Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

ARC: A. Colaprete, R. Elphic
JSC: A. Paz
KSC: J. Smith, J. Captain
Honeybee Robotics: K. Zacny
What is Resource Prospector?

- Resource Prospector (RP) is a lunar mission that will land at one of the poles and search for volatiles, primarily water.
- RP will map out the distribution of hydrogen bearing volatiles, both horizontal and vertical to 1 meter depth.
- RP will also extract, handle, and quantify the amount of water ice in the lunar subsurface.
SKGs and RP – Address at Least 22 Lunar SKGs

I. Understand the Lunar Resource Potential

<table>
<thead>
<tr>
<th>SKG</th>
<th>Instrument or Activity</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>Regolith 2: Quality/quantity/distribution/form of H species and other volatiles in mare and highlands</td>
<td>NSS, NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-3</td>
<td>Geotechnical characteristics of cold traps</td>
<td>NIRVSS, Drill, Rover</td>
</tr>
<tr>
<td>D-4</td>
<td>Physiography and accessibility of cold traps</td>
<td>Rover-PSR traverses, Drill, Cameras</td>
</tr>
<tr>
<td>D-6</td>
<td>Earth visibility timing and extent</td>
<td>Mission Planning</td>
</tr>
<tr>
<td>D-7</td>
<td>Concentration of water and other volatiles species within depth of 1-2 m</td>
<td>NSS, NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-8</td>
<td>Variability of water concentration on scales of 10's of meters</td>
<td>NSS, NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-9</td>
<td>Mineralogical, elemental, molecular, isotopic, make up of volatiles</td>
<td>NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-10</td>
<td>Physical nature of volatile species (e.g. pure concentrations, intergranular, globular)</td>
<td>NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-11</td>
<td>Spatial and temporal distribution of OH and H2O at high latitudes</td>
<td>NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>D-13</td>
<td>Monitor and model movement towards and retention in PSR</td>
<td>NIRVSS, OVEN-LAVA</td>
</tr>
<tr>
<td>G</td>
<td>Lunar ISRU production efficiency 2</td>
<td>Drill, OVEN-ROE, LAVA-WDD</td>
</tr>
</tbody>
</table>

III. Understand how to work and live on the lunar surface

<table>
<thead>
<tr>
<th>SKG</th>
<th>Instrument or Activity</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Technology for excavation of lunar resources</td>
<td>Drill, Rover</td>
</tr>
<tr>
<td>B-2</td>
<td>Lunar Topography Data</td>
<td>Planning Products, Cameras</td>
</tr>
<tr>
<td>B-3</td>
<td>Autonomous surface navigation</td>
<td>Traverse Planning, Rover</td>
</tr>
<tr>
<td>C-1</td>
<td>Lunar surface trafficability: Modeling & Earth Tests</td>
<td>Planning, Earth Testing</td>
</tr>
<tr>
<td>C-2</td>
<td>Lunar surface trafficability: In-situ measurements</td>
<td>Rover, Drill</td>
</tr>
<tr>
<td>D-1</td>
<td>Lunar dust remediation</td>
<td>Rover, NIRVSS, OVEN</td>
</tr>
<tr>
<td>D-2</td>
<td>Regolith adhesion to human systems and associated mechanical degradation</td>
<td>Rover, NIRVSS, OVEN, Cameras</td>
</tr>
<tr>
<td>D-3</td>
<td>Descent/ascent engine blast ejecta velocity, departure angle, and entrainment mechanism: Modeling</td>
<td>Landing Site Planning, Testing</td>
</tr>
<tr>
<td>D-4</td>
<td>Descent/ascent engine blast ejecta velocity, departure angle, and entrainment mechanism</td>
<td>Lander, Rover, NIRVSS</td>
</tr>
<tr>
<td>F-2</td>
<td>Energy Storage - Polar missions</td>
<td>Stretch Goal: Lander, Rover</td>
</tr>
<tr>
<td>F-4</td>
<td>Power Generation - Polar missions</td>
<td>Rover</td>
</tr>
</tbody>
</table>

VH = Very High, H = High, M = Medium, L = Low
Resource Prospector – The Tool Box

Mobility

Rover
- Mobility system
- Cameras
- Surface interaction

Prospecting

Neutron Spectrometer System (NSS)
- Water-equivalent hydrogen > 0.5 wt% down to 1 meter depth

NIR Volatiles Spectrometer System (NIRVSS)
- Surface H2O/OH identification
- Near-subsurface sample characterization
- Drill site imaging
- Drill site temperatures

Sampling

Drill
- Subsurface sample acquisition
- Auger for near-surface assay
- Core for detailed subsurface assay

Processing & Analysis

Oxygen & Volatile Extraction Node (OVEN)
- Volatile Content/Oxygen Extraction by warming
- Total sample mass

Lunar Advanced Volatile Analysis (LAVA)
- Analytical volatile identification and quantification in delivered sample with GC/MS
- Measure water content of regolith at 0.5% (weight) or greater
- Characterize volatiles of interest below 70 AMU
Prospecting… (NASA notional plan)

1. While roving, prospecting instruments (neutron spectrometer and near infrared spectrometer) search for enhanced surface $\text{H}_2\text{O}/\text{OH}$, other volatiles and volumetric hydrogen.
Prospecting… (NASA notional plan)

1. While roving, prospecting instruments search for enhanced surface H$_2$O/OH and volumetric hydrogen.
2. When enhancements are found, a decision is made to either auger or core (sample), which requires coordination between the scientists, instrument leads, and rover driver in near real time.
1. While roving, prospecting instruments search for enhanced surface H$_2$O/OH and volumetric hydrogen
2. When enhancements are found decision made to either auger or core (sample)
3. Samples are processed with the drill delivering regolith sample from depth to the OVEN, where heating releases volatiles that are measured using a GC-MS
Mapping... (NASA notional plan)

Mapping of volatiles and samples continue across a variety of environments, testing theories of emplacement and retention, and constraining economics of extraction.

Coordination of science and mission operations required due to limitations of mission timeline and interplay of instrument data with rover positioning.
Neutron Spectrometer Subsystem (NSS)

Sensor Name: Neutron Spectrometer

Source: ARC / Lockheed Martin ATC

Heritage: Lunar Prospector, Resource Prospector

Instrument Type: Neutron Spectrometer

Sensing Element: Two 3He gas proportional counter detectors

Mass [kg]: 1.6

Dimensions [cm]:
- Sensor Module: 21.3 x 32.1 x 6.8
- Data Processing Module: 13.9 x 18.0 x 3.0

Power [W], Peak/Avg: 1.5/1.5

Range: 0 – 511 counts/sec

Sensitivity: Area-efficiency product (@ 1 eV) = 80 cm2

Accuracy:
- Absolute: 5-10%
- Relative: 1-2%

FOV/IFOV: 4 pi steradians

Survival Temp Range [˚C]:
- SM = -40 to 60
- DPM = -40 to 60

Operating Temp Range [˚C]:
- SM = -30 to 40
- DPM = -30 to 50

Operating Voltage Range: 28 ± 6 VDC

Interface: RS-422

Bits/Sample: 712

Bits/Second: 712

Samples/Second: 1 (mapping)

Instrument Type: Two channel neutron spectrometer.

Key Measurements: NSS assesses hydrogen and bulk composition in the top meter of regolith, with a footprint of 1-2 m

Heritage: Lunar Prospector (detectors); Resource Prospector (instrument)
Near InfraRed Volatile Spectrometer Subsystem

The NIRVSS NIR spectrometer observes the ground underneath the rover at the point where tailings pile from the drill are deposited. It obtains data continuously during roving or drilling activities which are continuously and immediately analyzed to assess the presence of volatiles in surface/subsurface materials.

Main Components

NIR Spectrometer
- Modified COTS instrument with 2 fiber fed optical engines
- Acquires spectra between 1600-3400 nm with <15 nm resolution
- Identifies key volatiles (solid and gas) while both roving and drilling

IR Emitter (Lamp)
- Enables IR observations while roving and drilling, in lit and unlit terrain

Camera (DOC)
- Acquires images during roving and drilling
- Includes LEDs to illuminate the surface and provide compositional information

Longwave Calibration Sensors (LCS)
- Measures surface temperature.
- Used in determining concentrations of OH/H2O
Drill

Hammer System
- 150 Watts
- 2 J/blow
- 1646 bpm max
- Integrated in 8 different planetary drill systems

Auger
- Hollow for temperature sensor wires
- Dual stage to enable sampling and auger cuttings to the surface. <25 mm dia

Rotary System
- Speed: 209 RPM
- Max. Cont. Torque: 6.57 Nm
- Max. Cont. Pwr: 144 W
- Stall Torque: ~19 Nm

Slipring
- 4 channel
- Can support 1 RTD or 2 Thermocouples

Z-Stage
- Allows 1 m penetration into subsurface
- Pulley based (dust tolerant, attenuates vibe)
- 1 m stroke (need ~1.1 m to clear auger tube)
- Max force: 523 N (any direction)
- Max linear speed: 21.3 mm/s
- Max cont. Power: 11.1 W

Deployment Stage
- Deploys and preloads drill against ground
- Pulley based
- 40 cm stroke (function of rover ground clearance)
- Max force: 523 N (any direction)
- Max linear speed: 21.3 mm/s
- Max cont. Power: 11.1 W

Sample Delivery
1. Brush directly into a cup/oven

Bit
- Tungsten Carbide
- Potentially serrated blade
- Embedded temperature sensor
Oxygen and Volatile Extraction Node (OVEN)

- Accepts 12 cc of regolith from Drill
- Weighs the sample
- Seals sample in reactor
- Heats the sample to 150C, 350C, 450C
- Transfer gases evolved to LAVA
- Discards sample for crucible reuse
- Mass: ~12.5 kg
- Power: >50W steady state
Lunar Advanced Volatile Analysis (LAVA)

- LAVA consists of a heated Fluid Subsystem, a Gas Chromatograph-Mass Spectrometer, Gas Supply System and a Water Droplet Demo

- Gases evolved by OVEN from regolith samples will be identified and quantified by LAVA
 - Gases of interest are H$_2$O, CO, CO$_2$, H$_2$, H$_2$S, NH$_3$, SO$_2$, CH$_4$, C$_2$H$_4$

- Water that is evolved will be condensed and photographed
RP15 Field Test

- Payload (minus Drill and NSS) was integrated onto a Ground Interface Structure at KSC
 - Fully checked out and shipped on structure
- Accurate interface control
- Prefabrication of harnesses
- System characterization
- Physical integration practice
 - Hand access
 - Tool access and rotation
 - Etc.
Some Key Benefits of RP15

• Interfaces
 – Developed ICDs between all Payload subsystems and the Rover
 – Working across multiple NASA centers and contractors

• Process development
 – Utilized Work Order Authorizations and more formal Test Plans and Procedures for all I&T activities

• Mission simulations with a fully distributed team
 – Realistic simulations with a full Ground Data System, voice loop communications, and flight-like procedures and operations

• Operational practice
 – Better understanding of all the Payload subsystem interplay
 – Better understanding of the Rover-Payload interplay, especially during prospecting
Future Work

• Technology Development for instrumentation
 – Thermal vacuum testing
 – Vibration testing
 – Protoflight development plan

• Several trades ongoing

• International partnerships discussions ongoing

• Team is working towards SRR