Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

Adam J. Schoenwald, Adam.Schoenwald@nasa.gov
Damon C. Bradley, Priscilla N. Mohammed, Jeffrey R. Piepmeier, Mark Wong

(1) NASA Goddard Space Flight Center, Greenbelt, MD (2) Goddard Earth Sciences Technology and Research, Morgan State University

Motivation

- RFI compromises quality of science products.
- Spectrum is becoming crowded and shared.
- Hardware capabilities allow for digital radiometry.
- Need more sensitive detectors for wide-band interference.

Complex Signal Kurtosis

Given a complex baseband signal $z(n) = I(n) + jQ(n)$, moments $\alpha_{\ell,m}$ of $z(n)$ are defined as

$$\alpha_{\ell,m} = \mathbb{E}[(z - \mathbb{E}[z])^\ell(z - \mathbb{E}[z])^m], \ell, m \in \mathbb{R} \geq 0$$

With $\sigma^2 = \alpha_{1,1}$, Standardized moments $\varrho_{\ell,m}$ can then be found as

$$\varrho_{\ell,m} = \frac{\alpha_{\ell,m}}{\sigma^{\ell+m}}$$

Leading to the CSK (Complex Signal Kurtosis) rfi test statistic used [1,2].

For Real Signal Kurtosis, the fourth based standardized moment is computed independently for both the real and imaginary vectors, I and Q as was used in SMAP [3].

$$R_{\text{SK}1} = \frac{\mathbb{E}[(Q - \mathbb{E}[Q])^4]}{\mathbb{E}[(I - \mathbb{E}[I])^2]^2} - 3, \quad R_{\text{SK}2} = \frac{\mathbb{E}[(Q - \mathbb{E}[Q])^4]}{\mathbb{E}[(Q - \mathbb{E}[Q])^2]^2} - 3$$

The test statistic, RSK (Real Signal Kurtosis), is then defined as

$$\text{RSK} = \frac{|R_{\text{SK}1}| + |R_{\text{SK}2}|}{2}$$

Methodology

Hardware Results

Simulation Results

Conclusions

CSK (Complex Signal Kurtosis) provides a better detection rate than real signal kurtosis.

Interference becomes detectable at an INR (Interference to Noise Ratio) of 2dB lower than what can be detected using RSK (Real Signal Kurtosis).

References

Acknowledgments

The research team would like to thank the NASA Earth Science Technology Office NNH13ZDA001NACT program for funding this research.