Temperature and Humidity Profiles in the “TqJoint” Data Group of AIRS Version 6 Product for the Climate Model Evaluation

Feng Ding1,2, Fan Fang1,2, Thomas J. Hearty1,2, Michael Theobald1,2, Bruce Vollmer1, Christopher Lynnes1
1NASA Goddard Space Flight Center, 2NASA Goddard Space Flight Center/SES/DA

ABSTRACT
The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data (Tian et al. 2013) in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new “TqJoint” data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in “TqJoint” group be from the “Standard” group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the “TqJoint” group and the “Standard” group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the “TqJoint” and “Standard” group using MERRA data.

NextGen ESGF(Earth System Grid Federation)
The next generation ESGF will deliver a cyberinfrastructure to automatically precondition and publish NASA remote sensing datasets to the ESGF and its IPCC Assessment Report obs4MIPs activity. The cyberinfrastructure provides transparent access to ESGF models and facilitates their comparison with satellite data from JPL, LARC and GSFC.

DATASET AND COMPARISON METHOD
AIRS Version 6 Level 3 Monthly Standard Retrieval Product Temperature and Humidity (water vapor mass mixing ratio)
Daytime/Ascending and Nighttime/Descending Year 2003 to year 2013 (132 months) 850hPa, 700hPa, 600hPa, 500hPa, 400hPa, 300hPa Mean Absolute Difference over Global/Land/Ocean

• Mean Absolute Difference: ±0.2°K 850, 700hPa: Standard < TqJoint 600, 500hPa: Standard ~ TqJoint 400hPa: Standard > TqJoint

• Mean Absolute Difference: -0.005g/kg to +0.025g/kg 850hPa: Standard ~ TqJoint 700 to 300hPa: Standard > TqJoint

SUMMARY
- The differences of temperature and humidity between “TqJoint” and “Standard” data group in AIRS version 6 level 3 standard retrieval product are within a very narrow range.
- At most pressure levels, values of one data group are consistently greater or less than the other data group over land, over ocean, and globally.
- We are also working on examining the sampling differences between the “TqJoint” and “Standard” group using MERRA data.
- The AIRS version 6 monthly ascending and descending averaged temperature and humidity profiles from “TqJoint” data group will be available on ESGF for climate model study.

CONTACT INFORMATION
Feng Ding: feng.ding@nasa.gov