Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Alexandre Langlois1,2
Prof. Université de Sherbrooke

Alain Royer4,2, Benoît Montpetit3, Cheryl-Ann Johnson4, Ludovic Brucker5, Caroline Dolant1,2, Agnes Richards6, Alexandre Roy1,2

1Centre d’Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Quebec, Canada.
2Centre d’étude nordiques, Quebec, Canada
3Canadian Ice Service, Ottawa, ON, Canada
4Canadian Wildlife Service, Environment Canada, Ottawa, ON
5NASA Goddard, Greenbelt, USA
6Canadian Center for Inland Waters, Env. Can., Toronto, Canada

Remote Sensing of the Cryosphere I, Wednesday Dec. 16th 2015
American Geophysical Union Fall Meeting
Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Outline

PART I: Arctic context
 1. Motivation and study sites
 2. Algorithm development

PART II: Some occurrence numbers 1979-2011
 3. Rain-on-snow
 4. Ice layers
 5. Perspective
PART I: Arctic context

1. Motivation and study sites

- increased occurrence of rain-on-snow
- increased occurrence of strong wind events
 ➔ both leading to snow densification

- Changing rapidly, with significant consequences:
 • Grazing conditions under ice for ungulates;
 • Changes in snow cover affects permafrost and sea ice regimes.

- Need for global information of snow information
 • Passive microwave remote sensing;
 • Snow modeling / climate model coupling.

ROS events are projected to be more frequent over a wider spatial extent (Semmens et al., 2013): need for a satellite-based detection approach
PART I: Arctic context

1. Motivation and study sites

- Peary caribou population affected by snow conditions:

Need to develop ROS and ice tracking approaches in the Arctic…

Ouellet et al., 2015
PART I : Arctic context

2. Algorithm development: ROS

- Empirical approach from case study: January 30th – February 2nd 2013:

\textbf{Figure 5: General scheme of the snow microwave response; (1) basic snowpack, (2) snowpack with ice crust or wet snow}

Dolant et al., 2015
PART I: Arctic context

2. Algorithm development: ROS

Remote Sensing of the Cryosphere I, Wednesday Dec. 16th 2015
PART I: Arctic context

2. Algorithm development: Ice Detection Index (IDI)

Polarization ratio (PR):

\[PR(f) = \frac{T_B(f, V - Pol) - T_B(f, H - Pol)}{T_B(f, V - Pol) + T_B(f, H - Pol)} \]

Horizontal polarization more sensitive to ice layers and vertical dielectric contrast, threshold established from the following (PR simulated with ice vs PR without ice):
PART I: Arctic context

2. Algorithm development: Ice Detection Index (IDI)
PART II: Occurrence numbers
PART II: Occurrence numbers

<table>
<thead>
<tr>
<th></th>
<th>78-80</th>
<th>81-83</th>
<th>84-86</th>
<th>87-89</th>
<th>90-92</th>
<th>93-95</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PWI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AIS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FHI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EML</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DVI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HNI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Remote Sensing of the Cryosphere I, Wednesday Dec. 16th 2015
PART II: Occurrence numbers

93-94: BI, BP
98-99: BM, LI, CI, HI
02-03: AH, Em

2002-2003
Islands with most combined occurrences:

- Boothia Peninsula (Ouellet et al., 2015 – SNOWPACK)
- Axel Heiberg
- Byram Martin
- Lougheed + Cornwallis
- Banks + Victoria
Future outcome and concluding remarks

- More on GRP threshold, with observed events:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
<th>Year available</th>
<th>N total</th>
<th>Amount</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachs Harbour</td>
<td>72°00'00,00''N</td>
<td>125°16'00,00''O</td>
<td>86,3m</td>
<td>1980-2013</td>
<td>10</td>
<td>0,88</td>
<td>-2,94</td>
</tr>
<tr>
<td>Cambridge Bay</td>
<td>69°06'29,00''N</td>
<td>105°08'18,00''O</td>
<td>31,1m</td>
<td>1980-2015</td>
<td>59</td>
<td>1,89</td>
<td>0,31</td>
</tr>
<tr>
<td>Gjoa Heaven</td>
<td>68°38'08,00''N</td>
<td>95°51'01,00''O</td>
<td>46,9m</td>
<td>1984-2015</td>
<td>78</td>
<td>2,25</td>
<td>-0,61</td>
</tr>
<tr>
<td>Taloyoak</td>
<td>69°33'00,00''N</td>
<td>93°35'00,00''O</td>
<td>27,4m</td>
<td>1984-2015</td>
<td>85</td>
<td>1,7</td>
<td>0,95</td>
</tr>
<tr>
<td>Kugaaruk</td>
<td>68°32'26,00''N</td>
<td>89°47'50,00''O</td>
<td>15,5m</td>
<td>1984-2015</td>
<td>17</td>
<td>4,64</td>
<td>3,27</td>
</tr>
<tr>
<td>Igloolik</td>
<td>69°22'00,00''N</td>
<td>81°49'00,00''O</td>
<td>52,7m</td>
<td>1984-2015</td>
<td>29</td>
<td>1,73</td>
<td>2,11</td>
</tr>
<tr>
<td>Hall Beach</td>
<td>68°46'33,00''N</td>
<td>81°14'33,00''O</td>
<td>9-10m</td>
<td>1980-2015</td>
<td>163</td>
<td>1,53</td>
<td>-0,38</td>
</tr>
<tr>
<td>Nanisivik</td>
<td>72°59'00,00''N</td>
<td>84°37'00,00''O</td>
<td>641,9m</td>
<td>1980-2011</td>
<td>21</td>
<td>3,7</td>
<td>1,3</td>
</tr>
<tr>
<td>Resolute</td>
<td>74°43'01,00''N</td>
<td>94°58'10,00''O</td>
<td>67,7m</td>
<td>1980-2015</td>
<td>77</td>
<td>1,5</td>
<td>-0,91</td>
</tr>
<tr>
<td>Eureka</td>
<td>79°59'00,00''N</td>
<td>85°56'00,00''O</td>
<td>10,4m</td>
<td>1980-2015</td>
<td>10</td>
<td>1,64</td>
<td>0,5</td>
</tr>
<tr>
<td>Alert</td>
<td>82°31'04,00''N</td>
<td>62°16'50,00''O</td>
<td>30,5m</td>
<td>1980-2006</td>
<td>19</td>
<td>0,83</td>
<td>-0,34</td>
</tr>
<tr>
<td>Paulatuk</td>
<td>69°21'40,00''N</td>
<td>124°04'31,00''O</td>
<td>4,6m</td>
<td>1985-2013</td>
<td>12</td>
<td>1,48</td>
<td>-3,44</td>
</tr>
<tr>
<td>Kugluktuk</td>
<td>67°49'00,00''N</td>
<td>115°08'38,00''O</td>
<td>22,6m</td>
<td>1978-2015</td>
<td>120</td>
<td>1,97</td>
<td>0,25</td>
</tr>
</tbody>
</table>
Future outcome and concluding remarks

Plans for 2016:

- Dystrometer installation in Cambridge Bay along with passive microwave radiometers (19-37-89 GHz);

- More on climatology assessment, tracking origin of ROS and LPDs;

- New PhD student working on the modeling of ROS-snow interactions using the SNOWPACK model.
Acknowledgements

Funding and logistics:

Environment Canada
Parks Canada
Canadian High Arctic Research Station
Natural Sciences and Engineering Research Council of Canada (NSERC)
Canada Foundation for Innovation
National Search and Rescue Secretariat (SAR-NIF)
Centre d’études nordiques (CEN)
National Aeronautics and Space Administration (NASA)
Mitacs scholarship program
Hydro-Québec
Polar Continental shelf Program