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We propose qubits based on shallow donor electron spins in germanium structures with

phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a

rigid cover / Ge layer / rigid substrate structure with gaps ∼ a few GHz. The spin relaxation

is suppressed dramatically, if the Zeeman frequency ωZ is in the phononic gap, but an effec-

tive coupling between the spins of remote donors via exchange of virtual phonons remains

essential. If ωZ approaches to a gap edge in these structures, a long-range (limited by detun-

ing of ωZ) resonant exchange interaction takes place. We estimate that ratio of the exchange

integral to the longitudinal relaxation rate exeeds 105 and lateral scale of resonant exchange

∼0.1 mm. The exchange contribution can be verified under microwave pumping through os-

cillations of spin echo signal or through the differential absorption measurements. Efficient

manipulation of spins due to the Rabi oscillations opens a new way for quantum information

applications.
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Introduction

Successful implementation of quantum information processing (QIP) requires not only invention

of new quantum algorithms such as Shor algorithm, quantum error correction code or quantum

adiabatic algorithm, but also further hardware development, i.e. realization of various qubit ar-

chitectures - from trapped atoms to superconducting circuits.1 A significant advantage of solid

state systems, based on different types of quantum dots2 or impurities in semiconductors,3−5 is a

capability to fabricate, manipulate and read out qubits using semiconductor nanotechnology and

conventional electronics. On the other hand, all reliable and efficient QIP schemes simultaneously

require both long qubit decoherence times and controllable qubit manipulation, which poses a ma-

jor challenge for practical implementation of these systems.6 Indeed, shallow donor spin qubits in

semiconductors have a number of advantages related to these requirements due to tunable spin-

lattice interaction and a possibility to control spin states without a charge-induced noise. At the

same time, broadly investigated silicon-based donor qubits with large spin dechorence times suffer

from limitations in controlling and manipulating spins due to weak spin-orbit interaction.6 Here

we suggest a route for implementing new spin-qubit architectures based on donor spins embedded

in specially crafted germanium structures (quasi-two-dimensional periodic phononic crystals or

planar phonon waveguides) with large spin-orbit interaction of the Ge host and engineered phonon

bangaps to simultaneously suppress spin decoherence and enable strong spin-spin coupling be-

tween the qubits.

The large spin-orbit coupling inherent to shallow donors in bulk Ge enhances our ability to
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manipulate the spin qubits but could be detrimental for their coherence. In fact, the spin relaxation

time of donors in Ge bulk is three to four orders of magnitude shorter than that in Si. To cope with

this problem we will utilize Ge-based artificial periodic structures, known as phononic crystals

(PC).? Similarly to the photonic crystals, that were invented to control the light,? the phononic

crystals of different dimensions can be used to control various types of acoustic waves, e.g. to

filter and focus sound ? or even to create the earthquake proofing of buildings ?. A proposed quasi-

2D phononic crystal formed by a lattice of holes in a suspended Ge layer is shown in Fig 1-a. This

structure is similar to recently manufactured Si-based PCs8 with ∼100 nm period and thickness

defining the phonon gap within GHz frequency domain. The phonon dispersion curves, shown

in Fig. 1b, display pronounced gap in the frequency interval 13÷15 GHz. If the Zeeman energy

of the donor spin h̄ωZ is tuned inside the phonon gap the one-phonon spin-flip transitions will be

forbidden due to energy conservation. As a result, the longitudinal relaxation rate, ν1, determined

by very weak two-phonon processes, will be suppressed by five orders in magnitude compared to

its bulk value. At the same time, the spin-lattice coupling will remain strong (3÷4 orders larger

than in bulk silicon) and the spin-spin interaction via virtual one-phonon exchange processes will

exceed ν1 by many orders.

Similar behavior is possible if Ge layer is sandwiched between the rigid substrate and cover

layers made from diamond, BN, or H-SiC (r/Ge/r-structure, see Fig. 2a). Penetration of vibrations

from cover and substrate layers into Ge is weak because the reflection is effective due to the about

10 times differences9 between modules of elasticity in rigid materials and soft Ge. Thus, the spin-

phonon interaction with bulk modes is ineffective and there is a gap for waveguide modes in Ge
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Figure 1: Phononic crystal. (a) Geometry of PC formed by square lattice of holes. (b) Dispersion laws
along ΓX, ΓM, and XM directions with gap between 6th and 7th modes. (c) Distributions of displacements
over the unit cells of symmetric (left) and nonsymmetric (right) PCs for 7th mode at M-point (colored from
blue, correspondent zero to red); sizes?dimentions are in nm.

layer up to cut-off frequency in GHz range (Fig. 2b), so that ν1 is suppressed but the exchange

interaction via vibrations localized in Ge remains essential if h̄ωZ is in the phonon gap for waveg-

uide modes. Once again, one obtains the donor spin system with an effective exchange interaction

and a negligible ν1. If ωZ is fine tuned to lie within a gap edge in these structures, both strength

and lateral scale of a resonant exchange interaction (REI) enhance. Thus, a spin system with es-

sential?strong (and long-range for REI-regime) interaction and suppressed relaxation (transverse

rate ν2 remains only) in PC or r/Ge/r-structure.

Both verification of the spin-Hamiltonian parameters and manipulation of spin coherence

are possible under resonant microwave (mw) pumping of frequency ω ∼ ωZ . Under continuous

mw pump, the exchange-renormalized ωZ modifies a differential absorption shape in the linear

response regime. An interplay between the Rabi oscillations frequency ωR and the exchange con-
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Figure 2: Sandwiched Ge structure. (a) r/Ge/r structure with Ge layer of width d; incident (i-),
reflected (r-), and transmitted (t-) waves and three waveguide modes (shear and coupled) with in-
plane wave vector q are shown. (b) Dispersion laws (frequencies in 2

√
clct/d versus wavevector

in 2/d) with gap up to cut-off frequency πct/d.

tributions to Zeeman frequency (ω1,2−ωZ , see Fig. 3a) takes place for the nonlinear pumping case

and it modifies a nonlinear differential absorption. If dephasing processes and long-range disorder

are essential, a two-pulse spin echo measurements10 enable to extract the exchange renormaliza-

tion of ωZ . Fig. 3b shows the sequence (π/4 − τ − 3π/4 − τ → echo signal) with different

frequencies of free rotation during τ -delay intervals. As a result, an echo amplitude oscillates with

τ , if ω1,2 6= ωZ . Beside of this, a multi-pulse spin echo scheme can be applied for manipulation of

averaged spin orientation.

Summarizing the results obtained, we have demonstrated that a controllable manipulation of

in quasi-free spin system in PC or r/Ge/r-structures is possible by the reasons:

i/ strong suppression of relaxation-to-exchange ratio (in contrast to the bulk case13) opens a way

for fault-tolerant operations;

ii/ very sharp (at deturnings δZ ≤ 10−3 corrrespondent a weak variations of magnetic field) trans-

formation from free spin system to large-scale REI-regime permits a remote control of qbits, with-
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Figure 3: Spin dynamics under mw pumping. (a) Bloch sphere with Zeeman frequencies
renormalized due to exchange, ω1 < ωZ < ω2, and Rabi oscillations frequency, ωR; here
S2
t,⊥ + S2

t,‖ =const due to the spin conservation law. (b) Spin echo (π/4 − τ − 3π/4 − τ ) with
τ -dependent amplitude of echo signal due to difference of frequencies ω1 and ω2.

out any electric circuits when noise is suppressed;

iii/ effective control of spin conversion between St,⊥ and St,‖ by microwave pulse takes place due

to the interplay between exchange and Rabi oscillations;

iv/ formation of macroscopic spin patterns, with lateral sizes up to mm, using micromagnets in

order to control REI-regime, see 18 and references therein;

v/ manipulation of single spins (or a few-spin clusters with exchange interaction) in ultra-pure Ge,

with inter-donor distances ≥3 µm (concentrations ≤ 1011 cm−3), 19 employing STM-technique,

see20 and references therein.

Results

Exchange via phonon modes. The spin subsystem of donors in Ge is described by the Hamilto-

nian Ĥs = (h̄/2)
∑
k(ωZ ·σ̂k) with the Zeeman frequencyωZ‖0Z if magnetic field is perpendicular
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to the Ge layer and σ̂k is the Pauli matrix for kth donor placed at rk. Within the harmonic approach,

the quantized acoustic modes is described by Ĥph =
∑
νq h̄ωνqb̂

+
νqb̂νq and the spin-lattice interac-

tion is introduced in analogy to the bulk case,11 taking into account modifications of the vibration

spectra in PC or r/Ge/r structure (see details in Supplementary Note 1 and Supplementary Figs.

1-4):

Ĥsph =
∑
νq

gνqσ̂k · ξ(νq)
rk

b̂νq +H.c. (1)

Here b+
νq and bνq are the creation and annihilation boson operators for mode of frequency ωνq

with 2D wave vector q (which varies over the first Brillouin zone in the case of PC, |q| < π/a

for square lattice of period a) and ν labeled polarization and discrete quantum numbers. The

components of vector ξ(νq)
rk

are expressed through the strain tensor for donor at rk (averaging over

the donor volume aB provides the cut-off for wavelengths shorter the effective Borh radius12,13 ,

aB, see Supplementary Note 2). The coupling constant gνq = Kh̄ωZ
√
h̄/2ρωνqV is determined

through the Ge density, ρ, the normalization volume, V , and the dimensionless factor K ∼(1 or

7.5)×103 for As or Sb donors.

Within the second order accuracy with respect to Ĥsph, we transform the total Hamiltonian

into14

Ĥeff = Ĥs+Ĥph+

Ĥsph,
i

h̄

0∫
−∞

dteλtĤsph(t)

 Ĥsph(t) =
∑
νqkα

gνqσ̂kα(t)ξ(νq)
rkα

eiq·xk b̂eiωνqt +H.c. ,

(2)

where the circular components of spin are σ̂kα(t) = σ̂kα exp(iαωZt) with α = ±1 and the plane-

wave factors exp(iq · xk) are separated. After averaging of Ĥeff over the phonon thermostat
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with the density matrix η̂ph (Trph . . . is the trace over boson variables) we obtain the effective spin

Hamiltonian for the donor spins, Ĥeff = Trphη̂ph
(
Ĥeff − Ĥph

)
, which takes into account the

renormalization of Zeeman splitting (polaron effect) and the exchange interaction via phonons,

ĤSS .

The polaron contribution is added to Ĥs which contains now the renormalized Zeeman fre-

quency ωZk = ωZ + ∆ωk. The ratio ∆ωk/ωZ is up to 2 × 10−4 for Sb donor and is weakly

dependent on temperature and on donor position in unit cell of PC or across r/Ge/r-structure, see

details in Supplementary Note 3. The exchange Hamiltonian is given by

ĤSS =
∑

αα′kk′
(k 6=k′)

J
(kk′)
αα′ σ̂kασ̂k′α′ , (3)

where the exchange matrix J (kk′)
αα′ has a non-zero circular components only. This matrix is given by

J
(kk′)
αα′ =

∑
νq

g2
νq

h̄

ξ(νq)
rk′ ,−α′ξ

(νq)∗
rkα

ωνq + α′ωZ
e−iq·∆xkk′ +

ξ
(νq)
rk,−αξ

(νq)∗

rk′α
′

ωνq − α′ωZ
eiq·∆xkk′

 (4)

and there is a strong large-scale dependence on the inter-donor distance ∆xkk′ = xk − xk′ , while

dependencies of ξ(νq)
rk

on rk are vanished under averaging over transverse coordinates zk, zk′ [here

r = (x, z)] and over lateral donor positions in the unit cell of PC.

Donor-based qubit. We consider the averaged exchange integral
〈
Ĵ (kk′)

〉
replacing the exponen-

tial contribution 〈exp(iq ·∆xkk′) by the zero order Bessel function J0(q∆x) where ∆x is the

mean inter-donor distance. After replacing ξ(νq)
... ξ(νq)

...
∗/(ω2

νq − ω2
Z) as aν/c2, where c a character-
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istic velocity and coefficients aν ∼ 1, the ratio of the exchange integral to the Zeeman energy is

estimated as

J∆x

h̄ωZ
∼ K2h̄ωZ

4πρdc2

∑
ν

aν

qm∫
0

dqqJ0(q∆x) ∼ K2h̄ωZ
4πM∆xc2

A∆x, qm ∼ π/aB. (5)

Here we introduce the factor A∆x =
∑
ν aν

∫ qm
0 dq . . . and M∆x ≈ ρd∆x2 estimated mass of

Ge vibrated between spins. Here A∆x � 1 because the cut-off factor
√
π∆x/aB in

∫ qm
0 dq . . .

and J∆x decreases slower ∆x−2. We perform numerical estimates of (5) for Sb donor assuming

d '100 nm. Using ωZ =15 GHz (if ωZ is approaching to the gap edges, an additional resonant

enhancement of A∆x takes place) and taking c as an averaged sound velocity of Ge we obtain

J∆x/h̄ωZ ∼ 3A∆x × 10−7 i.e J∆x/h̄ ranges up to 30÷90 kHz if ∆x ∼ d.

This result should be modified under the REI-regime, when ωZ approaches edge of gap, ωG,

and ∆x ≥ d, so that the near-edge mode gives a main contribution to J∆x. For these conditions,

J∆x/h̄ωZ is transformed into

J∆x

h̄ωZ
∼ K2h̄ωZ

4πρd

|ξ0|2

2ω2
Z

qm∫
0

dqqJ0(q∆x)

δ2
Z + (q/q1)2

∼ K2h̄ωZ
Md(dωZ)2

K0 (δZq1∆x) , Md = ρ

(
2d

π

)3

, (6)

where the energy Md(dωZ)2 in the denominator is estimated with the use |ξ0| ∼ π/d and parabolic

dispersion of mode, ωG[1 + (q/q1)2], written through q1 ∼ π/d. The argument of the modified

Bessel function of second kind,K0(y), is determined by the relative deturning δZ =
√

(ωG − ωZ)/ωZ

multiplied by ∆x. The exponential suppression of J∆x for ∆x > d/πδZ and slow (logarithmic)

variations of J∆x if d ≤ ∆x < d/πδZ take place due to the asymptotics K0(y) ' ln(2/y)− C or
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√
π/2y exp(−y) if y > 1 or y ≤ 1; here C is the Euler’s constant. For the parameters used, Eq. (6)

gives J∆x/h̄ωZ ∼ 8.8K0(. . .)×10−6 and J∆x/h̄ is in agreement with estimates for (5), if ∆x ∼ d.

In Fig. 4 we show the ratio J∆x/h̄ωZ for the sandwiched r/Ge/r-structure versus inter-donor

distance, which demonstrates a sharp suppression of the RIE-regime if δZ increases, see inset. If

πδZ ≥ 10−(3÷4) (disorder effects are discussed below), the REI-regime is realized over a wide

interval of ∆x, between 10 nm and 0.01÷0.1 cm. Similar dependencies of J∆x for PC with the

dispersion relations of Fig. 1b show the REI-regimes if ωZ approaches to the upper or lower edges

of gap (M or Γ points of the Brillouin zone). The results for PC are more sensitive to lateral

and transverse positions of donors in unit cell and, after averaging over donor distribution, J∆x

differs from the above estimates by factor 0.5÷3. In general, the the exchange matrix in (3) can be

modified using selective doping (lateral or across Ge layer) or orientation of magnetic field with

respect to 0Z or to axis of PC.

Further, we turn to the longitudinal relaxation rate ν1 in the structures under consideration.

In PC at low (� h̄ωZ) temperatures, ν1 is determined by the two-phonon spin-flip transitions while

in the r/Ge/r-structures ν1 is caused by the spin-flip transitions via bulk phonons weakly penetrated

into Ge layer, see Supplementary Note 4. We estimate the relative relaxation rate based on the

golden rule with the forth-order (∝ K2) matrix elements of in PC and accounting bulk modes,

10



Figure 4: Exchange integral. J∆x versus ∆x (in units 10−6h̄ωZ and d, respectively) for Ge layer
sandwiched between rigid slabs under relative detunings δ2

Z : 10−3 (1), 5×10−3(2), 0.05 (3), and
0.5 (4). Asymptotics J∆x ∝ ∆x−1.5 is shown by dotted curve and inset demonstrate ln-dependency
of J∆x/h̄ωZ on δZ for π∆x/d '5 and 10 (solid and dashed curves, respectively).

weakly propagated through r/Ge/r-structure. The results are:

ν1

ωZ
∼


(K2h̄ωZ/MI c̄

2)2, MI = ρd(c̄/ωZ)2

K2h̄ωZ/MII c̃
2, MII = 2πρ(c̃/ωZ)3

. (7)

Here the characteristic sound velocity c̃ is combined from cl,t in Ge and rigid materials and ν1 ∝ c̃5

in r/Ge/r-structures. For the above parameters, we got ν1/ωZ ≤ 10−11 and ν−1
1 exceeds seconds.

In PC ν1 ∝ ω7
Z and longitudinal relaxation time ν−1

1 exceeds hundreds seconds. Thus, J∆x/h̄ν1

exeeds 105 and in photonic gap ν1 is negligible.

Bloch equation. Temporal evolution of weakly interacted spins randomly placed in PC or r/Ge/r-

structure is described by the averaged spin vectors,15 skt = (1/2)TrSσ̂kρ̂t, where ρ̂t is the multi-

spin density matrix governed by the equation with the Hamiltonian Ĥeff . We restrict ourselves
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by the second order accuracy on ĤSS (the mean field approximation) and factorize the two-spin

correlation function as TrS ρ̂tσ̂k,ασ̂k′,β ≈ skt,αsk′t,β , cf. Supplementary Note 5. As a result, the

system of the nonlinear Bloch equations for skt takes form:

dskt
dt

+ γ̂ · skt = [(ωZk + ∆ωt)× skt]−
2

h̄

∑
k′(k′ 6=k)

[(
Ĵ (kk′) · sk′t

)
× skt

]
. (8)

Here ∆ωt is the time-dependent Zeeman frequency under a microwave pumping (below ∆ωt⊥0Z),

γ̂ · skt describes relaxation of kth spin, and the last term is written through the effective exchange

frequency with matrix (4). Under pumping ∆ωZt switched on at t = 0 Eq. (5) should be solved

with the initial conditions skt=0 = (0, 0, sk0) where sk0 ' −1/2 if temperature � h̄ωZ and

sk0 → 0 for high temperatures (� h̄ωZk).

Instead of a microscopic set {skt}, we introduce the averaged spin orientation

Sxt =
〈∑

k
δ(r− rk)skt

〉
/
〈∑

k
δ(r− rk)

〉
,

which is weakly dependent on transverse coordinate z. For the large (� d, a) scale inhomogeneity

case Sxt is governed by the spin diffusion equation

dSxt

dt
+ γ̂ · Sxt = [Ωxt × Sxt]−D [(∆xSxt,⊥)× Sxt] ,

Ωxt ≡ ωZx − ω̃xSxt,⊥ + ∆ωt , (9)

where ωZx takes into account the non-uniform Lamb renormalization of ωZ and the exchange
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contribution is transformed into −ω̃xSxt,⊥, where Sxt,⊥ is the transverse part of spin orientation.

The frequency ω̃x is determined by the averaged exchange integral
〈
Ĵ (kk′)/h̄

〉
with the non-zero

and equal xx- and yy-components. The diffusion coefficient, D, is estimated as ω̃l2ex/2 where lex

estimates a scale of exchange interaction. The last contribution of (8) is negligible for the case of

large-scale (� lex) inhomogeneities of ωZx and ω̃x. Because the ratio h̄ν1/J∆x is negligible, we

replace γ̂ · Sxt by ν2Sxt,⊥ with the transverse relaxation rate ν2.

Taking into account ν2 and neglecting diffusion if scale of disorder > lex, one obtains the

nonlinear (with respect to Sxt and ∆ωt) system for the transverse and longitudinal (ezSxt,‖) parts

of spin orientation

(
d

dt
+ ν2

)
Sxt,⊥ = Ωxt,‖ [ez × Sxt,⊥]−∆ωtSxt,‖ ,

d

dt
Sxt,‖ = (∆ωt · Sxt,⊥) . (10)

Here Ωxt,‖ = ωZx + ω̃xSxt,‖ includes the Lamb shift and the exchange (∝ Sxt,‖) renormalization.

Within the collisionless regime, ν2t � 1, the spin conservation takes place S2
xt,⊥ + S2

xt,‖ = S2
0

with the xt-independent initial orientation S0. If ∆ωt → 0 and ν2 → 0, Eq. (10) describes free

rotation of Sxt,⊥ around 0Z with the frequency ωZx + ω̃xS0. Characterization of PC and r/Ge/r-

structure (exchange, relaxation, and disorder parameters) and manipulation of spins are possible

under resonant microwave pumping.
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Microwave response. The absorbed power is given by Pxt = −h̄∆ωt · dSxt,⊥/dt, where (. . .)

means averaging over period 2π/ω. 10,16 Under weak circular pumping ∆ωt,x+i∆ωt,y = ωP exp(iωt),

the solution of linear Eq. (10) gives the resonant peak Px = h̄ωω2
Pν2/ [ν2

2 + (δωx − ω̃x/2)2] where

δωx ≡ ω−ωZx is the frequency detuning and S0 = −1/2 for zero-temperature limit. The resonant

line has linewidth determined by ν2 and by disordered contributions stem from δωx and ω̃x. If

line is narrow enough, these contributions can be verified from the shape of dP/dH averaged over

disorder, similarly to the measurements of GeSi dots.17 The derivative dP/dH increases under the

REI-conditions due to additional dependency of ω̃ on δZ .

In the case of weak exchange, ω̃ � max(ωP , |δω|, ν1,2), the linear (∝ S0) system (10) de-

scribes evolution of the resonant absorption Pxt and the spin orientation Sxt,‖. Neglecting damping,

at ν2t � 1 and ν2 � ωP , |δωx|, and using the rotation wave approach, if |δω| � ωZ , one obtains

oscillating responses

Pxt = −S0h̄ω
ω2
P

ωxR

sinωxRt , Sxt,‖ = S0 cosωxRt (11)

with the Rabi frequency ωxR =
√
ω2
P + δω2

x and the π/2 phase shift between Pxt and Sxt,‖. If the

exchange interaction is essential (ω̃ ∼ ωP , |δω|), shape and strength of temporal Rabi oscillations

are sensitive on ω̃/ωP . Within the rotating-wave approximation, we plot these responses in Fig.

5 for low temperatures, S0 = −1/2 at resonant condition δω = 0 (implicit solution for Sxt,‖ can

be written through the elliptic integrals, see details in Supplementary Note 6). Shapes of temporal

Rabi oscillations of Pt and St,‖ are modified with a suppression of their amplitudes and doubling of
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periods around ω̃/ωP ∼5.5 due to an effective interplay between exchange and Rabi oscillations.

Detuning (δω 6= 0) results in a shift of similar behavior to ω̃/ωP ∼8. The collisionless response

is suppressed by decoherentization if ν2t ≥ 1, so that an effective manipulation of St is possible

with the use of pulse duration tp < ν−1
2 . More sharp peculiarities take place for the differential

nonlinear absorption dPt/dH .

Figure 5: Interplay between exchange and Rabi oscillations. Absorbed power Pt (in units
ωP h̄ω) and the longitudinal spin orientation St,‖ versus dimensionless time, ωP t, for Ω/ωP =2 (1),
4 (2), 5 (3), 6 (4).

The two-pulse spin echo scheme (π/4 − τ − 3π/4 − τ → echo) permits verification of

exchange contribution under an essential decoherentization and long-range disorder.10 Here the

delay times τ � t1,2 and pulses of frequency ω and durations t1,2 are connected with pumping

levels ωP1,2 by ωP1t1 = π/4 and ωP2t2 = 3π/4. In the rotating-wave frame, free evolution

of St,⊥ = 〈St,x + iSt,y〉 exp(−iωt) after first and second pulses is ∝ exp(δω1,2t) with different

15



frequencies δω1,2 = δωx − ω̃S1,2‖ and 〈. . .〉 stands for averaging over long-range disorder. If

ωP1,2 � ω̃, |δωx|, ν2 and exchange is negligible according to Fig. 5, the spin orientations after first

and second pulses are S1,‖ = S0/
√

2 [c.f. Eq. (11)] and S2,‖ = −S0(1 + cos δω1τ)/2. For the case

of Gaussian disorder with the averaged variations of Zeeman frequency
√
〈δω2

x〉 = δω∗, spin echo

signal is

St,⊥ = S0 exp

{
− [δω∗(t− 2τ)]2

2

}
Ψ (φτ ) , (12)

where S0 = (1 +
√

2)/4 stands for the echo amplitude at t = 2τ if ω̃ → 0 and Ψ(0) = 1. Function

Ψ (φτ ) with φτ = S0ω̃τ/
√

2 describes modulation of St,⊥ caused by the exchange-induced differ-

ence in δω1 and δω2, which results in an interference oscillations of Ψ (φτ ). The disorder-induced

exponent and the modulation Ψ are multiplied because of additive contributions of these factors to

the frequency Ωxt,‖ in Eq. (10). Shape of modulation of St=2τ,⊥ versus delay time τ is determined

by ReΨ and ImΨ plotted in Fig. 6. Here ReΨ and ImΨ are even and odd functions of φτ and

φτ > 0 corresponds to the spin inversion case, S0 > 0. Thus, verification of exchange contribution

require variations of τ in ∼ 10 µs scales.

Discussion

It is important to stress that these results are based on the estimates written through the ratios of

K2h̄ωZ to the characteristic energies (factors M...c
2 in denominators), which are evident from the

dimensional requirements. The evaluation of ĤSS is restricted by donor concentrations nD � 1016

cm−3, when the exchange due to tunneling overlap of donors is negligible. For lower concentra-
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Figure 6: Oscillations of spin echo amplitude. Real and imaginary parts of Ψ versus delay time
τ and S0 (here φτ = S0ω̃τ/

√
2).

tions, the mean-field approximation for exchange in Eqs. (8-10) is valid if n−1/3
D < radius of

interaction. A region of intermediate concentrations, between the mean-field regime and a system

of free donor spins (if nD ≤ 1011 cm−3) requires a special analysis.

In order to implement the structures suggested and to measure the peculiarites found, ??

one have to meet several technological requirements for PC or r/Ge/r-structures: a) suppression of

spin decoherentization rate ν2 in comparison to typical values in Ge-based materials7,21 b) reduced

stresses, dislocations, and interface disorder, c) homogeneity of donor distribution in PC or r/Ge/r-

structures or possibility for selective doping, 22? far from imperfections at boundaries or interfaces,

and d) spatio-temporal stability of magnetic field and pumping characteristics, i.e. ωZ , ω, and ωP ,

as well as frequency of gap edge allowed realization of REI-regime.

To conclude, we have demonstrated that a combination of phonon engineering provided gap

in vibration spectra in PC or r/Ge/r-structure with unique spin and technological characteristics of

17



Ge opens a way for quantum information applications. We believe that our paper will stimulate

effort for preparation of structures suggested and for verification of qbit parameters.

Methods

Theoretical background. Spin-lattice interaction in structures with phononic gap is considered

by the classical proceedure11,12, based on the elastodynamics of continuous media.23 The Bloch

equation for averaged spin density is evaluated within the mean-field approach, which corresponds

to the long-range exchange interaction. The nonlinear spin dynamics is examined with the simpli-

fied description of decoherentization through ν2 for the long-range inhomogeneities case.

Numerical simulation. The eigenmodes and eigenstates for for the elastic vibration problem in

PC or in r/Ge/r-structure are analyzed with the use of the finite elements method realized via Com-

sol Multiphysics software. The PC was designed as the structural mechanic modulus (unit cells)

connected via the in-plane periodic (Bloch-Floquet) boundary conditions. The free boundary con-

ditions are applied at all other surfaces. Standard numerical methods have been used for simulation

of the exchange interaction and the nonlinear spin dynamics (the interplay of Rabi oscillations and

exchange, or the spin echo modulation). More details of our calculations can be found in Supple-

mentary Materials.
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