Advancing Test Capabilities at NASA Wind Tunnels

Presentation for the 32nd Annual International Test and Evaluation Symposium
August 19, 2015

James Bell
Aeronautics Evaluation Test Capabilities
Test Technology Subproject Manager
Outline

• Introduction to the Aeronautics Evaluation and Test Capability (AETC)
 – AETC position within NASA Aeronautics Organization
 – Composition and Role of AETC

• Overview of the NASA AETC Facilities

• New capabilities under development

• Conclusion: Addressing the needs of the T&E community
AETC Wind Tunnels within NASA

NASA Administrator

Aeronautics Research Mission Directorate (ARMD)

Human Exploration and Operations Directorate (HEO)

Science Mission Directorate (SMD)

Space Technology Mission Directorate (SMD)

Advanced Air Vehicles Program (AAVP)

Airspace Operations and Safety Program (AOSP)

Integrated Aviation Systems Program (IASP)

Transformative Aviation Systems Program (AAVP)

Revolutionary Vertical Lift Technology (RVLT)

Commercial Supersonic Technology (CST)

Advanced Composites (AC)

Advanced Air Transport Technology (AATT)

Airspace Technology Demonstrations (ATD)

SMART-NAS

Environmentally Responsible Aviation (ERA)

UAS in the NAS

Flight Demonstrators and Capabilities (FDC)

Convergent Aeronautics Solutions (CAS)

Transformational Tools and Technologies (TTT)

Leading Edge Aero Research for NASA (LEARN)
AETC Role and Organization

- AETC’s role is to preserve and enhance the ground test capabilities needed to achieve ARMD’s missions.
- AETC invests in workforce and assets needed to help the facilities support ARMD, while the facilities themselves are owned and operated by their respective centers.
- AETC is divided into four elements:
 - Operations: Direct funding to support key labor and procurement needs while maintaining stable and competitive rates to customers.
 - Maintenance: Funds directed to maintain physical plant to ensure current operations and minimize risk for the future.
 - Capability Advancement: Handles large scale investments in facility physical plant, controls, and data systems.
 - Test Technology: Funds small-scale “pilot” projects to bring new test capabilities, especially measurement systems, into the facilities.
AETC Facility Locations and Summary

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 11x11</td>
<td>General purpose transonic</td>
</tr>
<tr>
<td>ARC 9x7</td>
<td>General purpose supersonic</td>
</tr>
<tr>
<td>GRC 10x10</td>
<td>Supersonic propulsion/aerodynamic</td>
</tr>
<tr>
<td>GRC 8x6</td>
<td>Supersonic propulsion/aerodynamic</td>
</tr>
<tr>
<td>GRC 9x15</td>
<td>Subsonic propulsion & acoustics</td>
</tr>
<tr>
<td>IRT</td>
<td>Subsonic icing</td>
</tr>
<tr>
<td>PSL</td>
<td>High altitude engine test cell with icing</td>
</tr>
<tr>
<td>NTF</td>
<td>Transonic full-scale Reynolds number</td>
</tr>
<tr>
<td>TDT</td>
<td>Transonic aeroelastic</td>
</tr>
<tr>
<td>14x22</td>
<td>Subsonic general purpose</td>
</tr>
</tbody>
</table>
AETC Facility Locations and Summary

<table>
<thead>
<tr>
<th>Facility</th>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 11x11</td>
<td>General purpose transonic</td>
<td>GRC IRT Subsonic icing</td>
</tr>
<tr>
<td>ARC 9x7</td>
<td>General purpose supersonic</td>
<td>GRC PSL High altitude engine test cell with icing</td>
</tr>
<tr>
<td>GRC 10x10</td>
<td>Supersonic propulsion/aerodynamic</td>
<td>LaRC NTF Transonic full-scale Reynolds number</td>
</tr>
<tr>
<td>GRC 8x6</td>
<td>Supersonic propulsion/aerodynamic</td>
<td>LaRC TDT Transonic aeroelastic</td>
</tr>
<tr>
<td>GRC 9x15</td>
<td>Subsonic propulsion & acoustics</td>
<td>LaRC 14x22 Subsonic general purpose</td>
</tr>
</tbody>
</table>
11x11 and 9x7 (Ames)

- 4 x 64,000 HP motors drive either 11x11-ft transonic or 9x7-ft supersonic test sections.
- Averaged 1640 hrs/yr usage over past eight years.
- 1/3 time was NASA, remainder was industry and DoD.
- Significant features:
 - Workhorse tunnel for complex high Reynolds tests
 - Good optical access for unusual instrumentation techniques (PSP, PIV, schlieren, BOS)
 - 3000 channels unsteady data
 - 3000 psi air available up to 80 lbm/s.
10x10 Wind Tunnel (Glenn)

- Completed in 1955 to provide high Re, supersonic propulsion testing capability.
- 288,750 total horsepower
 - 4 x 41,500 HP motors drive 8-stage main compressor for flow up to M=2.6
 - 3 x 41,500 motors drive 10-stage secondary compressor for flow up to M=3.5.
- Operates in subsonic (up to M=0.4) or supersonic (M=2.0-3.5) mode. Can achieve up to M=4.1 locally.
- Standard altitude simulation range is 50,000 – 150,000 ft but can go up to 200,000 ft.
- Temperature range up to 680°F to simulate M=3.1 stagnation temperature.
- Switches between closed loop mode for aerodynamic testing and open loop mode for propulsion testing.
- Plumbed for kerosene, LH2, LOX delivery, as well as high pressure air up to 2600 psi.
- Optical access for BOS, PIV, focusing schlieren and other techniques.
- Low disturbance environment suitable for laminar flow testing.
9ft. x 15ft. Low Speed Test Section
MACH NO.: 0–0.2

8ft. x 6ft. Supersonic Test Section
MACH NO.: 0.25–2.0
Altitude: Sea level to 35,000 ft.
Tunnel pressure: 2400 to 3700 lb/ft²
Temperature: 80 to 200 °F
Drive motors 87,000 HP
Kerosene, GH2, and 2600 psi air available

(Average Utilization 2300 Hrs/Yr)
Icing Research Tunnel (Glenn)

Capabilities

• 2100 ton refrigerator allows replication of icing certification standards contained in FAR part 25, appendix C.
• Extensively used by industry to show compliance with FAA icing standards.
• Average usage 1580 hrs/yr primarily for industry customers.

Performance

• Test Section 6 ft tall x 9 ft wide and 20 ft long.
• Air speed from 50 to 300 kt.
• Air temperatures as low as -40°C.
• Drop size 15 to 50 µm MVD (Appendix C) + SLD up to ≈250 µm.
• Liquid Water Content (LWC) controllable between 0.2 and 3.0 g/m3 (LWC depends on speed and MVD).
• Centralized exhaust system flow rate of 3 to 85 lb/s for simulating engine airflow.
• Hot bleed air simulation up to 1 lb/s.
Propulsion Systems Laboratory (Glenn)

Combustion Air
- 480 lbs/sec at ambient and 55 psia
- 380 lbs/sec at ambient and 165 psia
- 76 lbs/sec at ambient and 450 psia
- Max inlet temp 875°F
- Min inlet temp -50°F

Exhaust
- Max flow 750 lbs/sec at SLS ~ sea level standard
- Max altitude 70,000 ft +

Data Acquisition
- 1248 Channels for steady state data
- 256 Channels for transient data

Operational Since 1973
Average Usage 1250 hrs/yr

Test Cell Chamber
39ft length
24ft diameter
National Transonic Facility (Langley)

- Came on-line in 1983 to provide full-scale Reynolds number testing capability by operating with air or cryogenic nitrogen gas.
- Active flow control/propulsion integration capability.
- High-speed cruise and low-speed high-lift performance testing.

<table>
<thead>
<tr>
<th>Test Section</th>
<th>8.2 x 8.2 x 25 Feet (2.5 x 2.5 x 7.6 meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>14.7 to 133 psia; 1 to 9.0 atm.; 1.01 to 9.1 bar</td>
</tr>
<tr>
<td>Air Operations</td>
<td>N₂ Operations</td>
</tr>
<tr>
<td>Mach No.</td>
<td>0.2 to 1.05</td>
</tr>
<tr>
<td>Reynolds No. Max</td>
<td>20x10⁶ / ft (65x10⁶ / m)</td>
</tr>
<tr>
<td>Temperature</td>
<td>90° to 150°F (32° to 65°C)</td>
</tr>
</tbody>
</table>

- Came on-line in 1983 to provide full-scale Reynolds number testing capability by operating with air or cryogenic nitrogen gas.
- Active flow control/propulsion integration capability.
- High-speed cruise and low-speed high-lift performance testing.
Transonic Dynamics Tunnel (Langley)

- Came on-line in 1960 to provide large scale transonic aeroelastic testing capability.
- Operates with either air or R-134a heavy gas.
- Averaged 1015 hrs/yr usage over past eight years. (1/3 NASA – remainder industry & DoD.)
- Significant features:
 - Excellent model visibility from control room
 - Safety screens for fan protection
 - Rapid tunnel shutdown for model safety
 - Airstream oscillator (gust generating) system
14-by 22-Foot Subsonic Tunnel (Langley)

Characteristics:
- Closed circuit, single return, atmospheric
- Closed and open test section configurations
- Speed, foot per second........ 348 (closed), 283 (open)
- Reynolds number, per feet..... 0 to 2.2 x10^6
- Test gas......................... Air
- Test section size, feet......... 14.5 x 21.75
- Test Section Length, feet...... 50
- Drive power, horsepower....... 12000 continuous
- Model build-up in large Model Preparation Areas
- Model support on different Model Carts
New Capabilities

• Optical Test Section of Tomorrow for 11x11 and 9x7
• Improved Acoustic Treatment for 9x15
• Improved Icing Capability for IRT and PSL
• Other Improvements
Optical Test Section of Tomorrow

- Greatly enhance optical access for instruments in 11x11 and 9x7 wind tunnels at ARC, by cutting new window ports in test section walls and by enlarging existing windows.
- Enhance access to 11x11 plenum area (for instrument installation) with new doors in the pressure shell.
- Upgrade electrical and data wiring within and around the test sections to allow more instruments to be accommodated.

Sketch showing new porthole windows in 11x11.

CFD simulation showing flow in 11x11 with modified slot geometry due to presence of new larger windows.

Optical planning simulation showing new and modified window locations in 9x7.
9x15 Acoustic Mods

• Current acoustic treatment of the 9x15 can be improved, allowing more precise measurements of propulsion system sound levels.
• Project has identified five areas in the tunnel test section and circuit where acoustic treatments could efficiently reduce noise.
• Currently developing candidate designs for all five acoustic treatments. Will implement as many treatments as possible given funding level – ideally all five.

Diagram showing portion of 9x15 circuit, with some areas for acoustic treatment highlighted.
SLD/Ice Crystal Mods for IRT/PSL

- New FAA requirements in place as of January 2015 amend airworthiness standards for icing certifications with regard to Supercooled Large Droplets and Ice Crystal conditions.
- NASA is enhancing the capabilities of the IRT and PSL to both generate SLD/Ice Crystal conditions and to measure such conditions accurately.
- Icing work includes new instruments for measuring SLDs and ice crystals, as well as modifications to the IRT and PSL spray systems.

Laser tomography system for measuring water droplet density in PSL
Other Improvements

• Improve capability for powered testing in NTF.
 – New high pressure air system
 – Investigate transferring power across cryogenic balance for fan simulators.
• Upgraded data systems for 14x22, TST, ARC 11x11 and 9x7.
• Heat exchanger for 14x22 to allow more accurate flow measurements.
• “Clean” particle seeding for optical measurement systems in ARC 11x11, 14x22, other facilities.
• New blades for 11x11 three-stage compressor. Replace current Al blades with new Al, steel, or composite blades for improved life and enhancement of facility efficiency and operating envelope.
• Improved optical measurement techniques at all facilities
 – Background-Oriented Schlieren
 – Unsteady PSP
 – High Speed Shadowgraph
 – IR Thermography
 – Photogrammetry
Conclusion: AETC Role in T&E

• AETC facility usage by broad category
 – NASA research.
 – Development of commercial and military aircraft.
 – Development of NASA spacecraft (launch vehicles and crew capsules).
 – Test and evaluation for DoD and commercial customers.

• AETC facility experience in Test and Evaluation
 – IRT & PSL used for FAA certification for icing.
 – 11x11 used by Navy.

• AETC facility advantages for T&E
 – Provide high quality data
 – Large number of specialized capabilities
 – Generally high availability
Backup Slides
National Transonic Facility (Langley)

- Came on-line in 1983 to provide full-scale Reynolds number testing capability.
- Operation with cryogenic nitrogen gas allow Reynolds numbers up to 140×10^6/ft.
- Averaged 590 hrs/yr usage over past eight years.
- 2/3 time was NASA, remainder was industry and DoD.
- Significant features:
 - Highest Re in the world.
 - Only US wind tunnel able to achieve full-scale Re for large aircraft.
 - Air mode operation allows comparison of pressure/Re effects and higher productivity when only moderate Re (up to 25×10^6/ft) is needed.
 - Independent Mach, Re and Dynamic Pressure control.
 - Active flow control/propulsion integration capability.
 - High-speed cruise and low-speed high-lift performance testing.
AETC Facility Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Mach</th>
<th>Special Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>11x11</td>
<td>0.0 – 1.4</td>
<td>General purpose</td>
</tr>
<tr>
<td>9x7</td>
<td>1.5 – 2.5</td>
<td>General purpose</td>
</tr>
<tr>
<td>10x10</td>
<td>0.0 – 0.4, 2.0 – 3.5</td>
<td>Propulsion/Aerodynamic</td>
</tr>
<tr>
<td>8x6</td>
<td>0.25 – 2.0</td>
<td>Propulsion/Aerodynamic</td>
</tr>
<tr>
<td>9x15</td>
<td>0.0 – 0.2</td>
<td>Propulsion, acoustically-treated test section</td>
</tr>
<tr>
<td>IRT</td>
<td>0.0 – 0.45</td>
<td>Icing</td>
</tr>
<tr>
<td>PSL</td>
<td>0.0 – 4.0</td>
<td>High altitude engine cell, icing capability</td>
</tr>
<tr>
<td>NTF</td>
<td>0.2 – 1.2</td>
<td>Full scale flight Reynolds number</td>
</tr>
<tr>
<td>TDT</td>
<td>0.0 – 1.2</td>
<td>Aeroelasticity</td>
</tr>
<tr>
<td>14x22</td>
<td>0.0 – 0.2</td>
<td>¾ open test section for acoustics, rotorcraft</td>
</tr>
</tbody>
</table>
14-by 22-Foot Subsonic Tunnel (Langley)

- Came on-line in 1970 in response to need for facilities suited to V/STOL aircraft research.
- Initially named as the V/STOL Transition Tunnel, later changed to the 4 by 7-Meter Low Speed Tunnel (1982), and finally renamed to the 14-by 22-Foot Subsonic Tunnel (1985)
- Averaged 870 hrs/yr usage over past eight years.
- Significant features:
 - ¾ open jet capability (walls and ceiling removed) capability
 - Model Preparation Area with 12 build-up sites
 - Model support systems on 4 large movable Model Carts
 - Acoustic testing capability
 - Rotorcraft testing in hover (Rotor Test Cell) and forward flight (14x22)
 - Tether free-flight
 - Forced oscillation
 - Propulsion simulation