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The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework
has created new opportunities to improve effectiveness and efficiencies across the assurance functions.
The MBSE environment supports not only system architecture development, but provides for support of
Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed
design will further improve assurance capabilities to support failures avoidance and mitigation in flight
systems. This also is leading new assurance functions including model assurance and management of
uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal
argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to
support Model Based Mission Assurance (MBMA).
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MBSE — How does SMA fit in ]

Assurance products modified
to fit into a model based
environment
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MBMA — Model Based Mission Assurance
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Example - MBSE FMEA
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Example - CDS System Fault Tree
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Future Example - Physics of Failure Model Integratio n

FY16 Planned Collaboration — UMD Center for
Advanced Life Cycle Engineering (CALCE)

Simulation Assisted Reliability Assessment (SARA®) Software
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calceTinWhisker FailureRiskCalculator

* GSFC has access to
CALCE SARA® software
to perform in depth
parts reliability analysis

calceEP

Device andPackage
Failure Analysis

* A system model that
links to SARA® could

produce more accurate
reliability analyses

* MBSE provides a
framework to support
this activity
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Objectives Based Assurance
R&M Objectives Structure — Top-Level

Context: Expectations derived
from crew safety, MMOD
concerns, facility safety, public
safety, mission obj.,
sustainment, ..., considerations
and associated risk tolerance

Context: System/function
description and requirements,
including design information
and interfaces

Context: Reference mission +
before/after

Context: Range of nominal / off-
nominal usage and conditions/
environments

Top Objective: system performs as required over the
lifecycle to satisfy mission objectives

Strategy: prevent faults and failures, provide mitigation
capabilities as needed to maintain an acceptable level
of functionality considering safety, performance, and

sustainability objectives

Objective: systerm remains
Objective: system conforms to functional for intended
design intent and performs as |ifetime, environment,
planned operating conditions and
(1) usage
(2)

Objective: system is tolerant Objective: system is designed
to faults, failures and other to have an acceptable level of
anomalous internal and availability and maintenance
external events demands

(3) (4)
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Laying the Foundation

» Logically decompose top-level R&M objective
— Use elements of the Goal Structuring Notation

— Structure shows why strategies are to be applied

= Structure forms basis for a proposed R&M standard

— Specifies the technical considerations to be
addressed by projects

— Forms basis for evaluation of plans, design, and
assurance products
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Assurance Case

Goal:2

. . System remains

R&M Objectives Structure — Top-Level functional for intended
lifetime, environment,
operating conditions and
usage (NASA R&M).

Strategy:2.A

G Understand failure
mechanisms, eliminate
and/or control failure
causes, degradation and
common cause failures,
and limit failure
propagation to reduce
likelihood of failure to an
acceptabie level (NASA
R&M).

A 4

Goal:2.A.1

ot e b

System and its elements
are designed to withstand
nominal and extreme
loads and stresses
(radiation) for the life of

o |
the mission (NASA REM). Justification G

+ Only performed proton
tests for SEL. Heavy ion
tests were not performed
Perform qualification ______________) because the heavy ion
testing to verify design environment does not

for intended use (NASA significantly contribute to
RE&M). the mission envionment

+ + Mission constmints on
Argument Structure i F budget also limited the
A
ssumption Goal:2A1.0.1 Goal:2A.1.A2 amount of testing.

Strategy:2.A.1.0

FPF2006 and FPF2007 are le---
similar enough that the
SEL results from FPF2007
can be used for FPF2006.

I Sub-claim I I Evidence I I Evidence I * = + e

Solution Solution

Load Switch 1(FPF2006) Load Switch 2(FPF2123)
passes SEL mission passes SEL mission
requirement. requirement.

Results from IUCF: No Results from IUCF: No
latch-up seen on FPF2007 latch-up seen on FPF2123
up to 1e10 (p/em2) up to 1e11 (plem2)
protons. protons.
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Summary

= MBSE provides an unprecedented opportunity to integrate
SMA and Engineering Analysis concurrently as part of a
common modeling framework.

= MBMA, part of the MBSE environment, facilitates and
enhances SMA’s analytical and risk assessment
capabilities.

= MBSE and MBMA fully supports GSFC’s Risk Based SMA
Approach and the Agency’s R&M Objectives Structure
and as part of a larger Safety/Assurance Case.
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