Using Earth Observations to Understand and Predict Infectious Diseases

Radina P. Soebiyanto, PhD1,2
Richard Kiang, PhD2

1 Universities Space Research Association, Goddard Earth Sciences Technology and Research, Columbia, Maryland
2 NASA Goddard Space Flight Center, Greenbelt, Maryland
Objective

• Characterize relationship between disease outbreaks and environmental, meteorological parameters
• Use the relationship to forecast disease outbreaks
• Disease applications:
 – Seasonal and pandemic influenza, malaria, dengue
Schematic Approach

Data Center (i.e. NASA GES DISC; NOAA NCDC; USGS Earth Explorer, etc)

Multi-temporal earth science products
Satellite-derived products i.e. TRMM3B42, MOD11C1

Ground observations

Weekly influenza epidemiological data

Mathematical Modeling
Regression model
Neural Network
Decision Tree
Agent-Based model

Weekly meteorological time series

Model calibration and validation

Final Output: Meteorological dependency, climate-based influenza forecast

Data processing
Data continuity and integrity checking
Additional variable/indicator derivation
Spatiotemporal aggregation

Multi-temporal earth science products
Satellite-derived products i.e. TRMM3B42, MOD11C1

Ground observations

Weekly influenza epidemiological data

Mathematical Modeling
Regression model
Neural Network
Decision Tree
Agent-Based model

Weekly meteorological time series

Model calibration and validation

Final Output: Meteorological dependency, climate-based influenza forecast
Meteorological Data Processing

• Epidemiological and virological surveillance data are typically aggregated
 – Spatially: district, provincial or national level
 – Temporally: weekly or monthly

• Satellite data processing
 – Projection; masking region of interest; spatial and temporal averaging; data imputation

• Ground station processing
 – Spatial and temporal averaging; data imputation

• Create lag variables
Meteorological Data Processing

Internal database of satellite data for epidemiological analysis
- Six satellite data products
- Spatial and temporal aggregation capabilities
Influenza: The Problem

Latitudinal variation of seasonal influenza epidemics
- Temperate region: distinct annual peak in winter
- Tropical region: less distinct seasonality, multiple peaks

Southward migration in Brazil
- From low population in the tropics to dense area with temperate climate

Suggest the role/influence of environmental and meteorological factors
- Several meteorological parameters has been implicated in influenza outbreaks
- Temperate region: low temperature and humidity
- Tropical region: rainfall in several countries
Example: Influenza In Central America

Meteorological Data

Data Source
– Tropical Rainfall Measuring Mission (TRMM): Daily resolution at 0.25° (~ 25 km)
– Global Land Data Assimilation System (GLDAS): 3-hourly resolution at 0.25° (~ 25 km)

Precipitation: TRMM
Near Surface Temperature: GLDAS
Near Surface Specific Humidity: GLDAS

Meteorological data processing

Multi-temporal (daily) precipitation rate (TRMM) from Giovanni
Regression Modeling

Logistic regression

\[Y_{kt} \sim Bin \left(N_{kt}, p_{kt} \right) \]

- \(Y_{kt} \) is the number of samples tested positive for influenza virus in location \(k \) at week \(t \);
- \(N_{kt} \) is the total samples collected/processed from location \(k \) at week \(t \);
- \(p_{kt} \) is \(Y_{kt} / N_{kt} \)

The logit of influenza positive proportion is defined as:

\[z_{kt} = \ln \left(\frac{p_{kt}}{1 - p_{kt}} \right) \]

The full model can be written as:

\[z_{kt} = \alpha + \sum_{j=1}^{3} \beta_{jk} x_{jkt} + \sum_{l=1}^{3} \gamma_{lk} v_{lkt} + \sum_{m=1}^{4} \lambda_{mk} z_{k(t-m)} + \sum_{n=1}^{3} \theta_{nk} w_{nt} \]

- Meteorological variable (i.e. temperature, humidity, rainfall)
- Previous weeks influenza activity
- Co-circulating viruses (RSV, adenoviruses) as confounding factor
- Polynomial function of week number

Regression coefficients to be estimated
Results: Estimated Coefficients

<table>
<thead>
<tr>
<th>Country and Province</th>
<th>Adjusted Odds Ratio (95% Confidence Interval)</th>
<th>Meteorological Variable Average Period</th>
<th>Prediction</th>
<th>RMSE</th>
<th>Corr. Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>Specific Humidity (g/kg)</td>
<td>Rainfall (mm/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central departments</td>
<td>1.01 (0.88, 1.15)</td>
<td>0.79 (0.69, 0.91)</td>
<td>1.05 (1.01, 1.09)</td>
<td>Prev. 1–3 wks ave.</td>
<td>0.08</td>
</tr>
<tr>
<td>Western departments</td>
<td>0.94 (0.80, 1.11)</td>
<td>0.72 (0.60, 0.86)</td>
<td>1.01 (0.98, 1.04)</td>
<td>Prev. 0–1 wks ave.</td>
<td>0.13</td>
</tr>
<tr>
<td>El Salvador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West-central departments</td>
<td>0.80 (0.70, 0.91)</td>
<td>1.18 (1.07, 1.31)</td>
<td>1.00 (0.99, 1.02)</td>
<td>Prev. 1 wk ave.</td>
<td>0.06</td>
</tr>
<tr>
<td>San Miguel</td>
<td>1.28 (0.99, 1.65)</td>
<td>1.32 (1.08, 1.63)</td>
<td>0.98 (0.92, 1.05)</td>
<td>Prev. 1–2 wks ave.</td>
<td>0.13</td>
</tr>
<tr>
<td>Panama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiriquí</td>
<td>1.30 (0.85, 2.02)</td>
<td>1.97 (1.34, 2.93)</td>
<td>0.95 (0.87, 1.04)</td>
<td>Prev. 0–3 wks ave.</td>
<td>0.11</td>
</tr>
<tr>
<td>Panama</td>
<td>1.13 (0.80, 1.61)</td>
<td>1.44 (1.08, 1.93)</td>
<td>1.10 (1.05, 1.14)</td>
<td>Prev. 1–2 wks ave.</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Bold font indicates a statistically significant variable (p-value<0.05). RMSE is the Root Mean Squared Error and Corr. Coeff is the correlation coefficient between the observation and estimated influenza positive proportion in 2013. The models were adjusted for: potentially confounding variables (RSV, parainfluenza and adeno viruses), previous weeks’ influenza positivity, seasonality and other possible nonlinear relationships (modeled as a polynomial function, up to degree of 3, of the week number). doi:10.1371/journal.pone.0100659.t002

Specific humidity was consistently associated with influenza activity in all study locations with **bimodal** relationship:

Proportional relationship in Guatemala and **inverse** relationship in other locations
Results: Training and Prediction
Neural Network

Artificial intelligence method that mimic the functioning of the brain

\[y = f \left(\sum x_i w_i \right) \]

\(f(\cdot) \) can be sigmoid function, radial basis function, etc.

Artificial neuron

Temperature
Precipitation
Humidity

Input Layer
Hidden layer
Output Layer

Influenza Activity
Neural Network (NN) and ARIMA outputs for New York City and Maricopa County (AZ)

NN model shows that ~60% of influenza variability in the US regions can be accounted by meteorological factors.
Summary: Challenges

Meteorological Data and Processing
• Changes in or heterogeneity of: location, formats, algorithm, availability (data continuity)
• Storage capacity
• Data products validation

Uncovering patterns & modeling
• Choice of mathematical and statistical models
• Each model has assumptions such that results and prediction may need to be appropriately interpreted
• Parameter constraints and prediction validation
Acknowledgment

PI: Richard Kiang (NASA GSFC)

CDC
• Marc-Alain Widdowson
• Eduardo Azziz-Baumgartner
• Wilfrido Clara

Guatemala
• Jorge Jara
• John P. McCracken
• Leticia Castillo

El Salvador
• Oscar Rene Sorto
• Sidia Marinero

Panama
• Maria E Barnett de Antinori

Database developer
• Jason Lefler

This work was funded by NASA Applied Sciences – Public Health Program and CDC Influenza Division
THANK YOU
radina.soebiyanto@nasa.gov