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ABSTRACT
During the course of transition from the Space Shuttle and

International Space Station programs to the Orion and Journey
to Mars exploration programs, a generic flexible multibody dy-
namics formulation and associated software implementation has
evolved to meet an ever changing set of requirements at the NASA
Johnson Space Center (JSC). Challenging problems related to
large transitional topologies and robotic free-flyer vehicle cap-
ture/release, contact dynamics, and exploration missions concept
evaluation through simulation (e.g., asteroid surface operations)
have driven this continued development. Coupled with this need
is the requirement to oftentimes support human spaceflight oper-
ations in real-time. Moreover, it has been desirable to allow even
more rapid prototyping of on-orbit manipulator and spacecraft
systems, to support less complex infrastructure software for mas-
sively integrated simulations, to yield further computational effi-
ciencies, and to take advantage of recent advances and availabil-
ity of multi-core computing platforms. Since engineering anal-
ysis, procedures development, and crew familiarity/training for
human spaceflight are fundamental to JSC’s charter, there is also
a strong desire to share and reuse models in both the non-real-
time and real-time domains, with the goal of retaining as much
multibody dynamics fidelity as possible. Three specific enhance-
ments are reviewed here: (1) linked list organization to address

∗Address all correspondence to this author.

large transitional topologies, (2) body level model order reduc-
tion, and (3) parallel formulation/implementation. This paper
provides a detailed overview of these primary updates to JSC’s
flexible multibody dynamics algorithms as well as a compari-
son of numerical results to previous formulations and associated
software. 1

NOMENCLATURE
θn, θ̇n, θ̈n Rigid body states of body n
qn, q̇n, q̈n Flexible body states of body n
~ωn, ~̇ωn Angular velocity and acceleration of body n
Mrr,n Rigid-rigid mass matrix of body n
Mre,n Rigid-elastic mass matrix of body n
Mer,n Elastic-rigid mass matrix of body n
Mee,n Elastic-elastic mass matrix of body n
Kee,n Elastic stiffness matrix of body n
Dee,n Elastic damping matrix of body n
An

h,F
n
h Head acceleration and force of body n

rns Spatial vector from body n to body s
Sns Mode shape/slope at node s wrt head of body n
Gr,n Rigid nonlinear terms and external forces (sum)

1This material is declared a work of the U.S. Government and is not subject
to copyright protection in the United States. Approved for public release; distri-
bution is unlimited.
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Ge,n Flexible nonlinear terms and external forces (sum)
An

i ,F
n
i The ith connection acceleration and force of body n

AR,ni The ith remaining connection acceleration of body n
Ms Mass matrix after eliminating flex DOFs of body s
Gs Body force after eliminating flex DOFs of body s
Cs

hk Connection coeff. from head to the kth force of body s
Cs

lk Connection coeff. from the lth to kth force of body s
bs

l Known lth connection vector of body s
Ps Driven DOF projection matrix of body s

INTRODUCTION
At the NASA JSC, numerous simulation applications and

facilities continue to be used to support robotic and spacecraft
vehicle systems within the International Space Station (ISS) and
Exploration programs. To support those applications, which in-
cluded both non-real-time and real-time simulators across a va-
riety of platforms and facilities including desktop, hardware-in-
the-loop, and human-in-the loop, a generic multibody dynamics
formulation and associated computer algorithms called MBDyn
were developed. An overview of the application of these multi-
body dynamics algorithms at JSC to on-orbit manipulator sim-
ulations primarily for the Space Shuttle and International Space
Station (ISS) programs was provided in [1]. An example ISS
robotics branched tree topology is shown in Figure 1. This for-
mulation was later extended to account for differing boundary
equations for flexible multibody spacecraft in [2]. This paper
describes the evolution of these multibody dynamics algorithms
since that timeframe in response to an ever changing set of chal-
lenging requirements at JSC. These changes include increased
emphasis on transitional topologies such as robotics free-flyer
vehicle capture/release, expansion of contact dynamics scenar-
ios for berthing, docking, and surface terrain applications, and
rapid-prototyping for evaluation of exploration vehicle and op-
erations concepts. One example application, concept evaluation
of an asteriod mission, is illustrated in Figure 2. Three specific
enhancements since the initial overview are reviewed here: (1)
linked list organization to address large transitional topologies,
(2) body level model order reduction, and (3) parallel formula-
tion/implementation. This paper provides a detailed overview of
these primary updates to JSC’s flexible multibody dynamics al-
gorithms as well as a comparison of numerical results to previous
formulations and associated software.

Previous Formulation
When last described in 2005 [1], the MBDyn formulation

was based on system-level equations of motion (EOMs) of the
form

FIGURE 1. ISS BRANCHED TREE TOPOLOGY

FIGURE 2. EXPLORATION VEHICLE CONCEPT EVALUATION

Mrrθ̈ +Mreq̈ = Γn +Gr,nl +Gr,ext = Gr
Merθ̈ +Meeq̈+Keeq = Ge,nl +Ge,ext = Ge

}
(1)

The above equations can be solved for θ̈ and q̈ to yield

(
θ̈

q̈

)
= [M]−1

(
Gr

Ge−Keeq

)
(2)

where M =
[

Mrr Mre
Mer Mee

]
, Kee are system mass and stiffness

matrices. The terms θ̈ and q̈ are rigid and flex degree of freedom
(DOF) accelerations. Gr,nl ,Gr,ect are system rigid nonlinear and
external forces while Ge,nl ,Ge,ect are the flex equivalents.
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Several techniques were employed to achieve real-time per-
formance such as recursive calculation of the system matrices
and separation of the system matrices and kinematics transfor-
mations into threads executed at slower update rates than the in-
tegration stepsize. Parallelism in the overall simulation, includ-
ing enviromental and vehicle models, was accomplished using
tools provided by the Trick Simulation Environment [3], but par-
allelism in the dynamics itself was limited to the slow update
threads. A critical technique used to achieve real-time perfor-
mance for the systems being simulated was removal of unnec-
essary high frequency characteristics of the flexible dynamics
model prior to integration which avoided the necessity to use ex-
tremely small integration time steps. This was accomplished via
modal decomposition of the system level equations followed by
various options for choice of retained modes [4]. Although this
system-level approach proved efficient for supporting real-time
simulation of large space manipulators which typically move
slowly, evolving requirements significantly increased the system
DOFs as well as rates of large motion trajectories. With the in-
crease in DOFs, the CPU time requirements of the O(n3) sys-
tem level approach became more dominant and ill-conditioning
of the system matrices became of concern. Increases in large
motion rates, along with increased requirements for high-fidelity
contact dynamics, pushed increases in update rates for kinemat-
ics and system matrices. A decision was made to investigate
more recent formulations for application to existing and new re-
quirements. Initial evaluation of O(n) algorithms described in [5]
showed promise, but to maintain larger integration stepsizes, a
method was required to bound high frequency characteristics of
the model in the absence of an overall system matrix. In ad-
dition, the O(n) algorithm could not take full advantage of our
multi-processor simulation host machines. A Divide and Con-
quer Algorithm (DCA) approach based on [6, 7] was then evalu-
ated. Because the number of cores in our host machines is signif-
icantly smaller than the typical number of bodies in on-orbit sys-
tems, the DCA algorithm did not perform well compared to the
O(n) running on a single processor. A hybrid approach similar
to [9,10] which combines O(n) with DCA was then implemented
that, along with body-level frequency reduction, provided good
performance for real-time simulation without the “slow motion”
requirement inherent in the previous formulation.

Linked-List Organization
A significant reduction in interface software complexity for

large multiple-spacecraft simulations was achieved by replac-
ing the previous MBDyn array-based topology definition with
an object-oriented interface based on a linked-list architecture.
The most fundamental components of the new interface are Body
and Joint definitions. Each Body definition consists of kinematic
properties along with optional rigid and flexible properties. Any
number of Nodes embedded in the body can be defined to rep-

resent attachment points, reference frames of interest, and inter-
faces to external drivers such as environment or flight control sys-
tem models and contact dynamics engines. Body dynamics prop-
erties are expressed with respect to any one of these nodes. Each
Joint definition defines an articulated linkage representing from 0
to 6 degrees of freedom along with initial articulation states and
mechanisms to collect and apply actuator forces and torques. The
Bodies and Joints are organized into Groups each representing
an independently propagated multibody system. For example, a
Group could represent a free-flying space station, a spacecraft, or
an asteroid. It could also represent a multibody system attached
to the Inertial frame. The topology of each Group is defined
using an Attachment List which assigns Body Nodes to Joint def-
initions. This implicitly defines the inboard node of each body
which is referred to in this paper as the Head. The Attachment
List also defines any closed-loop constraints within the Group.
Each Group may be propagated using kinematics-only, a com-
bination of kinematics and rigid dynamics, or a combination of
kinematics, rigid, and flexible dynamics. Groups may interact
with each other through forcing functions such as contact dy-
namics at any of the Body Nodes. Toplogy transitions may result
in a subset of Bodies detaching to form their own Group, or in
the addition of Bodies to an existing Group, or from one Group
to another. Currently, momentum is conserved for detachments
but the attachment process is kinematic and does not guarantee
conservation of momentum. This “limitation” has been sufficient
for current simulation requirements.

Body-Level Frequencies
Of fundamental importance to real-time simulation is the

ability to limit the highest frequency in the simulation while re-
taining accuracy in low-frequency behavior. This allows a suffi-
ciently large integration stepsize while maintaining accuracy of
response. With an O(n) formulation, the system-level matrices
formerly used for modal decomposition are no longer calculated.

Consider the flexible body n shown in Figure 3 which mod-
els a single articulated link in the multibody system to be simu-
lated. This body could, for example, be generated by MSC Nas-
tran, or by a lumped mass-spring modeling tool. The body has
an inboard connection, h, and s possible outboard connections.

Mrr,nAn
h +Mre,nq̈n = Fn

h −∑
s

rnsFs
h +Gr,n (3)

Mer,nAn
h +Mee,nq̈n +Kee,nqn =−∑

s
ST

nsF
s
h +Ge,n (4)

Typically for our systems, due to structural modeling tech-
niques, the body level model may contain very high frequencies.
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FIGURE 3. FLEXIBLE BODY N

These high frequency vibrations are usually not of interest, how-
ever, the flexibility associated with these frequencies at the body
level may affect low frequency behavior when the body is com-
bined in the larger system. We aim to retain the low-frequency
behavior for accuracy while bounding the highest frequency in
the multibody system for stability. The objective is to modify
Mee,n to reduce the highest frequency ωn,max of the body n to a
desired maximum frequency ωmax while retaining the stiffness
matrix Kee,n.

The system is transposed into a decoupled set of modal co-
ordinates such that

η̈n+ < ω
2
n > ηn = gn (5)

where < ωn > is a diagonal matrix containing the body fre-
quencies. A new set of coordinates η∗i is defined such that for
ωi ≤ ωmax,

η̈
∗
i +2ςωiη̇

∗
i +ω

2
i η
∗
i = gi (6)

where for most simulations, ςi is chosen conservatively small. If
ωi > ωmax, then

η̈
∗
i +2ςωmaxη̇

∗
i +ω

2
maxη

∗
i =

ω2
max

ω2
i

gi (7)

Transforming back to physical coordinates one obtains

Mrr,nAn
h +Mre,nq̈n = Fn

h −∑
s

rnsFs
h +Gr,n (8)

Mer,nAn
h +M∗ee,nq̈n +Dee,nq̇n +Kee,nqn =−∑

s
ST

n sFs
h +Ge,n (9)

It can be shown that the maximum frequency of a resulting multi-
body system is bounded by ωmax.

FIGURE 4. BRANCH TOPOLOGY EXAMPLE

Parallel Formulation

Negrut et. al. discussed the why, when, and how questions
of using parallelization for multibody system dynamics in [8].
However, the aspects of real-time simulation which are impor-
tant in our applications were outside the scope of that paper. A
detailed overview of the parallel formulation suitable for real-
time use is now provided.

Based on the number of CPUs assigned to simulate a Group,
the topology of the Group is cut into Branches so that there
is up to one Branch per available CPU. Each Branch is a tree-
topology potentially containing closed loops. The Body Nodes
corresponding to the cut points are referred to in this paper as
Connection Nodes. Each body has one Head Node but may have
multiple Connection Nodes. An O(n) algorithm is used to sim-
ulate the flexible multibody dynamics of each Branch in paral-
lel. The cut points are chosen to distribute the load as evenly as
possible between the CPUs. A DCA approach is then used to
assemble and disassemble the Branch results. The resulting im-
plementation balances the efficiency of the O(n) algorithm with
the parallel capability of the DCA approach.

Branch Equations

Consider the Branch B topology shown in Figure 4. Fa0 is
the force on the Head Node of Body which is also the root body
of the Branch. This force could be due to a Connection with
another Branch or it could represent the force at the root Node of
the Group. FC0 and FC2 represent Connection forces at Nodes on
the inner bodies while FC1 is a Connection force on a Leaf Body
of the topology.
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The EOMs of a generic Body n are

Mrr,nAn
h +Mre,nq̈n = Fn

h +
In

∑
j

rn jFn
j −∑

s
rnsFs

h +Gr,n (10)

Mer,nAn
h +Mee,nq̈n +Dee,nq̇n +Kee,nqn =

In

∑
j

ST
n jF

n
j −∑

s
ST

nsF
s
h +Ge,n

(11)

An
i = rT

niA
n
h +Sniq̈n +AR,ni ∀i ∈Cn (12)

If Body n is the one of leaf bodies, then the terms ∑s rnsFs
h and

∑s ST
nsF

s
h are dropped due to no outer forces acting on the leaf

bodies.

Assume that EOMS of the outer bodies s are

MsAs
h = Fs

h +
Cs

∑
k

Cs
hkFs

k +Gs (13)

As
l = Cs

lhAs
h +

Cs

∑
k

Cs
lkFs

k +bs
l ∀l ∈Cs (14)

The kinematic relationship between An
h and As

h is

As
n = rT

nsA
n
h +Snsq̈n +Psθ̈s +AR,ns (15)

Substituting As
n from (15) into (13) and (14) yields

MsrT
nsA

n
h +MsSnsq̈n +MsPsθ̈s = Fs

h +
Cs

∑
k

Cs
hkFs

k +Gs,x (16)

As
l = Cs

lhrT
nsA

n
h +Cs

lhSnsq̈n +Cs
lhPsθ̈s +

Cs

∑
k

Cs
lkFs

k +bs
l,x (17)

If one pre-multiplies both sides of Equation (16) by PT
s and lets

PT
s FS

h = τs, then θ̈s can be solved as

θ̈s = µ
−1
s

{
−PT

s MsrT
nsA

n
h−PT

s MsSnsq̈n +PT
s

Cs

∑
k

Cs
hkFs

k + τs,x

}
(18)

Substituting θ̈s from (18) into (16) and (17) and arranging terms,
one then obtains

βsMsrT
nsA

n
h +βsMsSnsq̈n = Fs

h +
Cs

∑
k

φ
n
hkFs

k + Ĝs (19)

As
l = φ

n
lhrT

nsA
n
h +φ

n
lhSnsq̈n +

Cs

∑
k

Ĉn
lkFs

k + b̂n
l ∀l ∈Cs (20)

where

Gs,x = Gs−MsAR,ns (21)
bs

l,x = bs
l +Cs

lhAR,ns (22)

τs,x = τs +PT
s Gs,x (23)

Ĝs = Gs,x−MsPsµ
−1
s τs,x (24)

µs = PT
s MsPs (25)

βs = [1]−MsPsµ
−1
s Ps

s (26)
φ

n
hk = βsCs

hk (27)

Ĉn
lk = Cs

lk +Cs
lhPsµ

−1
s PT

s Cs
hk (28)

b̂n
l = bs

l,x +Cs
lhPsµ

−1
s τs,x (29)

From Equation (19) one can solve for Fs
h

Fs
h = βsMsrT

nsA
n
h +βsMsSnsq̈n−

Cs

∑
k

φ
n
hkFs

k − Ĝs (30)

Now if Fs
h is substituted from (30) into (10) and (11), together

with (12) and (20),

M∗rr,nAn
h +M∗re,nq̈n = Fn

h +
In

∑
j

rn jFn
j +∑

s

Cs

∑
k

rnsφ
n
hkFs

k +G∗r,n

(31)

M∗er,nAn
h +M∗ee,nq̈n +Dee,nq̇n +Kee,nqn =

In

∑
j

ST
n jF

n
j

+∑
s

Cs

∑
k

ST
nsφ

n
hkFs

k +G∗e,n (32)

An
i = rT

niA
n
h +Sniq̈n +AR,ni ∀i ∈ In (33)

As
l = φ

n
lhrT

nsA
n
h +φ

n
lhSnsq̈n +

Cs

∑
k

Ĉn
lkFs

k + b̂n
l ∀l ∈Cs (34)

where

M∗rr,n = Mrr,n +∑
s

rnsβsMsrT
ns (35)

M∗re,n = Mre,n +∑
s

rnsβsMsSns (36)

M∗er,n = Mer,n +∑
s

ST
nsβsMsrT

ns (37)

M∗ee,n = Mee,n +∑
s

ST
nsβsMsSns (38)

G∗r,n = Gr,n +∑
s

rnsĜs (39)

G∗e,n = Ge,n +∑
s

ST
nsĜs (40)
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The terms ∑s ∑
Cs
r rnsφ

n
hkFs

k and ∑s ∑
Cs
r ST

nsφ
n
hkFs

k can be simplified
by considering C∗s = ∑

Cs
k ,

∑
s

Cs

∑
k

rnsφ
n
hkFs

k =
C∗s

∑
r

rnsφ
n
hrF

s
r (41)

∑
s

Cs

∑
k

ST
nsφ

n
hkFs

k =
C∗s

∑
r

ST
nsφ

n
hrF

s
r (42)

Rewritting Equations (31, 32) as

M∗rr,nAn
h +M∗re,nq̈n = Fn

h +
In

∑
j

rn jFn
j +

C∗s

∑
r

rnsφ
n
hrF

s
r +G∗r,n (43)

M∗er,nAn
h +M∗ee,nq̈n +Dee,nq̇n +Kee,nqn =

In

∑
j

ST
n jF

n
j

+
C∗s

∑
r

ST
nsφ

n
hrF

s
r +G∗e,n (44)

the terms ∑
In
j rn jFn

j +∑
C∗s
r rnsφ

n
hrF

s
r and ∑

In
j ST

n jF
n
j +∑

C∗s
r ST

nsφ
n
hrF

s
r

can be consolidated.

Let Cn = In +C∗s , and

φ
n
h j = [1], Ĉn

i j = 0, ∀i, j ∈ In (45)

Then

In

∑
j

rn jFn
j +

C∗s

∑
r

rnsφ
n
hrF

s
r =

Cn

∑
j

rnsφ
n
h jF

n
j (46)

In

∑
j

ST
n jF

n
j +

C∗s

∑
r

ST
nsφ

n
hrF

s
r =

Cn

∑
j

ST
nsφ

n
h jF

s
j (47)

Equations (33, 34) can be rewritten as

An
i = φ

n
ihrT

niA
n
h +φ

n
ihSniq̈n +

Cn

∑
j

Ĉn
i jF

n
j + b̂n

j ∀i ∈Cn (48)

and Equations (31, 32, 33, 34) can be written as

M∗rr,nAn
h +M∗re,nq̈n = Fn

h +
Cn

∑
j

rn jφ
n
h jF

n
j +G∗r,n (49)

M∗er,nAn
h +M∗ee,nq̈n +Dee,nq̇n +Kee,nqn =

Cn

∑
j

ST
n jφ

n
h jF

n
j +G∗e,n

(50)

An
i = φ

n
ihrT

niA
n
h +φ

n
ihSniq̈n +

Cn

∑
j

Ĉn
i jF

n
j + b̂n

i , ∀i ∈Cn (51)

Solving for q̈n from Equation (50)

q̈n =−Xee,nM∗er,nAn
h +

Cn

∑
j

Xee,nST
n jφ

n
h jF

n
j +Qn (52)

Substituting q̈n from (52) into (49, 51) yields

MnAn
h = Fn

h +
Cn

∑
j

Cn
h jF

n
j +Gn (53)

An
i = Cn

ihAn
h +

Cn

∑
j

Cn
i jF

n
j +bn

i , ∀i ∈Cn (54)

where

Xee,n = [M∗ee,n]
−1 (55)

Mn = M∗rr,n−M∗re,nXee,nM∗er,n (56)

Cn
h j = (rn j−M∗re,nXee,nST

n j)φ
n
h j (57)

Cn
ih = φ

n
ih(r

T
ni−SniXee,nM∗er,n) (58)

Cn
i j = Ĉn

i j +φ
n
ihSniXee,nST

n jφ
n
h j (59)

Qn = Xee,n(G∗e,n−Dee,nq̇n−Kee,nqn) (60)

Gn = G∗r,n−M∗re,nQn (61)

bn
i = b̂n

i +φ
n
ihSniQn (62)

The Equations (53) and (54) are identical in form to Equations
(13) and (14). Continuing in this manner inward to the Head
or root body of the branch and then propagating the body accel-
erations outward to the leaf bodies forms the basis of the O(n)
formulation for the solution of the Branch dynamics.

Combining Branches
Combination bodies are then assembled two at a time using

the DCA approach in [9, 10], starting with a Parent branch and
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FIGURE 5. PARENT AND CHILD BRANCH COMBINATION

a Child branch which is outboard of the Parent branch. This is
illustrated in Figure 5.

Let Node I be the node on the Parent branch where the child
branch is connected. Then accelerations for the Parent branch
are

Ap
h = Φ

p
hhF p

h +
Np

∑
r 6=I

Φ
p
hrF

p
r +Φ

p
hIF

p
I +bp

h (63)

Ap
i = Φ

p
ihF p

h +
Np

∑
r 6=I

Φ
p
irF

p
r +Φ

p
iIF

p
I +bp

i (64)

Ap
I = Φ

p
IhF p

h +
Np

∑
r 6=I

Φ
p
IrF

p
r +Φ

p
IIF

p
I +bp

I (65)

Solving for F p
I from (65)

F p
I = xp

IIA
p
I − xp

IIΦ
p
IhF p

h − xp
II

Np

∑
r 6=I

Φ
p
IrF

p
r − xp

IIb
p
I (66)

where xp
II = [Φp

II ]
−1.

Similarly, accelerations for the Child branch are given by

Ac
h = Φ

c
hhFc

h +
Nc

∑
s

Φ
c
hsF

c
s +bc

h (67)

Ac
j = Φ

c
jhFc

h +
Nc

∑
s

Φ
c
jsF

c
s +bc

j (68)

Solving for Fc
h from (67)

Fc
h = xc

hhAc
h− xc

hh

Nc

∑
s

Φ
c
hsF

c
s − xc

hhbc
h (69)

where xc
hh = [Φc

hh]
−1.

The kinematic relationship between Ac
h and Ap

I is given
by

Ac
h = Ap

I +Pcθ̈c +Ac
R,h (70)

Substituting Ac
h from (70) into (69)

Fc
h = xc

hhAp
I + xc

hhPcθ̈c− xc
hh

Nc

∑
s

Φ
c
hsF

c
s − yc

1 (71)

If one pre-multiplies both sides of (71) by PT
c and lets PT

c Fc
h = τc,

θ̈c can then be solved for as

θ̈c = µ
−1
c

[
τc,x +PT

c xc
hh

(
Nc

∑
s

Φ
c
hsF

c
s −Ap

I

)]
(72)

Substituting θ̈c from (72) into (71), and solving for Fc
h ,

Fc
h = βcxc

hhAp
I −βcxc

hh

Nc

∑
s

Φ
c
hsF

c
s − yc

2 (73)

where

µc = PT
c xc

hhPc (74)

βc = [1]− xc
hhPcµ

−1
c PT

c (75)

Ac
R,h =

(
~0

ω̃c p̂cθ̇c

)
(76)

yc
1 = xc

hh(b
c
h−Ac

R,h) (77)

τc,x = τc +PT
c yc

1 (78)

yc
2 = yc

1− xc
hhPcµ

−1
c τc,x (79)

Given

F p
I =−Fc

h (80)

Substituting F p
I from (66) and Fc

h from (73) and solving for Ap
I

7



yields

Ap
I = m−1

II xp
IIΦ

p
IhF p

h +m−1
II xp

II

Np

∑
r 6=I

Φ
p
IrF

p
r +m−1

II [βcxc
hh]

Nc

∑
s

Φ
c
hsF

c
s +yp

1

(81)

Now substituting Ap
I from (81) into (66) one obtains

F p
I = zp

IIΦ
p
IhF p

h + zp
II

Np

∑
r 6=I

Φ
p
IrF

p
r +wc

pc

Nc

∑
s

Φ
c
hsF

c
s + yp

2 (82)

where

mp
II = xp

II +[βcxc
hh] (83)

m−1
II = [mp

II ]
−1 (84)

zp
II = xp

IIm
−1
II xp

II− xp
II (85)

wc
pc = xp

IIm
−1
II [βcxc

hh] (86)

yp
1 = m−1

II (yc
2 + xp

IIb
p
I ) (87)

yp
2 = xp

II(y
p
1 −bp

1) (88)

In the case where a Parent branch is combined with a combina-
tion body, one can substitute F p

I from (82) into (63), and (64) to
obtain

Ap
h = Φ

p∗
hhF p

h +
Np

∑
r 6=I

Φ
p∗
hr F p

r +
Nc

∑
s

Φ
p∗
hs Fc

s +bp∗
h (89)

Ap
i = Φ

p∗
ih F p

h +
Np

∑
r 6=I

Φ
p∗
ir F p

r +
Nc

∑
s

Φ
p∗
is Fc

s +bp∗
i (90)

where

Φ
p∗
hh = Φ

p
hh +[Φp

hIz
p
II ]Φ

p
Ih (91)

Φ
p∗
hr = Φ

p
hr +[Φp

hIz
p
II ]Φ

p
Ir (92)

Φ
p∗
hs = [Φp

hIw
c
pc]Φ

c
hs (93)

Φ
p∗
ir = Φ

p
ir +[Φp

iIz
p
II ]Φ

p
Ir (94)

Φ
p∗
is = [Φp

iIw
c
pc]Φ

c
hs (95)

bp∗
h = bp

h +Φ
p
hIy

p
2 (96)

bp∗
i = bp

i +Φ
p
iIy

p
2 (97)

In the case where an inboard combination body is combined with
a Child branch, one can substitute Ap

I from (81) into (73) to solve

for Fc
h

Fc
h = wT

pcΦ
p
IhF p

h +wT
pc

Np

∑
r 6=I

Φ
p
IrF

p
r + zc

hh

Nc

∑
s

Φ
c
hsF

c
s + yc

12 (98)

Substitute Fc
h from (98) into (68) to solve for Ac

j

Ac
j = Φ

p∗
jh F p

h +
Np

∑
r 6=I

Φ
p∗
jr F p

r +
Nc

∑
s

Φ
p∗
js Fc

s +bp∗
j (99)

where

zc
hh = [βcxc

hh]m
−1
II [βcxc

hh]− [βcxc
hh] (100)

Φ
p∗
js = Φ

c
js +[Φc

jhzc
hh]Φ

c
hs (101)

yc
12 = [βcxc

hh]y
p
1 − yc

2 (102)
bp∗

j = bc
j +Φ

c
jhyc

12 (103)

Finally, in the case where two combination bodies are combined,
let

Ap∗
h = Ap

h , F p∗
h = F p

h (104)
Ap∗

i = Ap
i , F p∗

r = F p
r (105)

Ap∗
j = Ac

j, F p∗
s = Fc

s (106)

Then Equations (89), (90), and (99) become

Ap∗
h = Φ

p∗
hhF p∗

h +
Np

∑
r 6=I

Φ
p∗
hr F p∗

r +
Nc

∑
s

Φ
p∗
hs F p∗

s +bp∗
h (107)

Ap∗
i = Φ

p∗
ih F p∗

h +
Np

∑
r 6=I

Φ
p∗
ir F p∗

r +
Nc

∑
s

Φ
p∗
is F p∗

s +bp∗
i (108)

Ap∗
j = Φ

p∗
jh F p∗

h +
Np

∑
r 6=I

Φ
p∗
jr F p∗

r +
Nc

∑
s

Φ
p∗
js F p∗

s +bp∗
j (109)

This forms the basis for assembly of branches as per the
Divide and Conquer Algorithm.

Validation and Performance
CPU timing results were generated with the previous

system-level MBDyn implementation for two test topologies and

8



FIGURE 6. 128 BODY TOPOLOGY TEST CASE

varying periodic update intervals of the system matrices and
transformations. In both test cases, the integration stepsize was
1 ms with a frequency bound of 200 Hz. The tests were executed
using a single processor of a mid-level eight processor simulation
host computer. The ratio of CPU time to simulation time was cal-
culated not including initialization processing. Values above 1.0
indicate that the multibody dynamics did not run fast enough for
it to be used in a real-time simulation application on this partic-
ular simulation host. Results are tabulated in Table 1.

The 49 body test case described in [11] illustrates use of
periodic system updates to achieve real-time performance. This
system includes 41 rigid DOFs and 64 flexible DOFs (for a to-
tal of 105 DOFs). As shown in Table 1, system matrix updates
at the integration stepsize of 1 ms did not achieve fast enough
performance for real-time. Periodic updates at 5 ms and greater
achieved real-time performance. At periodic updates of greater
than 1 s, the system-level calculations take up an insignificant
portion of the CPU time so further increases are of limited re-
turn. For comparison, typical update periods for open loop ISS
simulations range between 0.5 s and 2.0 s depending on the appli-
cation. ISS simulations involving contact dynamics or systems
with larger articulation rates frequently require smaller update
periods to maintain accuracy, thus driving the requirement for
the newer formuation.

The 128 body test case shown in Figure 6 illustrates the lim-
itations of the previous approach with increasing system size.
This system includes 133 rigid DOFs and 508 flexible DOFs (for

a total of 641 DOFs). As shown in Table 1, for this simula-
tion host, increasing the periodic update rate is not sufficient to
achieve real-time performance, even without considering its po-
tential negative affect on accuracy.

TABLE 1. SYSTEM-LEVEL MBDYN TIMING RESULTS

System Update Interval CPU to Simulation Time Ratio

49 Body 1 ms 1.35

49 Body 5 ms 0.372

49 Body 10 ms 0.250

49 Body 100 ms 0.139

49 Body 1 s 0.128

128 Body 10 ms 26.1

128 Body 100 ms 5.62

128 Body 1 s 3.56

128 Body 2 s 3.46

Table 2 shows results of the test cases with the updated paral-
lel MBDyn implementation. For the 49 body test case, real-time
performance is achieved on a single CPU (equivalent to O(n)).
This is an improvement over the previous formulation because
there was no loss in accuracy due to periodic updates. No signif-
icant improvement was observed for this system by splitting the
topology into parallel branches.

TABLE 2. PARALLEL MBDYN TIMING RESULTS

System Number of Branches CPU to Simulation Time Ratio

49 Body 1 0.256

49 Body 2 0.231

49 Body 4 0.256

128 Body 1 1.25

128 Body 2 0.665

128 Body 4 0.388

9



For the 128 body test case, however, real-time performance
is not achieved on a single CPU. In this case, real-time perfor-
mance is realized by splitting the topology into parallel branches.
These results demonstrate the advantage of the parallel formula-
tion for large systems.

Concluding Remarks
Changing simulation requirements within NASA’s human

spaceflight program have necessitated the ongoing evolution of
multibody dynamics simulations at JSC. Software updates to bet-
ter handle multiple spacecraft and transient topology scenarios
have significantly simplified large complex simulations and en-
hanced rapid prototyping capabilities to meet the needs of both
current ISS and exploration programs. A parallel flexible multi-
body dynamics formulation has successfully utilized multiple-
processor simulation hosts to address the simultaneous needs of
higher numbers of degrees of freedom and faster articulation
rates. Comparisons against a previously validated implementa-
tion show that these improvements have been achieved with no
loss of fidelity.
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