Some technical aspects of a CALIOP and MODIS data analysis that examines near-cloud aerosol properties as a function of cloud fraction

Tamás Várnai\(^1,2\), Weidong Yang\(^1,3\), Alexander Marshak\(^1\)

\(^1\)NASA GSFC, \(^2\)UMBC JCET \(^3\)USRA

Summary
- CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions.
- Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics.
- Cloud fraction and aerosol particle size distribution have a complex relationship.

Earlier result: CALIOP data on near-cloud aerosols explained over \(2/3\) of reflectance increase seen by MODIS.

Other studies found: Aerosol optical depth (AOD) increases with cloud fraction (CF).

Question:
Does AOD dependence on CF explain near-cloud changes seen by CALIOP?

Multi-year CALIOP statistics near Azores show:
- Most near-cloud data comes from areas with high CF, while far-from cloud data is from areas with low CF.
- Lidar backscatter increases with CF.
- It also increases near clouds even if CF is fixed.
- CF-variations explain \(1/3\) of near-cloud increases in median backscatter.

CALIOP color ratio (related to aerosol particle size) behaves similarly to backscatter: it increases near clouds and with CF.

Relationship between CF and aerosol particle size shows regional variations in MODIS-based map below.

Positive correlation in CF & Angstrom exponent (AE): Particles looks smaller when CF is higher, as AOD increases more for small aerosols than for large ones.