and Shaft Speeds, N) and actuators (Fuel Metering Valve (FMV), Variable
Stator Vane (VSV), and Variable Bleed Valve (VBYV)) are specific to the C-MAPSS40k engine and controller
models.

B. Smart transducer models

C-MAPSS40k was designed with a centralized control system. By default it contains simple linear models
for the sensors in the system, and similar models of the actuators, which are cascaded with nonlinearities
such as saturation and, in some cases, local loop closure. Additional effects, such as quantization related
to the conversion from the analog to digital domains, are not yet captured by these models. Furthermore,
the controller network present in a distributed architecture, which introduces delays and possible packet loss
to the system, was not part of the design criteria for the baseline C-MAPSS40k simulation. To improve
hardware simulation capability of the C-MAPSS40k system, a framework based around the IEEE 1451

EPM

CSpP

A
\ 4

Ul

Linux® ATmega32®
<+—>
processor processor

Arduino™ Yun

Figure 2. Block diagram showing how a single microcontroller integrates with the CSP in the HIL simulation
system. Orange arrows indicate User Datagram Protocol (UDP) communication links, while the purple arrow
represents serial communication between the two processors on the microcontroller, a feature that will be used
in future research.

NASA/TM—2016-219089 4

"""""""""" o m = e === ’
’ I ! network application : 1 | ADC/ e signal transducer ¢ ! I | ’
’ I : communication processor 1 " DAC conditioning hardware ' ’
’ [T 1 ! A 4 I ’
’ I ! v Y. I - ’
Z : s P

S
Cr?é}[t\;(z)lrlﬁr engine

Figure 3. Block diagram of a SXD complying with the IEEE 1451 specifications.

specifications for a SXD has been implemented.'®

An IEEE 1451-compliant SXD may be represented by the block diagram in Fig. 3, where the two main
components are the Smart Transducer Interface Module (STIM) and Network-Capable Application Processor
(NCAP), which interface with the engine and controller network, respectively. The STIM contains the
sensor or actuator hardware, along with any signal conditioning circuitry, and an Analog-to-Digital (ADC)
or Digital-to-Analog (DAC) converter for interfacing with the application processor residing on the NCAP.
The Transducer Electronic Data Sheet (TEDS) is also a part of the STIM. The TEDS contains transducer
manufacturing and calibration information in a digital format that can be accessed by the application
processor. The block labeled ‘network communication’ in Fig. 3 indicates the adapter, and any drivers,
required for the SXD to interface with the controller network.

For implementation of such a model in Simulink, a block library was created that contains sublibraries of
components based on the blocks in Fig. 3.16 In addition to blocks implementing signal conditioning filters,
level change compensators, and signal conversions, the library includes generic sensor and actuator models,
an electro-mechanical servo motor model, and various processing functions. A generic SXD model for the ten
sensors in C-MAPSS40k was constructed by connecting blocks for the hardware, signal conditioning, ADC,
and processing (averaging) components. Similar models were constructed for the three actuators: a generic
open-loop model for the Variable Bleed Valve (VBV), a generic closed-loop model for the Fuel Metering
Valve (FMV), and a closed-loop servo motor model for the Variable Stator Vanes (VSV). In addition to
these more complex hardware models, a simple model of a network, capturing transmission delay and the
possibility of lost packets, was introduced.

In order to implement models of these SXDs on the microcontroller,” the Simulink library was expanded
to the Python programming language. Each block was rewritten as a Python module that could be combined
with other modules to create the SXD models in a similar fashion to their Simulink counterparts; functionality
of these models was verified against those constructed in Simulink. Models of the sensors and actuators
were implemented on the Linux® processor in anticipation of using the ATmega32® processor (Fig. 2) for
implementation of a dedicated control network in future work.

C. Controller models

Five versions of the C-MAPSS40k controller model are considered for benchmarking. Four models are
implemented entirely in the MATLAB/Simulink environment: the ‘baseline’ controller model, the ‘unstruc-
tured’” controller model, the ‘distributed’ controller model, and the ‘networked’ controller model. The fifth
configuration, the ‘processor-in-the-loop,” includes microcontrollers integrated with the system. The base-
line model is an unmodified copy of C-MAPSS40k, which runs on a single computer, while the other four
controllers are implemented in the architecture represented in Fig. 1, with the slight modification that the
UI and CSP were executed in two different instances of Simulink on the same computer. The unstructured
configuration is the same as the baseline configuration, except that it is implemented in this three-part
architecture, while the distributed configuration additionally contains models of SXDs, as described in Sec-
tion II.B. The networked configuration is similar to that of the distributed, and also contains a statistical
network model that has a small probability to drop or delay data packets. In the processor-in-the-loop con-
figuration, the SXD models were implemented on individual microcontrollers, as illustrated in Fig. 2. These
communicate directly with the CSP via Ethernet. Each subsequent model made the system more complex,
as seen through an increase in run time, a necessary trade-off when introducing fidelity to a model. How-

*The microcontroller, which is an Arduino Yun, contains two processors: an Atmel ATmcga32® processor that can be
programmed in C, and a Linux® processor that can run Python scripts.

NASA/TM—2016-219089 5

4 0.8
_ 3 E 0.6
Y £
5 2 i 0.4
= 3]
5 <

1 =02

0 : : : : 0 : : : :

0 100 200 300 400 0 100 200 300 400

time (sec) time (sec)
x 10
- 80 ‘ 4 4 —
H - = =envelope|
g ’_1 profile ’
{o))
g 70 H = 3
) £
87 ()
g 60 g
g =
— 50
()
=
2
40 : : : : 0 ‘ ~ -
0 100 200 300 400 0 0.2 0.4 0.6 0.8
time (sec) Mach Number

Figure 4. Altitude, Mach number, and PLA profiles for the test simulations used to benchmark the different
CSP configurations. The plot in the lower right illustrates how the flight profile lies inside the C-MAPSS40k
flight envelope.

ever, despite significant increases in run time when the SXD models were introduced (in the distributed and
networked models) and again when the microcontrollers were integrated (the processor-in-the-loop model),
simulations still completed faster than real-time.

III. Benchmarking results

The HIL simulation system, with each of the five controller models defined in Section II.C, was bench-
marked through simulation with the test flight profile shown in Fig. 4. This profile was derived from the
example profile that captures a complete flight from takeoff to landing, and allows for testing the models at
conditions throughout the flight envelope.'” This profile defines a flight compressed to 427 seconds.

Simulations were run using the Ordinary Differential Equation (ODE) four solver in Simulink with a fixed
step size: for the baseline and unstructured models, a step size of 0.015 seconds was used, while for the other
models this step size was decreased to 0.005 seconds. A reduced step size was required for the distributed
and networked configurations to enable successful simulation with the SXD models. In particular, the time
constant of the servo motor in the VSV model was such that numerical errors were encountered when larger
step sizes were used. Additionally, the smaller step size provided the flexibility to assign different sampling
times to components of the controller; for example, sensors provided data to the controller at each time
step (a sampling time of 0.005 seconds) while the controller provided data to the actuators at 0.015 second
intervals.

It should be noted that to achieve repeatable results, the Variable Bleed Valve (VBV) kicker block, which
is part of the VBV control logic, was disabled. The VBV command is scheduled on corrected fan speed and
Mach number, and is offset open when the core shaft speed and fuel flow rate drop significantly from one
time step to the next. The VBV kicker triggers this offset, which is used during off-nominal VBV operation.
The conditions under which this offset became active were adjusted to try to mitigate the effects of non-
repeatable core shaft speed or fuel flow behavior during testing. It was not possible to fully account for these
differences, so the offset became active during some of the test cases, raising the average VBV input at those

NASA/TM—2016-219089 6

x 10

thrust (Ibf)
N
T

1 - —
O 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
time (sec)
processor—-in—-the-loop == networked - - - distributed unstructured baseline
50
c c
£ 5
T g 30
1S S
() (&)
4 © 20
(%] %] ¥
(@]]
g & 10f
— I
L L L L 0 L L L L
0 100 200 300 400 0 100 200 300 400
time (sec) time (sec)

Figure 5. Plots comparing the thrust produced (top plot) and compressor surge margins (bottom row) in the
engine models for benchmarking each of the controller configurations in Section II.C. Shown is a representative
run of each configuration.

times in the simulation. Due to the current variability of the VBV kicker, it was disabled in all simulations.

To capture the run time variation due to processes executing simultaneously with the simulation, data
were collected for five simulations of each model; run time data and model outputs for each iteration were
collected. The figures in the paper show a representative run from each simulation whereas the the tables
contain summary data of all runs from each simulation.

A. C-MAPSS40k model outputs

The results from benchmarking the controller configurations described in Section II.C, using the flight
profile in Fig. 4, are presented in Fig. 5 to 7; these responses are representative of the engine, controller,
and SXDs, respectively. Shown is a representative output from each test configuration from the start to
the end of the profile. It should be noted that, generally, the responses did not differ significantly between
simulations. In the figures, the dotted light blue lines represent output from the baseline case, against which
the other results are compared. The solid dark blue lines are outputs from the unstructured model, the green
dashed lines from the distributed model, the red dash-dot lines from the networked model, and the purple
solid lines from the processor-in-the-loop model.

The plots in Fig. 5 compare the thrust response for each configuration, along with the Surge Margins
(SMs) in the Low- and High-Pressure Compressors (LPC, HPC). These three values represent two important
characteristics of the engine response: the force it produces, and how closely it approaches two of the
operating limits. In general, all the models differed little from the baseline case, particularly in thrust
production.

Looking more closely at the results, it can be observed that the initial condition of the simulations
and subsequent startup transient differ slightly. Specifically in the processor-in-the-loop case, the SXD
models were initialized with different initial conditions than all the other simulations. This caused a small
discrepancy at the start of the simulation which then trimmed out. Minute quantization effects by the ADC

NASA/TM—2016-219089 7

2
<
o 1.5
>
%]
[%]
o
o
2 1pF
=)
c
(3]
05 | | | | | | | |
0 50 100 150 200 250 300 350 400
time (sec)
processor—in—the—loop= = networked - - - distributed unstructured baseline = = = baseline demand
4 T T T T T T T T

fuel flow (Ibm/sec)
N wW
P

[y

| | | | | | |
0 50 100 150 200 250 300 350 400
time (sec)

Figure 6. Plots comparing how well the system tracks the EPR demand (top plot) and the fuel flow demand
(bottom plot) for benchmarking each of the controller configurations in Section II.C.

also contributed to discrepancies between simulation configurations with smart node models and the baseline
model.

In general, many of the observations made for the results in Fig. 5 also apply to those in Fig. 6, which
compares the tracking results for each controller. The black dashed line in Fig. 6 represents reference
demands for EPR (the value tracked by the controller) and fuel flow (which is regulated by the FMV); the
other lines show the response of the systems to these demands. EPR demand is mapped from PLA, so
the reference signal provided to the controller was the same in each simulation, while fuel flow demand is
calculated based on engine feedback and, therefore, differs between simulations. EPR tracking results match
well between configurations. Small differences in how quickly the response tracks the demand are evident
only upon very close inspection of the graphs. The distributed model has the fastest response, due to the
decreased step size, while the slowest response was from the processor-in-the-loop case, and is related to the
presence of hardware integrated with the Simulink models. Overall, little difference appeared between the
demand tracking abilities of the models.

Figure 7 contains representative responses of the sensors and actuators in the system; the top row of plots
shows the pressure and temperature measurements (not the truth values from the EPM) at station 2 in the
engine (the entrance of the fan), and the bottom row shows the outputs of the variable geometry actuators.
While the sensor outputs differed little between the models, noticeable differences in the VSV inputs were
observed for the processor-in-the-loop configuration. This may be due, in part, to the VSV UDP receive
function timing out and recycling old data. In general, the numerical integration methods implemented in
the smart node models on the microcontrollers differ from those being executed by Simulink. Figures 5 to 7
show that outside of quantization effects, results from simulation of the distributed model differed little from
those of the baseline case. This indicates that the multiple implementations of the C-MAPSS40k system
perform equivalently, and that there are few noticeable implementation specific modeling errors.

B. Run time evaluation

In addition to comparing model outputs for each controller configuration in Section II.C, it was of
interest to evaluate how quickly the simulations ran. Total run time data was collected for the five test
simulations performed for each configuration; the distribution of these run times is listed in Table 1. The
data indicate a trade-off in the system between complexity of the models (distributed and processor-in-
the-loop configurations) and speed of simulation (baseline and unstructured configurations), as significant

NASA/TM—2016-219089 8

Ul
N
o

n)
o
o

pressure at station 2 (psi)

temperature at station 2 °R)
N
o]
o

4607
: : : : 440 : : : :
0 100 200 300 400 0 100 200 300 400
time (sec) time (sec)
processor—-in—the—loop=' = networked - - - distributed unstructured baseline
20 ‘ ‘ ‘ ‘ 100
o = I
S of] g 80
[o
g S 60|
5 20 S
= @ 40}
g g
> —40 >
m L
u>') Q 20
-60 : : : : 0 :
0 100 200 300 400 0 100 200 300 400
time (sec) time (sec)

Figure 7. Plots comparing the output of the pressure and temperature sensors at station 2 in the engine (top
row of plots, respectively) and of the variable geometry actuators (bottom row of plots) for benchmarking
each controller configuration in Section II.C.

increases in run time are seen in the former. The increase for the distributed model is related both to the
increased detail in the models of the sensors and actuators and to the increased number of time steps (29, 800
for the baseline and unstructured configurations and 89,400 for the others, due to the decreased step size).
The run time increase for the processor-in-the-loop case is due to the additional communication required to
route data between the CSP and SXD models during the simulation.

Also of note is the increased spread in the distribution of the run times, particularly for the distributed
model. Some of this variance can be attributed to background tasks running at the same time as the
simulation, which can briefly divert processing power away from Simulink in a random manner. Differences
between the models themselves, as modifications and enhancements were made, affected how much run time
variation was seen. The baseline and unstructured configurations differed only through the integration of
the Ethernet network. While not significantly increasing the average run time, the presence of this hardware
network in the model introduced uncertainty in the amount of time required for transferring data between
components. In the baseline configuration, this communication occurred almost instantaneously, since a
single model file was in use. When simulated on different computers (in the unstructured configuration
and others), the total amount of time spent waiting to receive data in the network buffer differed for each
simulation. This lead to the increased spread of run times. This effect was further magnified for the
distributed configuration, since three times as many time steps were taken.

With the introduction of the networked controller, the packet drop percentage and delay was introduced
to the simulation. A notable increase in average total run time was also observed. This is most likely due to
increased computational complexity in the simulation, as the network models add additional software that
must execute every simulation time step. Also, the packet losses created by the network models may cause
the controller to issue commands that fluctuate more often than they would otherwise. These changing
actuator commands may cause the engine state solver to run longer.

NASA/TM—2016-219089 9

Table 1. Total average run times for benchmarking simulations of the configurations described in Section II.C.
The ‘real-time factor’ estimates how many times faster than real-time the simulation ran, on average. The
uncertainty noted is one-standard deviation of the data.

Configuration Average total run time (sec) | Real-time factor
Baseline 0.7£0.0 581.4
Unstructured 12.1£0.5 35.2
Distributed 66.3 + 8.2 6.4
Networked 112.1+4.6 3.8
Processor-in-the-Loop 201.1 + 7.6 2.1

When the sensor and actuator models were off-loaded to the microcontrollers for the processor-in-the-
loop simulation, the total run time of the simulation significantly increased. This was due to the additional
communication necessary to route the sensor and actuator data, which increased the time dedicated to UDP
communication during each iteration of the simulation; i.e., instead of the CSP transmitting and receiving
one packet each from both the EPM and Ul in a given simulation time step, the CSP must receive one packet
from each of the 13 smart transducer microcontrollers. Additionally, the microprocessors used to execute
the SXD models had limited processing capability, which also contributed to increasing the time to process
the simulation. These factors slowed the models down so that they ran only slightly faster than real time.
One advantage gained from integrating the microcontrollers into the system was a reduction in run time
variation, likely because the processing requirements of the CSP were reduced, decreasing the opportunity
for background process to interfere.

The final column in Table 1 provides the ‘real-time factor,” which indicates how many times faster than
real time the model ran. As models with increasing sensor network fidelity are tested, this real-time factor
decreases. This is specifically due to the fact that the higher fidelity models are more computationally
intensive, and that smaller simulation step sizes are used. As indicated previously, the most significant
changes in run time were due to replacing the sensor and actuator models with SXD models and decreasing the
step size, which decreased the real-time factor from ~ 35 in the unstructured case (the simplest configuration
that implements a communication network between models) to just ~ 6 times faster after implementing these
changes to produce the distributed model. Integration of packet loss and delay modeling in the networked
case, and the implementation of the microcontroller based processor-in-the-loop case further decreased the
real-time factor to over three and two times faster than real time respectively. It should be noted that
real-time factor was sensitive to the Simulink UDP block settings. Specifically, the number of retry attempts
caused significant variations in the real-time factor. Retry attempts specifies the number of times the UDP
block will check for new data inside of its memory buffer. If the retry attempts are exhausted and no new
data is found, the data from the previous time step is recycled. The default retry attempts used for these
simulations was 5,000. For the SXD models implemented in the microcontrollers, the retry attempt was set
to 3, 500.

C. Model Verification Results

In order to attempt to quantitatively verify these modeling approaches, the mean tracking error averaged
over five runs (replicates) is given in Table 2. Note that the EPR data from the first half-second of the
simulation were thrown out when computing these mean errors, as the simulation sometimes requires a very
short trimming period to converge to a consistent operating state. EPR was chosen as the variable over
which the simulation configurations are compared, as EPR is the controlled variable in each case, and the
effects of digital networks on control performance is a primary focus of investigation in this work. The
small standard deviation in Table 2 shows that the difference between runs of the same simulation was very
constrained. This indicates high simulation repeatability.

As can be seen from Table 2, the Mean Absolute Error (MAE) generally increases as network fidelity is
added. These results can be explained as follows: the control in the unstructured case performs differently
than the baseline model due to the addition of a simulation network in which data being transferred between
the different models are delayed by one time step and might be lost. The effect of this is only apparent
during transients that significantly deviate from nominal. One can expect a control system to operate with
a larger error when a delay is added in the loop. Further, the distributed case has slightly larger MAE than
the unstructured case. This is expected because the SXD models were incorporated into this simulation, and
these models contain effects such as sensor noise and quantization. The networked case performs similarly

NASA/TM—2016-219089 10

Table 2. Mean absolute EPR tracking error expressed as a percentage of the total range of EPR command
values (i.e., the EPR range is 0.8, as the EPR command signal varies from 0.8 to 1.6 as seen in Fig. 6). The
value of one standard deviation is also shown for each configuration. Note that the standard deviation in the
baseline simulation EPR tracking error is zero, because this simulation is deterministic.

Configuration Percentage Mean Absolute EPR Tracking Error
Baseline 1.047 £ 0.00
Unstructured 1.091 £ 0.001
Distributed 1.197 4+ 0.009
Networked 1.198 4+ 0.008
Processor-in-the-Loop 1.227 4+ 0.004

to the distributed case, even when models of packet delay and packet loss are added in addition to the SXD
models. Finally, the processor-in-the-loop controller performs only slightly worse than the unstructured or
distributed case. Subtracting the MAE of the processor-in-the-loop from the baseline case, the difference
is only 0.151% which indicates they perform very similarly. Differences are likely due to simpler numerical
integration techniques used in this controller; for instance, the outputs of the linear sensor and actuator
dynamics are computed using the simple forward Euler method, whereas the sensor dynamics in the other
simulations are computed using a Runge-Kutta solver. Overall, as can be seen in Table 2, the MAE values in
EPR differ little from the baseline case, which indicates that these five implementation schemes effect only
tiny changes in the control performance.

IV. Summary and future work

A Hardware-in-the-Loop (HIL) simulation system that offers the ability to test various engine control
architectures and algorithms without the need for a physical engine prototype is under development at NASA
Glenn Research Center. In order to demonstrate a path to a realistic test bed, a self contained closed-loop
engine model was restructured to a processor-in-the-loop configuration. These models implemented in the
HIL system were compared against the baseline engine and controller model from the Commercial Modular
Aero-Propulsion System Simulation 40k (C-MAPSS40k). C-MAPSS40k was restructured to enable simula-
tion on three separate computers, each containing one of three components (the Engine Plant Model, the
Control System Platform (CSP), and the User Interface) communicating over a local area network. Addi-
tional modifications were made to the CSP to replace the sensor and actuator models in C-MAPSS40k with
Smart Transducer models developed around the IEEE 1451 specifications. These models were implemented
in Simulink as part of the CSP, and also implemented on microcontroller boards integrated with the HIL
system to simulate an HIL application. To demonstrate that these modifications did not significantly affect
the simulation results, and to evaluate the ability to run simulations in real-time, a test flight profile was de-
fined for benchmarking the HIL system. Four controller configurations were considered for comparison to the
baseline C-MAPSS40k. Results from benchmarking these alternate configurations have demonstrated that
the extended models differed little from the baseline case. Possible topics for future work include modifying
the initial condition creation process for the processor-in-the-loop system to reduce initialization transients
or the implementation of a 4Mbps control network and the benchmarking of real-time simulations.

References

1Culley, D. E., Thomas, R., and Saus, J., “Concepts for Distributed Engine Control,” Proceedings of the 43rd Joint
Propulsion Conference and Exhibit, ATAA-2007-5709, Cincinnati, OH, July 2007.

2Culley, D., “Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded,” ASME
Turbo Expo2010: Power for Land, Sea, and Air, Vol. 3, Glasgow, Scotland, United Kingdom, June 2010, pp. 287-297.

3Culley, D., Thomas, R., and Saus, J., “Integrated tools for future distributed engine control technologies,” Proceedings
of the ASME Turbo Fxpo 2013, GT2013-95118, San Antonio, TX, USA, June 2013.

4Culley, D., Zinnecker, A., and Aretskin-Hariton, E., “Developing an Integration Infrastructure for Distributed Engine
Control Technologies,” AIAA Propulsion and Energy Forum and Exposition 2014: 50th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference, AIAA-2014-3532, Cleveland, OH, July 2014.

5 Aretskin-Hariton, E. D., Zinnecker, A. M., and Culley, D. E., “Extending the Capabilities of Closed-Loop Engine Simula-
tion using LAN Communication,” AIAA Propulsion and Energy Forum and Ezxposition 2014: 50th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, AIAA-2014-3531, Cleveland, OH, July 2014.

6May, R. D., Csank, J., Litt, J. S., and Guo, T.-H., Commercial Modular Aero-Propulsion System Simulation 40k (C-

NASA/TM—2016-219089 11

MAPSS40k) User’s Guide, NASA/TM-2010-216831, September 2010.

"May, R. D., Csank, J., Lavelle, T. M., Litt, J. S., and Guo, T.-H., “A High-Fidelity Simulation of a Generic Commercial
Aircraft Engine and Controller,” Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA-2010-
6630, Nashville, TN, July 2010.

8Csank, J., May, R. D., Litt, J. S., and Guo, T.-H., “Control Design for a Generic Commercial Aircraft Engine,” Proceedings
of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA-2010-6629, Nashville, TN, July 2010.

9“]EEE Standard for a Smart Transducer Interface for Sensors and Actuators - Common Functions, Communication
Protocols, and Transducer Electronic Data Sheet (TEDS) Formats,” September 2007.

10«JEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Network Capable Application Processor
(NCAP) Information Model,” 2000.

11«JEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor Communi-
cation Protocols and Transducer Electronic Data Sheet (TEDS) Formats,” 1998.

12«JEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Digital Communication and Transducer
Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems,” April 2004.

I3«IEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Mixed-Mode Communication Protocols
and Transducer Electronic Data Sheet (TEDS) Formats,” 2004.

M«TEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Wireless Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats,” October 2007.

15«JEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Transducers to Radio Frequency Identifi-
cation (RFID) Systems Communication Protocols and Transducer Electronic Data Sheet Formats,” June 2010.

16Zinnecker, A. M., Culley, D. E., and Aretskin-Hariton, E. D., “A modular approach to modeling hardware elements in
distributed engine control systems,” AIAA Propulsion and Energy Forum and Ezposition 2014: 50th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, AIAA-2014-3530, Cleveland, OH, July 2014.

17Zaretsky, E. V., Litt, J., Hendricks, R. C., and Soditus, S. M., “Determination of Turbine Blade Life From Engine Field
Data,” NASA/TM-2013-2170308, April 2013.

NASA/TM—2016-219089 12

