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Future
Missions

ISS

Lunar
(NRO, Earth-Moon Lagrange, Surface)

Mars
(Phobos, Surface)

Needed Prop & Power 
Tech Advancements

A.  Transit Vehicle Power and Propulsion:
A.1   Electric (SEP) 
A.2   Chemical 

B.  Lander/Descent Vehicle Propulsion 
B.1      Integrated LOx/LCH4 systems
B.2 LOx/LCH4 propulsion

C. Power Distribution and Control
C.1  Radiation tolerant conversion and regulation

D.  Surface Base Power Generation
D.1  Photovoltaics
D.2  Nuclear

E.  Lander & Surface Mobility Power 
Generation 
E.1      LOx/LCH4 Integrated Power systems 

F.  Surface Habitat/Mobility ISRU & 
Reactant Storage:
F.1   Atmos. & Regolith proc.
F.2   Integrated Reactant Storage

G.1 Regenerative Fuel Cells
G.2  Battery systems 

H. Power Distribution and Control:
H.1  Wiring 

I. Separation/Actuation:
I.1  Pyrotechnic Systems and Firing Circuitry

J. Advanced Transit Vehicle Power and 
Propulsion

W
ha

t i
s 

ne
ed

ed

W
he

re
 w

e 
ar

e 
go

in
g

H
ow

 w
e 

ar
e 

ge
tti

ng
 th

er
e

NOW*

2023

NOW*

2023

2025

2025

2023

2025

H
um

an
Exploration Propulsion and Pow

er D
om

ains

Enabling

Enhancing

Disruptive
*For cis-Lunar missions

2025

Envisioned Mars Mission
Elements

(Mars L-8 date)

Crew Transport
(Orion & CC)

Small Power
& Prop Bus

Large Enhanced
Habitation & Prop Bus

Surface 
Lander

Entry Decent Vehicle

In-Space
Mobility

EVA Suits

Surface 
Plant:
Habitats & ISRU

Surface
Mobility

JSC Energy Systems Exploration Technology Domains
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In-Situ Resource Utilization (ISRU)
and LO2-Methane for Mars

Values shown are approximate and are only intended to illustrate gear ratio effect;
actual values will vary based on specific mission parameters and architecture.

• The Human Mars mission 
architecture is enabled by ISRU and 
LO2-Methane

• Ability to produce propellant on the 
Mars surface has substantial 
‘ripple’ benefits to the mission 
architecture

• Enables a lighter ascent vehicle 
(MAV)

• Simplifies EDL and Aeroshell
design

• Reduces launch requirements

• LO2-Methane has excellent 
attributes for a Mars lander

• LO2 and CH4 (with H2) can be 
produced at Mars

• Improved performance over earth 
storables 

• Space storable and high density 
cryogens

• Non-toxic, non-corrosive, self-
venting

11.3 kg in LEO

8.4 kg used for TMI 
propulsion

2.9 kg prior to Mars EDL

1 kg propellant on Mars

1.9 kg used for EDL

Earth Orbit

Mars 

226 kg on Earth

High Mars Gear Ratio Requires 
Spacecraft Optimization for Mass and 

Size
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Vision for Future Human Spacecraft  
Current human spacecraft have multiple 
fluids and little subsystem integration
• MMH, NTO, O2, N2, N2H4, Freon or NH3, 

water, etc.

Goal is to provide an integrated 
spacecraft fluid and thermal system that 
minimizes dry mass, complexity, and 
number of different fluids

• ECLSS: Oxygen storage for cabin air, suit 
loop, EMU recharge; thermally synergistic 
with high density cryogenic nitrogen 
storage.

• Power: Reactant storage for Solid Oxide 
Fuel Cell (SOFC) power generation.

• Thermally Efficient: No heaters, high 
temperature (800C) SOFC heat rejection, 
reduced radiator footprint and ATCS heat 
load

Integrated Vehicle Fluids and Thermal
• Supports a High Degree of Integration

Across Spacecraft Subsystems
• Allows for cross strapping for redundancy 

with multiple common tanks and fluids
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Integrated Fluids & Commodities For Spacecraft and Exploration Systems
Goal is to ‘Close the Loops’ Across Multiple Systems

• Identify where common fluids, pressures, quality, and standards are possible
 Enables common  storage, distribution, and interfaces

• Identify where common processes and technologies are possible
 Enables common hardware for flexibility and reduced DDT&E
 Enables modularization of non-unique hardware for multiple systems
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Morpheus VTB Propulsion Technical Accomplishments

Four RCS jets x 20 lbf(max)
• Demonstrated GNC control using 

Lox/LNG RCS engines
• 40msec to 30+sec pulses
• Operated in blowdown from 350 psig to 

160 psig
• Operated over range of Inlet 

Conditions in flight
• Gas-gas , gas-liq ., liq.-liq.

• Reliable engine and ignition obtained 
after a few modifications

• Spark extend, Pc tube locations, 
plug mods

Parallel Tank Differential 
Draining – Prop Management
• Capacitance probe in each tank
• Demonstrated propellant balance 

during free flight
• Demonstrated self-correcting 

behavior (passive, no liquid control 
valves)

Gimbaled, Throttled Main Engine
• ~5400 lbf engine
• >4:1 throttle capability with simple ball valve 

mechanism
• >2500 sec operations, > 120 starts
• Excellent stability during main stage
• Start is stable with cold Lox and warm methane gas.  

Possibly unstable if liquid methane

Propellant Slosh Control
• Demonstrated damping of 

Lo2/Methane propellants

System Level Operations
• Conducted 12 Hot-Fire Tests, 34 Tether Flights, 12 Free-Flights
• System Level Flight Operational Experience Gained 

• Prop System Turnaround measured in hours
• No major issues working with LNG and Lox

• Ie. No hardstarts/No purge run for RCS in-flight, no corrosion, little to no soot, safed
quickly with GN2 post flight

• Low Cost of development, fabrication, and operations 
• Developed and Built 3 vehicles for ~500K per year procurement $90K in FY2014,  + 6-7 FTE

Integrated Main Engine 
and RCS, Tank & 
Feedsystem
• Blowdown Pressurization
• RCS feedsystem mounted to tanks 

and TVS operated in flight
• Cryo RCS worked even in Texas 

and Flordia summer environment
• Venting seen in videos is 

the initial chill-in from gas 
to liquid temps

• Tanks used purged aerogel 
blankets ( non-flammable)

All Hardware common 
between O2 and CH4
• Tanks
• Valves
• Plumbing
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https://www.youtube.com/watch?v=1M5qS
0Y3tDw
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