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• Pc uncertainty component:  covariance uncertainty

– Covariance realism assessment

– Covariance realism PDF generation

• Pc uncertainty component:  hard-body radius uncertainty

– Primary objects using projected-area sampling

– Secondary objects using radar cross-section values

• Pc uncertainty component:  natural variation in Pc calculation
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• Conclusions and future work
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How are Satellite Collision Risks 

Determined/Mitigated?

• Certain spacecraft are determined to be “defended assets”

– Will be evaluated for collision risk with other objects

• For seven days into the future, the expected positions of the 

defended asset and the rest of the objects in the space catalogue 

are determined

• “Keep-out volume” box drawn around the defended asset at each 

time-step

– Typically 5km x 5km x 25km in size, with the longer dimension along the orbit 

path

• Any satellite that penetrates the keep-out volume during the 7-day 

analysis is considered a possible “conjunctor”

• Particulars of the close approach analyzed to determine actual 

conjunction risk

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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“Fly By” Ephemeris Comparison

• Ephemerides generated for primary and 

secondaries that are possible threats

• Screening volume box (or ellipsoid) 

constructed about primary

• Box “flown” along the primary’s ephemeris

• Any penetrations of box constitute possible 

conjunctions

• For these conjunctions, Conjunction Data 

Message (CDM) generated

– State estimates and covariances at TCA

– Relative encounter information

– OD information

• CDM data used to calculate probability of 

collision (Pc)

Primary
Secondary

Screening

Volume

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Calculating Probability of Collision (Pc):

3D Situation at Time of Closest Approach (TCA) 

Miss distance

Figure taken from Chan (2008)

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Calculating Pc:  2-D Approximation (1 of 3)

Combining Error Volumes

• Assumptions

– Error volumes (position random variables about the mean) are uncorrelated

• Result

– All of the relative position error can be centered at one of the two satellite 

positions

• Secondary satellite is typically used

– Relative position error can be expressed as the additive combination of the 

two satellite position covariances (proof given in Chan 2008)

• Ca + Cb = Cc

– Must be transformed into a common coordinate system, combined, and then 

transformed back

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Calculating Pc:  2-D Approximation (2 of 3)

Projection to Conjunction Plane

• Combined covariance centered at position of secondary at TCA

• Primary path shown as “soda straw”

• If conjunction duration is very short

– Motion can be considered to be rectilinear—soda straw is straight

– Conjunction will take place in 2-d plane normal to the relative velocity 

vector and containing the secondary position

– Problem can thus be reduced in dimensionality from 3 to 2

• Need to project covariance and primary path into “conjunction 

plane”

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Calculating Pc:  2-D Approximation (3 of 3)

Conjunction Plane Construction

• Combined covariance projected into plane normal to the 

relative velocity vector and placed at origin

• Primary placed on x-axis at (miss distance, 0) and represented 

by circle of radius equal to sum of both spacecraft 

circumscribing radii (“hard-body radius” or HBR”)

• Z-axis perpendicular to x-axis in conjunction plane

Figure taken from Chan (2008)

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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2-D Probability of Collision Computation

• Rotate axes until they align with principal axes of projected 

covariance ellipse

• Pc is then the portion of the density that falls within the HBR 

circle

– r is [x z] and C* is the projected covariance
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2-D vs. 3-D Conjunction Geometry

2-D Geometry

3-D Geometry

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Low Relative Velocity or

Long Conjunction Duration Situation

• 2-D approximation not valid

• Can attempt 3-D integral

– Messy, but Coppola (2012) outlines methodology with Lebedev quadrature

• Can use Monte Carlo

– From TCA

• Propagate both satellites’ states and covariances to nominal TCA

• Take position (and maybe velocity) perturbations from each covariance to define new 

states for primary and secondary

• Find new TCA and record miss distance

• Tabulate all miss distances; percent that are smaller than HBR is Pc

– From epoch

• Similar procedure to above, but perturbations performed at epoch

• Perturbed states propagated forward to new TCA with full non-linear dynamics

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Conjunction Event Canonical Progression

• Conjunction typically first discovered 7 days before TCA

– Covariances large, so typically Pc below maximum

• As event tracked and updated, changes to state estimate are 

relatively small, but covariance shrinks

– Because closer to TCA, less uncertainty in projecting positions to TCA

• Theoretical maximum Pc encountered when 1-sigma covariance 

size to miss distance ratio is 1/√2

– After this, Pc usually decreases rapidly

• Behavior shown in graph at right

– X-axis is covariance / miss distance

– Y-axis is log10 (Pc/max(Pc))

– Order of magnitude change in Pc considered

significant, thus log-space more appropriate
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Probability of Collision Calculation

• Pc is only a nominal solution for the conjunction

– Derived from estimates of the mean

• If underlying distributions not symmetric, then this is not an expression of central 

tendency

– Does not include uncertainties on the inputs

• “Uncertainty of uncertainty volumes” or uncertainty in HBR

• Thus, while representing the risk, nominal Pc is just a point estimate

• Want to know how much variation or uncertainty in the Pc 

calculated for any given conjunction

– Determine uncertainty PDFs for the Pc calculation inputs 

– Through Monte Carlo trials, vary above inputs to the Pc calculation

– Include a resampling technique to determine natural variation in the calculation

– Generate a probability density of resultant Pc values

– Characterize this distribution empirically

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Uncertainty in the Probability

• Generate a Pc distribution, using Monte Carlo (MC) trials of the 

underlying uncertainties

– Determine uncertainty for each of the Pc parameters 

Generate Pc 

distribution

Underlying Uncertainties

Natural Sampling 
Variability 

HBR Uncertainty

Covariance 
Uncertainty

Draw from scale 
factor distributions 
for both objects

Draw from projected 
area distribution 
(primary) and RCS 
PDF (secondary)

Draw from 2D 
scaled Gaussian 
covariance

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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COVARIANCE REALISM AND 

SCALE FACTORS
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Covariance Realism 

• Ways a typical covariance can be unrealistic

– Much larger or smaller than the “real” error volume

– Differently oriented from the “real” error volume

– Representing a different distribution from the “real” error distribution

• This last item not addressed in present study

– Current form of covariance promotes Gaussian assumption

– A priori arguments for presuming component error distributions close to 

Gaussian

– A posteriori evidence for component errors following a symmetric distribution

– Study indicates large-Pc events not affected by “bending” covariances*

• Large covariances not inherently problematic

– Rather, quite appropriate if errors themselves are large

• Covariance realism assessment approach is combined evaluation of 

size and orientation, presuming error volume is Gaussian ellipsoid

* Ghrist, R.W. and Plakalovic, D.  “Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis,” 2012.

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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JSpOC State and Covariance Accuracy Utility

• Truth ephemeris produced for every satellite

– Similar to methodology used for generating precision satellite laser ranging 

orbits

– “Stitched together” pieces of ephemeris from a “judiciously chosen” portion of 

the fit-spans of subsequent batch ODs

• Methodology to minimize overlap of portions drawing from same observation base

– Covariance for reference orbit also preserved (epoch covariances from 

generating ODs)

• Each produced precision vector for each object compared to its 

reference orbit at propagation states of interest

– Position comparisons at 6, 12, 18, 24, 36, 48, 72, 120, and 168 hrs

– Propagated position covariance also calculated and retained at each 

comparison point

• Raw materials for covariance realism investigations thus available:

– State errors

– Propagated covariance at point of comparison and reference orbit covariance

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Reference Orbit Formation Approaches:

Previous and Present

New Approach

~ abutment

0 % 100 %

Fit Span

a.

b.

Old Approach

~ abutment

0 %

25 %

50 %
a.

b.

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Covariance Realism:

Normal Deviates and Chi-squared Variables

• Let q and r be vectors of values that conform to a Gaussian 

distribution

– Commonly called normal deviates

• A normal deviate set can be transformed to a standard normal 

deviate by subtracting the mean and dividing by the standard 

deviation 

– This produces the so-called Z-variables

• The sum of the squares of a series of standard normal deviates 

produces a chi-squared distribution, with the number of degrees of 

freedom equal to the number of series combined
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Covariance Realism:

Normal Deviates in State Estimation

• In a state estimate, the errors in each component (u, v, and w here) 

are expected to follow a Gaussian distribution

– If all systematic errors have been solved for, only random error should remain

• These errors can be standardized to the Z-formulation

– Mean presumed to be zero (OD should produce unbiased results), so no need 

for explicit subtraction of mean

• Sum of squares of these standardized errors should follow a chi-

squared distribution with three degrees of freedom
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Covariance Realism:

State Estimation Example Calculation

• Let us presume we have a precision ephemeris, state estimate, and 

covariance about the state estimate

– For the present, further presume covariance aligns perfectly with uvw frame 

(no off-diagonal terms)

• Error vector ε is position difference between state estimate and 

precision ephemeris, and covariance consists only of variances 

along the diagonal

– Inverse of covariance matrix is straightforward

• Resultant simple formula for chi-squared variables
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Covariance Realism:

Non-Diagonal Covariances

• Mahalanobis distance formulary naturally accounts for correlation 

terms

• Two-dimensional example:

• Conforms to intuition

– As ρ approaches zero, diagonal case recovered
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Covariance Realism:

Testing for Realism

• Mahalanobis distance set should conform to 3-DoF χ2 distribution

• Expected value for each calculation is DoF, 3 in this case

• Each Mahalanobis point in principle produces a scale factor

– mCm sizes covariance such that εC-1εT will have a value of 3

– m2 thus the proper factor by which to scale the covariance in order to produce 

the expected value

• However, not every Mahalanobis calculation expected to equal 

expected value

– Instead, a chi-squared distribution with expected value of 3

• To set scale factor(s), choose factor that brings entire Mahalanobis 

distance set into conformity with expected distribution

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Empirical Distribution Function (EDF) GOF:

Exquisite Solution

• Sum of vertical differences between 

“ideal” and “real” behavior

– Hypothetical graph at left

• Cramér – von Mises formulation the most 

appropriate for current situation

– Equations at right

– Weighting function (ψ) set to unity a better 

choice for outlier-infused situations

• Q used to consult tables of p-values to 

determine likelihood of match between 

ideal and real distribution 

– Best approach is to be able to use p-value, as 

this has a clear statistical meaning

• But what if we want a distribution of scale 

factors?
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Covariance Realism:

Distribution of Scale Factors

• Rank-ordering of results can give reasonable PDF of scale factors

– Presume 100 squared Mahalanobis distance values (M2)

• Derived from JSpOC covariance realism data

– Rank order list

– Align each entry with the 3-DoF χ2 value that corresponds to that percentile

– Quotient of two terms is (square of) scale factor that produces the χ2 value 

expected for that particular percentile

• Examples:

Square of

Percentile x2 M Distance Quotient

1 (0.01) 0.115 0.183 1.594

2 (0.02) 0.185 0.245 1.326

3 (0.03) 0.245 0.353 1.440

4 (0.04) 0.300 0.418 1.393

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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HARD-BODY RADIUS
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Hard-Body Radius:

Introduction

• HBR is typically found by circumscribing both objects in spheres 

and combining the objects into one bounding sphere

– Size of the secondary is typically not known, so added as a large estimate of 

debris object dimensions

• HBR uncertainties that follow represent a more realistic estimate of 

the  area in the conjunction plane

– The combined uncertainties are much smaller than the bounding sphere 

Largest spacecraft 

dimension in sphere

Secondary is conservative 

assessment of debris 

object dimensions 

Combined 

bounding sphere

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Min and Max Using Approximation Equations

28

Could presume uniform distribution between these values

as first-order approximation of PDF, but seems rather arbitrary

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Projected Area Approach

• Randomized orientation of 

primary satellite to capture 

the average area

– Ball-and-stick model to be 

created for each primary asset

– Includes rotating solar panels

• Projected radius

– Actual hit area of the satellite 

expressed as a circular radius

– 𝑟 =
𝐴

𝜋
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Projection Area = 64.3634
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Hard-Body Radius:

Projected Area Approach Performance

• NASA/JSC Orbital Debris Program Office (ODPO) has sophisticated 

satellite model and full Euler angle rotation software to generate 

projected area PDFs

• Comparison of results for Hubble Space Telescope between ODPO 

software and ball-and-stick model:

Average Area 
[m2]

Average 
Effective 
HBR [m]

Crude HST model 
(corresponding to 

chart)
60.3 4.3

Sophisticated HST 
model 

(Matney*)
63.7 4.5

* M. Matney, “How to Calculate the Average Cross Sectional Area,” Orbital Debris Quarterly Newsletter, Vol. 8, issue 2.

Rudimentary cylinder + plate model

Good agreement

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Projected Area Approach Implementation

• Assemble ball-and-stick model of primary satellite

• Rotate through all Euler angles and project into plane

• Create empirical PDF of projected areas

• Express as PDF of radii of circles of equivalent area

• If satellite orientation is known at TCA, then area can be projected 

directly into conjunction plane

– Can then perform integration by means of a contour integral

– Lingering problem of how to incorporate area for secondary object

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Secondary Object HBR Uncertainty

• For intact spacecraft, possible to use published dimensions

– For payloads, these are often not precise enough to be useful, and at least 

some canonical models would have to be imposed 

• Error in all of this great enough that approach is questionable

– For rocket bodies, published dimensions are probably adequate

• But many booster types lack published dimensions

• Most common secondaries are debris objects, for which no size 

information is available

• Thus, forced to estimate size from radar cross-section (RCS) value

– Objects do not have single RCS value but PDF of values, depending on radar 

response and object aspect function

– PDFs of individual objects’ RCS values not available, only averaged values

– As proxy could use canonical distribution

• Swerling III distribution is most common for debris, and also most conservative in 

terms of size*

* Hejduk, M. D. and DePalma, D. “Comprehensive Radar Cross-Section “Target Typing” Investigation for Spacecraft,” 2010.

http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Swerling Distribution Family

• Swerling distributions derive from 

the gamma distribution family

– Location parameter (γ) = 0

– Shape parameter (m) fixed

– Scale parameter () estimated from 

sample (MLE)

• Swerling I/II is gamma with m=1

– Exponential distribution

– Presumes Rayleigh scattering

• Swerling III/IV is gamma with m=2

– Erlang distribution

– Presumes correlation with object 

orientation; more correct assumption

• S-notation is gamma with m given

– S1.5 = gamma with m=1.5 &c.
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Hard-Body Radius:

Radar OSEM Basic Rubric

• Simulated hyperkinetic destruction of satellite in vacuum chamber

• Collected pieces and subjected them to individual analysis

– “Observed” each piece with radar in anechoic chamber

– Articulated full range of aspect angles and full range of radar frequencies

– Recorded resultant RCS of each aspect/frequency configuration

• Collected results and plotted in dimensionless format

– RCS / λ2; size / λ

– Results follow basic theory of Rayleigh, Mie, and optical regions

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Hard-Body Radius:

Full Process for Secondary Object

• Begin with average RCS

• Produce RCS PDF using Swerling III distribution

– Scale parameter estimated by mean RCS divided by shape parameter

• Send distribution through ODPO size estimator to generate size PDF

– Certified only for objects smaller than 20cm, but this is most debris

Generate RCS distribution from 

properly-located Swerling III model

Convert to a size distribution using 

ODPO Size Estimation Model

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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PC CALCULATION 

RESAMPLING
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Pc Calculation Resampling

• Resampling/bootstrap methods often used to generate confidence 

intervals when calculation final distribution unknown

• Early attempts at this with Pc used resampling with invariant 

covariances

– Take position draw on primary and secondary covariance at TCA

– Find new TCA; this defines new nominal miss vector

– Recompute Pc with this new miss vector and unaltered covariances

– Problem:  covariance is clearly correlated with conjunction geometry

• Cannot produce new miss distance from covariance-based sampling and then 

recompute Pc using those same covariances

• Need approach that considers miss distance / covariance linkage

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Pc Calculation Resampling Proposed Approach

• J.H. Frisbee proposed a resampling technique that would also 

address the correlation problem

– Choose samples from the combined covariance to generate m miss vectors

– Take mean of m miss vectors—this is new nominal miss

– Take sample covariance of m miss vectors—this is new combined covariance

– Compute Pc using this mean miss distance and sample combined covariance

– Repeat procedure n times—this produces bootstrap dataset

Monte Carlo 

Samples

Miss

Vectors

HBR

* J. Frisbee, “International Space Station Collision Probability Analysis,” OFD-03-48300-010, 2003. 

http://www.omitron.com/newWebsite/index.php
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Resampling Approach Issues

• In this framework, covariances are considered representatives of 

parent distributions, here further characterized by resampling

• Issue:  what should be the value of m?

– In bootstrapping, want the bootstrap sample size to equal the single-sample 

size that would have been used (or was used) to estimate the parameter

– Thus, want the number of samples (DoF) of the bootstrap resampling (m) to 

equal the DoF that produced the covariance in the first place

• That is, the DoF of the generating OD

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php
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Tracking Levels and Degrees of Freedom

• DoF is usually calculated as the number of data points minus the 

number of estimated parameters

– JSpOC ODs calculated with SSN obs (usually have range, azimuth, and 

elevation—three observables)

– Obs provided in “tracks”—group of obs taken during one tracking session

• Thus, tabulation issues arise

– Each ob provides 3 DoF, minus the estimated parameters

– However, rather little information content in interior obs of a track

• JSpOC “track weighting” confirms this—all tracks weighted the same in the OD, 

regardless of length

– Better tabulation to count each track as equivalent of one state estimate

• Longish track about enough data to execute a single state estimate, to first order

• Total estimated parameters in OD would thus be only one—one state estimated

– DoF calculation is thus “# of tracks – 1”

• Would need to be amended for DS, where obs report only two parameters, and 

needs more work in general

http://www.omitron.com/newWebsite/index.php
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Resampling Approach Schematic

• Repeated thousands of times to calculate distribution of Pc values

• Benefits 

– Correlation of the miss vector and the covariance

– Maintains an equivalent sampling level to the original OD

• Naturally responds to variations in tracking density

http://www.omitron.com/newWebsite/index.php
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PROCESS RESULTS
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Example #1

http://www.omitron.com/newWebsite/index.php
http://www.omitron.com/newWebsite/index.php


Hejduk/Johnson | Evaluating Probability of Collision Uncertainty | 44

Example #2
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Conclusions and Future Work

• Proposed method

– Characterizes the PDF that can represent the Pc from a particular conjunction, 

given the uncertainties in covariances, HBR and natural variation in the Pc 

calculation

– Gives a sense of the dynamic range of the Pc and allow maneuver decisions 

to be based on percentile points of this range rather than the nominal value 

alone

– Provides a mechanism for obtaining a better expression of the calculation’s 

central tendency (here the median)

• Future Work

– Refine DoF calculation and generate expansion for angles-only cases

– Survey results from runs of large datasets

• Stability studies of simplifying assumptions for faster processing

– Examine potential as a Pc forecaster
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