UAS Integration in the NAS Project

An Evaluation of Detect and Avoid Displays for UAS: The Effect of Information Level and Display Location on Pilot Performance

Presented By:
Conrad Rorie, San Jose State University, conrad.rorie@nasa.gov

Co-Authors:
Lisa Fern, San Jose State University, lisa.fern.nasa.gov
Jessica Pack, Infoscitex Corporation, jessica.pack.ctr@us.af.mil
Jay Shively, NASA Ames Research Center, robert.j.shively@nasa.gov
Mark H. Draper, Air Force Research Laboratory, mark.draper.2@us.af.mil

25 JUNE 2015
Introduction

• UAS in the NAS Project
 – Developed to help address technical barriers to integration of unmanned aircraft systems (UAS) into the national airspace system (NAS)
 • Findings help guide development of RTCA Special Committee 228’s Minimum Operational Performance Standards (MOPS) for UAS
 – An outstanding technical barrier is providing UAS pilots with a means to “detect and avoid” other aircraft
 • Means of compliance with 14CFR, Section 91.113 - pilots must remain well clear from other aircraft through “see and avoid”

• Detect and Avoid (DAA) System
 – A collection of technologies - consisting of both hardware & software – that can provide pilots with the necessary information to self-separate from other aircraft
 – A traffic display would serve as substitute for manned pilots’ ability to see outside their aircraft
 – Critical question: what are the display requirements for such a system?
Introduction

- **DAA Display Research**
 - Several part-task studies have looked UAS traffic display
 - Friedman-Berg et al. (2014) & Draper et al. (2014) focused on identifying the minimum information requirements
 - Results were largely in agreement, most significant difference being the inclusion of maneuver recommendations (display guidance) in Draper et al.
 - Bell (2012) found that “advanced” displays – i.e., those that provided a level of display guidance – led to less severe separation violations than displays without guidance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft ID</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intruder Position & Direction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Range</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bearing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Altitude</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alert Level/Threat Status</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vertical & Horizontal Trend</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display Guidance</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Introduction

- **Current Study:**
 - Continues examination of DAA display requirements within a “full mission” task environment
 - Tests different information levels (no guidance vs. guidance) and location of the traffic information
 - Standalone (i.e., bootstrap) displays may be easier to develop, but may hinder performance relative to displays integrated into command and control interface
 - Focus on the displays’ impact on pilots’ measured response (MR)
 - MR can be understood as the quantification of the end-to-end response time for a UAS pilot to complete a self separation maneuver in response to a DAA display alert
 - Measured response metrics can reveal the amount of time pilots spent interacting with different displays, allowing direct comparisons
 - Longer MR times may result in delayed maneuvering, which can in turn increase likelihood of a separation violation
 - MR times can also inform human response models that are used in fast-time simulation and the alerting threshold parameters used by the alerting logic
Method

• Participants
 – 12 active UAS pilots (M = 39 years of age)
 • All had military UAS experience (avg. 216 hrs)
 • 8/12 had civil UAS experience (avg. 60 hrs)

• Simulation Environment
 – Ground Control Station
 • Vigilant Spirit Control Station (VSCS; right)
 – Provided command and control interfaces, aircraft information, and a simulated out-the-window view, across 3 monitors
 – Displayed traffic information in select conditions
 – Mouse and keyboard inputs only
 • Cockpit Situation Display (CSD; right)
 – Standalone CDTI only active in select conditions
 – One monitor, directly to left of VSCS monitors
Method

• 2 x 2 Repeated Measures Experimental Design
 – Information Level:
 • Basic Information
 – Standard intruder information (as set by Friedman-Berg et al., 2014)
 » No display guidance
 – Multi-level alerting
 • Advanced Information
 – Standard intruder information
 – Multi-level alerting
 » Included additional level
 – Suite of guidance tools
 » Trial planning tools
 » Recommended Maneuvers
 – Display Location:
 • Standalone Display
 – Information presented within CSD
 – Pilots still used VSCS to input changes to aircraft
 • Integrated Display
 – Information presented within VSCS command and control interface
Method

• Multi-Level Alerting
 – Visual and auditory alerts tied to predicted threat level of nearby traffic
 – Based on predicted closest point of approach (CPA) between ownship and intruder
 • Horizontal miss distance (HMD), vertical miss distance (ZTHR), and time to CPA criteria all had to be satisfied to be assigned given threat level
 – Pilots instructed to maneuver prior to collision avoidance alert being generated, which was their indication that separation had been lost

<table>
<thead>
<tr>
<th>Alert/Threat Level</th>
<th>HMD</th>
<th>ZTHR</th>
<th>Time to CPA</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal</td>
<td>> 2 NM</td>
<td>> 900 FT</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Preventative</td>
<td>< 2 NM</td>
<td>< 900 FT</td>
<td>< 120 secs</td>
<td></td>
</tr>
<tr>
<td>Self Separation</td>
<td>< 1.2 NM</td>
<td>< 900 FT</td>
<td>< 110 secs</td>
<td></td>
</tr>
<tr>
<td>Predicted CA Alert*</td>
<td>< 0.8 NM</td>
<td>< 400 FT</td>
<td>< 110 secs</td>
<td></td>
</tr>
<tr>
<td>Collision Avoidance</td>
<td>< 0.8 NM</td>
<td>< 400 FT</td>
<td>< 40 secs</td>
<td></td>
</tr>
</tbody>
</table>

*Only present in the Advanced Information display conditions
Method

1. Basic Standalone Display
 - Standard intruder information and multi-level alerting presented within CSD
 - No display guidance provided
 - VSCS served as command-and-control interface
2. Basic Integrated Display
 - Standard intruder information and multi-level alerting presented within VSCS
 - No display guidance provided
 - Traffic info collocated with vehicle control interfaces
3. Advanced Standalone Display
 - Display guidance included, in addition to standard info and alerting:
 • Trial planning tools allowed pilots to test different heading/altitude maneuvers before uploading
 • Maneuver recommendations offered suggested solutions
4. Advanced Integrated Display
 – Display guidance included, in addition to standard info and alerting
 • Trial planning tools allowed pilots to test different heading/altitude maneuvers before uploading
 • Maneuver recommendations offered suggested solutions
Method

• Pilot Task
 – Operate simulated MQ-9 Reaper within civil airspace, under Instrument Flight Rules
 • Routes contained entirely within Class E, Oakland Center airspace
 – Instructed to coordinate maneuvers with ATC (over push-to-talk headset)
 • Missions lasted 40 minutes
 – Maintain well clear from nearby aircraft
 • 8 scripted encounters with the ownship (i.e., would lose separation absent of pilot intervention)
 • Additional tracks were included to emulate busy day at Oakland Center
 – Attend to secondary tasks
 • Respond to requests for status information (e.g., current fuel level)
 • Complete electronic checklists in response to system malfunctions
Method

- Confederate Participants
 - Retired ATC managed all aircraft within experimental airspace
 - “Pseudo” pilots controlled simulated manned aircraft within airspace
- A researcher coordinated in real-time to ensure conflicts were generated
Method

• Measured Response Metrics
 – A pilot-DAA interaction timeline was constructed, with emphasis on the pilots’ interaction with ATC and the GCS (below)
 • The timestamps for each stage of the timeline were collected from a variety of sources:
 – GCS output files, DAA algorithm output files, voice recordings and logs, and video recordings

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>DAA (self separation or collision avoidance) alert appears on the display</td>
</tr>
<tr>
<td>T_1</td>
<td>Pilot notifies ATC and requests a maneuver clearance</td>
</tr>
<tr>
<td>T_2</td>
<td>ATC provides maneuver clearance</td>
</tr>
<tr>
<td>T_3</td>
<td>Pilot initiates an edit in GCS to maneuver</td>
</tr>
<tr>
<td>T_{4a}</td>
<td>Pilot uploads 1st maneuver to aircraft</td>
</tr>
<tr>
<td>T_{4b}</td>
<td>Pilot uploads final maneuver to aircraft</td>
</tr>
</tbody>
</table>
Method

• Measured Response Metrics
 – From these timestamps, five metrics were extrapolated:
 • *Total Response Time* \((T_{4b} - T_0)\) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 • *Initial Response Time* \((T_3 - T_0)\) – how long it took the pilot to initiate an edit in the GCS
 • *Total Edit Time* \((T_{4b} - T_3)\) – how long it took the pilot to implement appropriate maneuver
 – *Initial Edit Time* \((T_{4a} - T_3)\) – how long it took the pilot to implement an initial maneuver
 • *Notification Time* \((T_1 - T_0)\) – how long it took the pilot to notify ATC following an alert
Results

- Measured Response Metrics
 - From these timestamps, five metrics were extrapolated:
 - *Total Response Time* \((T_{4b} - T_0)\) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 - *Initial Response Time* \((T_3 - T_0)\) – how long it took the pilot to initiate an edit in the GCS
 - *Total Edit Time* \((T_{4b} - T_3)\) – how long it took the pilot to implement appropriate maneuver
 - *Initial Edit Time* \((T_{4a} - T_3)\) – how long it took the pilot to implement an initial maneuver
 - *Notification Time* \((T_1 - T_0)\) – how long it took the pilot to notify ATC following an alert
Results

- **Total Response Time**
 - Significant main effect of Information Level on Total Response Times ($p < .05$)
 - Pilots took an average of 37.87s to complete their final edit in response to SS/CA alerts (from first alert appearance)
 - Pilots 8s faster (19%) on average in Advanced than Basic conditions
 - No other significant main effects or interaction
Results

• Measured Response Metrics
 – From these timestamps, five metrics were extrapolated:
 • Total Response Time ($T_{4b} - T_0$) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 • Initial Response Time ($T_3 - T_0$) – how long it took the pilot to initiate an edit in the GCS
 • Total Edit Time ($T_{4b} - T_3$) – how long it took the pilot to implement appropriate maneuver
 – Initial Edit Time ($T_{4a} - T_3$) – how long it took the pilot to implement an initial maneuver
 • Notification Time ($T_1 - T_0$) – how long it took the pilot to notify ATC following an alert
Results

• Initial Response Time
 – Near significant effect of Display Location on Initial Response Times ($p = .054$)
 • Pilots took an average of **19.32s** to initiate an edit in response to a SS/CA alert
 – Pilots **5s** faster (23%) in Standalone display conditions
 – No other significant main effects or interaction
Results

• Measured Response Metrics
 – From these timestamps, five metrics were extrapolated:
 • Total Response Time ($T_{4b} - T_0$) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 • Initial Response Time ($T_3 - T_0$) – how long it took the pilot to initiate an edit in the GCS
 • Total Edit Time ($T_{4b} - T_3$) – how long it took the pilot to implement appropriate maneuver
 – Initial Edit Time ($T_{4a} - T_3$) – how long it took the pilot to implement an initial maneuver
 • Notification Time ($T_1 - T_0$) – how long it took the pilot to notify ATC following an alert
Results

- **Total Edit Time**
 - Significant main effect of Information Level on Total Edit Times ($p < .01$)
 - Pilots took an average of **17.65s** to complete their final edit in response to SS/CA alerts
 - Pilots 9s faster (40%) in Advanced display conditions
 - No other significant main effects or interaction
Results

• Measured Response Metrics
 – From these timestamps, five metrics were extrapolated:
 • \(Total \text{ Response Time} \ (T_{4b} - T_0) \) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 • \(Initial \text{ Response Time} \ (T_3 - T_0) \) – how long it took the pilot to initiate an edit in the GCS
 • \(Total \text{ Edit Time} \ (T_{4b} - T_3) \) – how long it took the pilot to implement appropriate maneuver
 – \(Initial \text{ Edit Time} \ (T_{4a} - T_3) \) – how long it took the pilot to implement an initial maneuver
 • \(Notification \text{ Time} \ (T_1 - T_0) \) – how long it took the pilot to notify ATC following an alert
Results

• Initial Edit Time
 – Significant interaction between Information Level and Display Location on Initial Edit Times ($p < .01$)
 • Pilots took an average of 11.77s to complete their first edit in response to SS/CA alerts
 – Difference between Basic and Advanced displays in Integrated conditions was 12s (68%), while only 2.5s (12%) in Standalone conditions
 – Information Level had a significant main effect ($p < .05$), 6.5s faster in Advanced
Results

• Measured Response Metrics
 – From these timestamps, five metrics were extrapolated:
 • *Total Response Time* \((T_{4b} - T_0) \) – how long it took the pilot to upload an appropriate maneuver following a DAA alert
 • *Initial Response Time* \((T_3 - T_0) \) – how long it took the pilot to initiate an edit in the GCS
 • *Total Edit Time* \((T_{4b} - T_3) \) – how long it took the pilot to implement appropriate maneuver
 – *Initial Edit Time* \((T_{4a} - T_3) \) – how long it took the pilot to implement an initial maneuver
 • *Notification Time* \((T_1 - T_0) \) – how long it took the pilot to notify ATC following an alert

![Response Time Diagram](attachment:image.png)
Results

- **Notification Time**
 - Near main effect of Information Level on Notification Times ($p = .059$)
 - Pilots took an average of **29.07s** to notify ATC of a maneuver in response to a SS/CA alert
 - Pilots 6s faster (19%) in the Advanced information conditions
 - No other significant main effects or interaction
• **Summary**

 – Advanced Information displays showed advantage in four of five reported metrics

 • Total Response Times 19% shorter in Advanced conditions
 • Total Edit Times 40% shorter in Advanced conditions
 • Initial Edit Times 70% shorter in Advanced Integrated condition than in the Basic Integrated condition
 • Notification Times 20% shorter in Advanced conditions

 – Overall benefit seen for lower Total Response Times was due to a reduction in *how long pilots spent interacting with the display*
 • Not how quickly they got ‘in-the-loop’ (Information Level did not impact Initial Response Times)

 – Display Location only approached significance in one of the metrics
 • Initial Response Times 23% shorter for Standalone display
• Advanced Information
 – The presence of display guidance (in a variety of forms) reduced the amount of work required of the UAS pilot
 • The Advanced displays unambiguously alerted pilots of which self separation threats were predicted to lose well clear
 • The tools provided the pilot with a pre-determined maneuver, limiting the amount of time they had to spend calculating their own
 – Led to pilots contacting ATC more quickly
 • However it was clear that pilots often initiated edits prior to contacting ATC
 – Roughly 50% of maneuvers occurred without prior ATC approval

• Display Location
 – Did not have a significant impact on pilot performance
 – The lack of immediate pilot responses may have mitigated the lack of an effect of display location (Initial Response Times were on the order of **20s**
Conclusion

• The first in a collection of studies, this sim demonstrated that Information Level, namely the absence or presence of display guidance, can substantially impact pilots’ response times
 – Future studies have been conducted that look at different sorts of display guidance to see if certain implementations result in superior performance

• This data is supplemental to other objective metrics – mainly rates of separation violations and pilot feedback – but supports inclusion of display guidance
 – Santiago and Mueller (2015) – found 45% fewer losses of well clear when pilots were provided with display guidance
 • Faster pilot responses is one reason for the finding, among less ambiguous alerting and eliminating the need for the pilot to self-determine a maneuver
 • Quick pilot inputs were especially important in cases of ‘pop-up’ encounters, where there was a small amount of time before a loss of well clear would appear
 – Monk et al. (2015) – found pilots preferred the Advanced displays
 • Supported more immediate responses
 • While all displays were rated as sufficient, Advanced Integrated was rated as most preferable
Conclusion

• Limitations
 – Cannot necessarily generalize to other GCS
 • Different GCS have different vehicle control inputs
 • There was a high level of integration between the Advanced features and the GCS in the
 Advanced Integrated condition
 – It is possible to present display guidance with less integration, which may impact
 pilot performance
 – There were multiple feature changes between the Basic and Advanced conditions
 • Several tools were included, as were several advanced pieces of information, including a
 new alerting level
• 2 follow-on studies have been submitted to different conferences
 – Both look at different ways to provide display guidance in an integrated fashion
 – HITL data to be validated in flight test environment