OD Parameters Generated by ASW Solutions

- **Solved for: State parameters**
 - Six parameters needed to determine 3-d state fully
 - Cartesian: three position and three velocity parameters in orthogonal system
 - Element: six orbital elements that describe the geometry of the orbit

- **Solved for: Non-conservative force parameters**
 - Ballistic coefficient ($C_D A/m$); describes vulnerability of spacecraft state to atmospheric drag
 - Solar radiation pressure (SRP) coefficient ($C_R A/m$); describes vulnerability of spacecraft state to visible light momentum from sun

- **Considered: ballistic coefficient and SRP consider parameter**
 - Not solved for but “considered” as part of the solution
 - Derived from information outside of the OD itself

- **Covariance matrix includes variances/covariances for all solved-for parameters, with potential alteration by consider parameters**
Covariance Matrix Construction: Symbolic Example

- Three estimated parameters (a, b, and c)
- Variances of each along diagonal
- Off-diagonal terms the product of two standard deviations and the correlation coefficient (ρ); matrix is symmetric

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>σ_a^2</td>
<td>$\rho_{ab}\sigma_a\sigma_b$</td>
<td>$\rho_{ac}\sigma_a\sigma_c$</td>
<td>…</td>
</tr>
<tr>
<td>b</td>
<td>$\rho_{ab}\sigma_a\sigma_b$</td>
<td>σ_b^2</td>
<td>$\rho_{bc}\sigma_a\sigma_c$</td>
<td>…</td>
</tr>
<tr>
<td>c</td>
<td>$\rho_{ac}\sigma_a\sigma_c$</td>
<td>$\rho_{bc}\sigma_a\sigma_c$</td>
<td>σ_c^2</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Example Covariance from CDM

- 8 x 8 matrix typical of most ASW updates
 - Some orbit regimes not suited to solution for both drag and SRP; these covariances 7 x 7

- Mix of different units often creates poorly conditioned matrices
 - Condition number of matrix at right is 9.8E+11—terrible!

- Often better numerically (and more intuitive) to separate matrix into sections

- First 3 x 3 portion (amber) is position covariance—often considered separately

\[
\begin{array}{cccccccc}
U & V & W & Udot & Vdot & Wdot & B & AGOM \\
(m) & (m) & (m) & (m/s) & (m/s) & (m/s) & (m^2/kg) & (m^2/kg) \\
6.84E+01 & -2.73E+02 & 6.38E+00 & 2.76E-01 & -7.14E-02 & 8.75E-03 & -3.83E-02 & -3.83E-02 \\
-2.73E+02 & 1.10E+05 & 3.23E+01 & -1.17E+02 & -8.99E-02 & 2.51E-02 & -1.28E-01 & -1.28E-01 \\
6.38E+00 & 3.23E+01 & 4.47E+00 & -3.26E-02 & -6.83E-03 & 1.81E-03 & -3.73E-03 & -3.73E-03 \\
Udot & -1.17E+02 & -3.26E-02 & 1.24E-01 & -2.47E-05 & 1.46E-04 & -1.46E-04 \\
Wdot & 8.75E-03 & 2.51E-02 & 1.81E-03 & -2.47E-05 & -9.39E-06 & 2.06E-05 & -4.39E-06 \\
B & -5.07E-03 & 1.30E+00 & 4.34E-05 & -1.38E-03 & 7.97E-07 & 7.26E-07 & 1.64E-05 & -6.28E-07 \\
AGOM & -3.83E-02 & -1.28E-01 & -3.73E-03 & 1.46E-04 & 4.10E-05 & -4.39E-06 & -6.28E-07 & 2.31E-05 \\
\end{array}
\]
Position Covariance Ellipse

- **Position covariance** defines an “error ellipsoid”
 - Placed at predicted satellite position
 - Square root of variance in each direction defines each semi-major axis (UVW system used here)
 - Off-diagonal terms rotate the ellipse from the nominal position shown

- **Ellipse of a certain “sigma” value contains a given percentage of the expected data points**
 - 1-σ: 19.9%
 - 2-σ: 73.9%
 - 3-σ: 97.1%
 - Note how much lower these are than the univariate normal percentage points
Batch Epoch Covariance Generation (1 of 2)

• **Batch least-squares update (ASW method) uses the following minimization equation**

 \[\text{dx} = (A^TWA)^{-1}A^TWb \]

 • dx is the vector of corrections to the state estimate
 • A is the time-enabled partial derivative matrix, used to map the residuals into state-space
 • W is the “weighting” matrix that provides relative weights of observation quality (usually \(1/\sigma\), where \(\sigma\) is the standard deviation generated by the sensor calibration process)
 • b is the vector of residuals (observations – predictions from existing state estimate)

• **Covariance is the collected term (A^TWA)^{-1}**

 – A the product of two partial derivative matrices:

 \[A = \frac{\partial (\text{obs})}{\partial X_0} = \frac{\partial (\text{obs})}{\partial X} \frac{\partial X}{\partial X_0} \]

 • First term: partial derivatives of observations with respect to state at obs time
 • Second term: partial derivatives of state at obs time with respect to epoch state
Batch Epoch Covariance Generation (2 of 2)

• Formulated this way, this covariance matrix is called an *a priori* covariance
 – A does not contain actual residuals, only transformational partial derivatives
 – So \((A^TWA)^{-1}\) is a function only of the amount of tracking, times of tracks, and sensor calibration relative weights among those tracks
 • Not a function of the actual residuals from the correction

• Limitations of *a priori* covariance
 – Does not account well for unmodeled errors, such as transient atmospheric density prediction errors
 • Because not examining actual fit residuals
 – W-matrix only as good as sensor calibration process
 • Principal weakness of present process, but expected to be improved eventually with JSpOC Mission System (JMS) upgrades
ASW Covariance Propagation

- Covariance in VCM is virginal (unaltered) covariance
- When propagating VCM covariance, the propagator
 - Scales the covariance by the weighted RMS if it is greater than unity
 - \(C^* = C \times \text{WRMS}^2 \)
 - Was an early attempt to improve covariance realism; not clear this is still a good idea
 - Applies the consider parameter to the ballistic coefficient variance
 - \(C^*(7,7) = C^*(7,7) + Cpd^2 \)
 - More later on how this value is determined
 - May apply a consider parameter to the solar radiation pressure variance
 - \(C^*(9,9) = C^*(9,9) + Cps^2 \)
 - Presently not used (Cps set to 0)
 - Propagates the altered covariance using linearized dynamics
 - \(\Phi \times C^{**} \times \Phi^T \)
 - Converts propagated matrix from equinoctial to Cartesian coordinates
Altered Covariance Positions

- Ballistic coefficient consider parameter (DCP) applied to ballistic coefficient variance (orange)

- If used, solar radiation pressure consider parameter applied to solar radiation pressure variance (purple)

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Udot</th>
<th>Vdot</th>
<th>Wdot</th>
<th>B</th>
<th>AGOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m/s)</td>
<td>(m/s)</td>
<td>(m/s)</td>
<td>(m2/kg)</td>
<td>(m2/kg)</td>
</tr>
<tr>
<td>U</td>
<td>6.84E+01</td>
<td>-2.73E+02</td>
<td>6.38E+00</td>
<td>2.76E-01</td>
<td>-7.14E-02</td>
<td>8.75E-03</td>
<td>-3.83E-02</td>
<td>-3.83E-02</td>
</tr>
<tr>
<td>V</td>
<td>-2.73E+02</td>
<td>1.10E+05</td>
<td>3.23E+01</td>
<td>-1.17E+02</td>
<td>-8.99E-02</td>
<td>2.51E-02</td>
<td>-1.28E-01</td>
<td>-1.28E-01</td>
</tr>
<tr>
<td>W</td>
<td>6.38E+00</td>
<td>3.23E+01</td>
<td>4.47E+00</td>
<td>-3.26E-02</td>
<td>-6.83E-03</td>
<td>1.81E-03</td>
<td>-3.73E-03</td>
<td>-3.73E-03</td>
</tr>
<tr>
<td>Udot</td>
<td>2.76E-01</td>
<td>-1.17E+02</td>
<td>-3.26E-02</td>
<td>1.24E-01</td>
<td>1.10E-04</td>
<td>-2.47E-05</td>
<td>1.46E-04</td>
<td>1.46E-04</td>
</tr>
<tr>
<td>Wdot</td>
<td>8.75E-03</td>
<td>2.51E-02</td>
<td>1.81E-03</td>
<td>-2.47E-05</td>
<td>-9.39E-06</td>
<td>2.06E-05</td>
<td>-4.39E-06</td>
<td>-4.39E-06</td>
</tr>
<tr>
<td>B</td>
<td>-5.07E-03</td>
<td>1.30E+00</td>
<td>4.34E-05</td>
<td>-1.38E-03</td>
<td>7.97E-07</td>
<td>7.26E-07</td>
<td>1.64E-05</td>
<td>-6.28E-07</td>
</tr>
<tr>
<td>AGOM</td>
<td>-3.83E-02</td>
<td>-1.28E-01</td>
<td>-3.73E-03</td>
<td>1.46E-04</td>
<td>4.10E-05</td>
<td>-4.39E-06</td>
<td>-6.28E-07</td>
<td>2.31E-05</td>
</tr>
</tbody>
</table>
Dynamic Consider Parameter (DCP)

• **Specifies global error in the atmospheric density forecast**
 – Parameterizes percent RMS error in terms of
 • Satellite height (perigee altitude)
 • Geomagnetic activity (a_p and Dst)
 – Density forecast error combination of solar/geomagnetic indices and DCA
 • Directly compared numerous forecast densities to actual density
 • Discretized heights from 200 km to 1000 km averaged over lat / lon
 • Found most variation parameterizable via a_p conditions (versus F_{10})
 • Functions optimized for 3-day predictions—this is the tuning point!

• **Determines satellite-specific frontal area variation in prediction**
 – Quantifies ballistic coefficient RMS error through satellite histories
 • Looks back in time up to a year in most cases (upfront preprocessing)
 • Ascertains error / target for 3-day predictions (accounting for time-lags)

• **Combine the two uncertainty components to obtain DCP value**
 – Additive in variance sense as the root sum of squares
B Consider Parameter Values

![Graph showing dRho STD and Dst with different parameter values.

- Dst (Storms) <= -75
- 25 < ap < 50
- 10 < ap <= 25
- 0 < ap <= 10

Current 12% for Altitude (km) range 200 to 1000.]
DCP Components RMS Uncertainty

DCP for Day 14203

- Density Forecast Error
- Frontal Area Variation
- DCP

Percentile of Drag Satellites

0 10 20 30 40 50 60 70 80 90 100