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Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer
problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in
the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use
in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed,
and alternative hybrid-methods that are permitted by the implementation will be described. Results will be
presented for a number of problems.

I. Introduction

I.A. Motivation

Validation of aerothermal environments developed for atmospheric entry of a spacecraft can be incrementally per-
formed in carefully scaled ground tests; however, only flight can capture all of the relevant physics and their inter-
actions, making flight data extremely valuable to the design and development of a spacecraft. A number of terms
in the energy balance equation are of interest to the aerothermodynamicist during reentry as far as validation goes,
but perhaps the most fundamental quantity of interest is the net heat flux from the environment to the surface of the
heatshield. One of the primary purposes for predicting aerothermal environments is to size the thermal protection
system (TPS) heatshield, and errors in the heat flux predictions can lead to heatshield failure or unnecessarily massive
heatshields, which rob the system of valuable payload mass. When flight data is obtained to validate predicted envi-
ronments, measurement, processing, and interpretation errors can likewise contribute to the likelihood of heatshield
failure or over-conservatism if they falsely ‘validate’ bad predictions or ‘invalidate’ good predictions. Care must be
taken to reduce experiment errors to every extent possible.

Heat flux can be a difficult term to measure. It is not an intrinsic property, like temperature or pressure, and it
can only be inferred from measurements of other properties. Commonly available sensors that ‘directly’ measure heat
flux, such as Schmidt-Boelter and Gardon gages, actually use temperature measurements on either side of a material
with known configuration and thermal properties, and the heat flux is inferred from the temperature difference. Other
sensors, such as slug calorimeters, measure the time rate of change of temperature of a carefully-designed mass with
known thermal properties to infer the influx of thermal energy. Still another family of sensors operate by measuring
as near as possible the surface temperature, and as with the calorimeters, the heat flux is inferred from the time rate
of change of the surface temperature and heatshield thermal properties. This reliance on inference places considerable
restrictions on the operational conditions of heat flux sensors. There are few sensors that can operate at the conditions
seen in atmospheric reentry.

A further complication in the effort to measure heat flux is the behavior of the heatshield on which the environ-
ments are being assessed. The windside heatshields for NASA’s Mars Science Laboratory (MSL) and Orion capsules,
SpaceX’s Dragon, and Boeing’s Starliner capsules are all charring ablators, so it is expected that the heatshield will
ablate, leaving anything embedded in the heatshield to protrude into the oncoming flow. A protruding sensor can am-
plify heating in the vicinity of the measurement and therefore measure heating higher than intended (and then likely
fail).

The Apollo Program instrumented a few of the flight test vehicle ablative heatshields with sacrificial calorimeters1,
but this path was not followed for the Orion capsule EFT-1 flight test, nor the MSL MEDLI (MSL Entry Descent and
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Landing Instrumentation) program2–5. These vehicles used embedded thermocouples (TCs) inside their respective
heatshields with the TCs set deep enough that they would survive through the relevant part of reentry. As with the
other types of heat flux sensor, the surface heating must be inferred from the actual sensor measurements by solving a
problem known as the inverse heat conduction problem (IHCP).

I.B. Objective

This paper will describe the IHCP algorithm implemented as the INHEAT module of the CHAR ablation response
code with intent to be used in reconstruction of aerothermal environments for the Orion EFT-1 flight test. Following a
discussion of the IHCP and several common approaches to solving the problem, the specific formulation implemented
will be given, and examples demonstrating the various modes of operation will be presented.

II. Inverse Heat Conduction Problem

II.A. Problem Definition

In an inverse heat conduction problem, the objective is to estimate the boundary conditions given temporally and
spatially discrete solutions interior to the domain of a standard heat conduction problem. Ozisik and Orlande6 describe
the problem as such:

In the direct problem the causes (heat flux) are given, the effect (temperature) is determined; whereas in
the inverse problem the effect is given, the cause (or causes) is determined.

The problem is an ill-posed problem, meaning that solutions are not guaranteed to be unique and that the solution
does not always vary smoothly with small perturbations on the inputs. Frequently, optimization methods are used to
obtain the desired boundary condition values. Given sufficiently accurate measurements and sufficient knowledge of
the material thermal properties, very accurate estimates (sometimes termed reconstructions) of the boundary condi-
tions can be obtained. However, the problem’s ill-posedness means that the reconstruction will be very sensitive to
measurement or modeling errors, and slight measurement noise could render an algorithm unstable. Any algorithm
proposed to solve the IHCP must address the manner in which smoothing is applied to handle this tendency.

Depending on the problem of interest, the unknown boundary conditions can take several forms. They can be tem-
porally varying, spatially varying, or both. In most cases in the literature, IHCP algorithms tend to focus on problems
for which the boundary conditions are temporally varying, sometimes defined as function estimation problems. If the
boundary conditions are fixed in time and only vary in space (or are just simply constant) the problem is generally
classified as a parameter estimation problem. The gulf between function and parameter estimation techniques is not
very large, but IHCP algorithms are often built to explicitly address issues introduced by temporally varying boundary
conditions.

A large number of approaches have been proposed to solve the IHCP, however a fairly common and well charac-
terized approach is to discretize the boundary condition values in the time domain and compute values that minimize
the least-squares difference of the measured and computed temperatures.

Minimize
q (Y− T(q))T (Y− T(q)) (1)

where Y is a vector of temperature measurements and T(q) is a vector of computed temperatures given the vector of
boundary conditions q. Frequently, the derivative of Equation 1 is taken with respect to the boundary condition values
and set equal to zero to find the minimum value. This introduces the derivatives

∂T
∂qT

=


∂T1

∂q1
∂T1

∂q2
. . . ∂T1

∂qmax

∂T2

∂q1
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∂q2
. . . ∂T2
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. . .
...
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∂q2
. . . ∂Tmax
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 (2)

which are known as sensitivity coefficients. As will be shown later, the sensitivity coefficients drive IHCP algorithms,
and depending on how they behave for certain problems, the ideal IHCP approach may change. The sensitivity
coefficients will be discussed at length in Section II.C.
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II.B. Common Algorithm Classifications

A review of the literature reveals many different algorithms and approaches that have been proposed for solving the
IHCP. There are many different ways that these algorithms can be categorized to help identify which ones may work
for a given problem. A brief overview of several methods of categorization will be described.

The first categorization metric describes the nature of the underlying direct problem. The spatial dimensions of the
system (1-D, 2-D, or 3-D) can influence the choice of algorithm, particularly from a cost perspective. More selective
for IHCP algorithms, however, is whether the problem is linear or non-linear. If the sensitivity coefficients depend on
any values in the the boundary condition vector, or if any of the boundary condition functions are affected by multiple
elements of the boundary condition vector, the IHCP is non-linear. Temperature-dependent thermal properties intro-
duce non-linearity, as do convective boundary conditions (through the dependence on surface temperature). Solutions
to linear IHCPs are considerably faster and generally do not require iteration as non-linear IHCPs do.

There can be one or multiple boundary conditions to a given system at a given time that influence the sensor
response (e.g., different heating levels to different parts of the domain boundary). Given that many IHCP algorithms
can handle spatially multiple dimensional systems with one or several unknown boundary conditions, the term multi-
dimensional inverse can be ambiguous. In this work, the term multi-component will be used to describe problems with
multiple time-varying boundary conditions.

Another key categorization metric that strongly influences IHCP algorithms is the time in which a solution is
required. Many applications require the IHCP solution in a control system feedback loop and need to obtain a solution
as quickly as possible, whereas other applications are not as time-critical and can instead focus on accuracy in a
detailed reconstruction. Algorithms for real-time applications, such as the future time filter coefficient method7,8,
neural network algorithms9, Kalman-filter methods10, and the calibration integral method11,12, must attempt to infer
the boundary conditions without use of extensive future time data (temperature data at times after the time interval for
which the boundary condition is being estimated). Algorithms for post-test applications, on the other hand, have all of
the data available to work with. This work will focus on post-test analysis applications.

One of the most quoted categorization metrics in the literature concerns how the temporally discretized values of
the unknown boundary condition are evaluated. In sequential algorithms, they are estimated one at a time, in order,
from the earliest time to the latest. By contrast, whole domain algorithms simultaneously estimate all of the values in
one step. Each method has strengths and weaknesses. Sequential algorithms can be computationally more efficient
for non-linear problems as less time is spent computing temperature estimates and sensitivity coefficients at times
where the initial guess is poor. On the other hand, whole domain algorithms perform much better when measured
temperatures take a substantial amount of time to respond to changes in the boundary condition. Neither is universally
better than the other; the optimal choice comes down to the sensitivity coefficients of the specific problem. Some
examples of sequential algorithms are the future time family of algorithms from Beck et al.8, and some examples
of whole domain algorithms are the Gauss-Newton method13 and conjugate-gradient methods (with and without the
adjoint equation)6,14. Perhaps a bit tangent but still related to this metric, space marching techniques15,16 swap a spatial
dimension for time and compute temperatures sequentially in space from the sensor location to the boundary.

Because of the ill-posed nature of the IHCP and the inevitable presence of measurement noise, all practical IHCP
algorithms require some form of smoothing, regularization, allowed bias, or other treatment of the solution’s sensitivity
to data noise. One method that Beck’s future time algorithms rely on is to integrate a flux interval over several
measurements to average out noise. Probably the most common method of smoothing is Tikhonov regularization6,8,17,
where a penalty function is added to the minimization objective function (Equation 1) that penalizes when elements of
the solution vector q vary in certain undesirable ways. For instance, adding the term αHq to Equation 1 (with α being
the regularization parameter, and H being the regularization matrix) can bias the predicted temperatures when elements
of q become unreasonably large or if they vary too rapidly, depending on the choice of H. These are both examples of
a regularization operator. An alternative approach is to regularize the data, as is done in the mollification method16.
Alternatively, the iterative regularization principle of the conjugate-gradient-based methods does not explicitly bias
the solution, however it uses an intricate iteration stopping criteria6 to establish when the solution is close enough to
the data that the gross character of the data is matched, but the noise is not.

Since sensitivity coefficients are often needed for IHCP algorithms, the manner in which these are computed can be
a discriminator between different methods. Sometimes analytic formulations are available for simple linear problems,
but more frequently they must be computed by finite differences or specially formulated sensitivity equations. The
adjoint equation used in some conjugate-gradient based methods is an example of a sensitivity equation, but sensitivity
equations can be defined even for regular non-linear heat conduction problems18.
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II.C. Sensitivity Coefficients

Physically, the sensitivity coefficients defined in Equation 2 represent the sensitivity of each temperature in the vector
T to each model parameter or boundary condition value in the vector q that is sought in the IHCP solution. The
IHCP optimization algorithm needs T(q) for objective function (Equation 1) evaluation, but updated estimates of q
are largely driven by ∂T

∂qT . As such, a close study of the sensitivity coefficients can provide invaluable insight to how
a particular IHCP algorithm will perform for a given problem.

Generalization of the sensitivity coefficient matrix can be difficult without putting constraints on it according to
the problem of interest, but one general statement that can be made is that an IHCP will be linear if the sensitivity
coefficient matrix is independent of q. In this instance, a Taylor-series expansion of T(q) about q = 0,

T(q) = T(0) +
∂T
∂qT

q, (3)

with T(0) = T0 being the uniform initial temperature, will yield the exact values of T(q) for a given q. As in most
cases, linear problems are much easier to solve, and many algorithms for non-linear IHCP problems linearize about a
specific q inside an iteration loop to advance the solution.

To build intuition necessary for IHCP analysis, it is beneficial to simplify the problem. In the remainder of this
section, we will limit ourselves to a transient, 1-D, semi-infinite solid heat conduction problem with temperatures
evaluated at a single location at times consistent with the unknown values. The unknown values will be a piecewise-
constant representation of a time-varying heat flux on the exposed boundary. In this case, the sensitivity coefficient
matrix becomes a square lower-triangular matrix as the parabolic nature of the heat equation suggests that temperatures
will be unaffected at time ti by a boundary condition applied at a later time tm (i.e. ∂Ti

∂qm
= 0 if ti < tm).

If we assume constant thermal properties and a constant heat flux boundary condition, the exact solution can
be determined by textbook19 expressions. Because the heat equation with constant properties is a linear differential
equation, the principle of superposition can be used to construct the solution corresponding to a transient piecewise-
constant heat flux boundary condition. The building block solution used will be the solution to a unit step heat flux

q(t) =

0, t < 0

1, t > 0
, (4)

with the solution denoted by φ(x, t).
The transient heat flux boundary condition function is approximated by a piecewise-constant function with interval

boundaries defined by times 0, λ1, λ2, ..., λM . The boundary flux values will be denoted by qm = q(λm−1/2), where
q(λm−1/2) indicates the flux value between times of λm−1 and λm. Each qm will be referred to as a component. With
this definition, the contribution to the temperature of a flux component qm at a specified time ti is given by

∂Ti
∂qm

= ∆φi−m =

φ(x, ti − λm−1)− φ(x, ti − λm), i ≥ m
0, i < m

(5)

Equation 5 is known as the pulse sensitivity coefficient, though the word ‘pulse’ is often omitted in discussion. The
step sensitivity coefficient differs from this in that the subtracted φ term is omitted and represents the sensitivity to
all future flux components changing uniformly. Given the linearity of the problem, the temperature at time ti can be
evaluated as

T (x, ti) = T0 +

M∑
m=1

qm
∂Ti
∂qm

. (6)

This is consistent with the approximate numerical solution using the Duhamel method presented by Beck et al.8

Consider the case of temperatures 1 mm and 5 mm below the surface of a material with constant properties (ρ =
280 kg/m3, k = 0.5 W/mK, and Cp = 1860 J/kgK) shown in Figure 1. The heat flux profile for this case is
shown in Figure 1(a) with the piecewise-constant flux components taken to be 1 s long. The sensitivity coefficients
evaluated with Equation 5 are shown in Figures 1(b) and 1(c). The temperature evaluated by Equation 6 is shown
in Figures 1(d) and 1(e) with the contributions from each flux component index m indicated with different colored
regions and T0 = 0 K. Note that all plots in Figure 1 are color-consistent, with each color representing an index m
in Equation 6. For example, the first green curve represents m = 3: the heat flux component active from t = 2 s to
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3 s, the corresponding sensitivity coefficient which appears shortly after t = 2 s, and the corresponding temperature
contribution, the lowest of the green bands.

A number of observations can be made regarding the results of this example case. First of all, note that because
this is a linear problem, each of the sensitivity coefficient components shown for a given depth is identical except for a
time shift (this is not generally the case for non-linear problems). Indeed, as suggested by Equation 5, each coefficient
is a function of the time difference between the current time ti and the time that the respective heat flux component
began λm−1. This time difference will be termed the development time of the sensitivity coefficient. As will be seen
later, the development time required for the sensitivity coefficient to grow to substantial values is a strong function of
the physical system and can have considerable impact on the performance of IHCP algorithms.

Secondly, the temperature response plots break out the individual components of the summation in Equation 6 in
this manner to illustrate how long it can take for a particular flux component to affect the overall temperature response,
relative to the contributions from all other flux components. The thickness of the colored bar at a particular time is the
product of the developed sensitivity coefficient and the corresponding flux magnitude.

Comparison of the sensitivity coefficients and temperature response plots for the two depths shows some striking
differences. At x = 1 mm, the contribution from early components is seen to grow and decay rapidly, and when the
step increase in heating arrives, the blue component (the first with elevated heating) leads the change in the temperature
response. In fact, the coefficients decay so rapidly that the total temperature response is shown to decrease at the end of
the square wave without the flux going negative. By contrast, the x = 5 mm case shows that it takes considerable time
to even see the effect of the components with increased heating, and nearly all of the components are still contributing
significantly to the total response at the end of the time domain.

The practical implication to an IHCP of the differences between to two responses in Figure 1 is this: for a mea-
surement at a given time (say t = 8 s), how strongly is the measurement (the total temperature response) affected by
each of the unknown heat flux components being sought? In the case of the shallow measurement, nearly half of the
temperature response at t = 8 s is provided by the two components that immediately precede the measurement. For
the deep measurement at t = 8 s, the two preceding components have only just become visible. An inverse algorithm
trying to piece together the magnitude of these two heat flux components will have plenty of ‘information’ on the
components of interest by looking at measurements near 8 s in the shallow case. However, for the deep case, it will
need to use lots of measurements after 8 s to gather sufficient information, and it will have to try and untangle that
information from the information on neighboring flux components. Furthermore, the sharp reduction in magnitude of
the sensitivity coefficients as the measurement moves deeper means that any measurement noise (presumably at some
fixed level of units K) will wipe out considerably more usable information in the deeper case than in the shallow case.

II.D. Motivation for New Algorithm

As was indicated in Section II.B, one common and significant discriminator between IHCP algorithms is the sequential
vs. whole-domain approach to solving for the unknown boundary condition component values. The choice of approach
primarily influences how the sensitivity coefficients are calculated and used. A whole domain algorithm computes
the full sensitivity coefficient matrix and solves a system of equations similar to Equation 6 (one equation for each
measurement) simultaneously for every unknown value. A sequential algorithm, however, will only compute a single
step sensitivity coefficient for the component being evaluated (only for a short development time known as the future
time window) and solve only for the temperatures (using Equation 6) that appear in this future time window.

From a cost perspective, sequential methods are considerably more desirable than whole domain methods. Recall
that the sensitivity coefficient matrix will have dimensions of number of measurements by number of unknowns. Since
a finite-difference approximation to the sensitivity coefficients are evaluated for many realistic problem, evaluating this
matrix can become costly if the numerical model for the system is expensive. As an example (described in more depth
in Seciton III.D), a sequential reconstruction of the MSL dataset presented by Mahzari et al.13 would require the
ablator material response model integrating 1.95 · 103 s of time to complete the reconstruction. By contrast, the whole
domain reconstruction presented by Mahzari et al. required the integration of 6.79 · 106 s, three orders of magnitude
more effort! With this sort of difference in cost, there must be a good reason to use a whole domain algorithm, and
indeed there is a very good reason.

Conventional sequential algorithms make two key assumptions: 1) that the flux components through the future time
window follow an assumed pattern that is reduced to one unknown (typically that flux is constant through the whole
window), and 2) that there is a discernible amount of ‘information’ in the future time window measurements due to
the unknown flux relative to measurement error. If the future time window is too short, assumption 2 breaks down and
the algorithm becomes unstable and driven by measurement error. As such, the future time window must be chosen
for each problem to ensure assumption 2 is valid. Recalling the example in Figure 1, if the sensitivity coefficients
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develop rapidly, the flux components will contribute significantly to measurements near the flux component, but if
they develop slowly, that may not be the case. If the coefficients develop too slowly, a long future time window is
required and the first assumption begins to break down, yielding poor results that appear overly ‘smoothed.’ In this
case, a whole domain algorithm performs much better since measurements can contribute their information to all of
the flux components as they are all solved simultaneously.

The conditions used in the example of Figure 1 are not completely arbitrary; they are approximations of the
TACOT20 material model, which is representative of a low density charring ablator similar to what is used on MSL
and Orion. As such, the range of development times for sensitivity coefficients illustrated in these figures is represen-
tative of that which would be seen in flight. Surface recession generally forces thermocouples (TCs) to be embedded
at a depths greater than 2 mm to ensure their survival. This depth drives sequential algorithms to use a long future time
window as sensitivity coefficients can develop slowly. The computational cost of the additional equations modeled in
ablation simulations is non-negligible and properties are highly non-linear, so the reduced simulation time of a sequen-
tial algorithm is strongly desirable. Additionally, ablation simulations are only modestly robust, so wild excursions of
boundary conditions that could be seen in a non-linear iteration of a whole domain algorithm can lead a reconstruction
to fail. An algorithm that is predominantly sequential but draws from the whole domain algorithm to permit longer
sensitivity coefficient development time would be quite useful for reconstruction of heating environments on ablative
materials.

Another situation that can arise in a practical flight experiment is a large localized change in relevant timescales of
the heating profile. An example of this would be a rapid spike in heating caused by a steering jet firing in an otherwise
slowly changing heating profile. In this case, the sensitivity coefficients of a near-surface TC could develop rapidly
enough compared to the rate change of the overall heating that a sequential algorithm would be adequate, but so slowly
compared to the change in heating during the jet firing that a whole domain method would be required to characterize
the jet heating augmentation. An algorithm that could seamlessly switch from a predominantly sequential algorithm
to a predominantly whole domain algorithm in a local region would have considerable practical application.

In the present work, a hybrid sequential-whole domain algorithm, termed the Sequential Subdomain algorithm, is
proposed that permits the solution of multiple unknown boundary condition components on an otherwise sequential
future time window. It is defined in such a way that allows the analyst to tailor the algorithm to the sensitivity
coefficients of the physical system. Depending on the values of a few parameters, Beck’s Future Time algorithm or
a whole-domain Gauss-Newton method can be obtained. In the hybrid mode, it allows sequential specification of the
unknown boundary condition values, allowing reduced computational effort than the pure whole domain approach
without having to accept the excessive smoothing introduced for slowly responding sensors in the sequential function
specification algorithm.
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(a) Heat flux profile

(b) Pulse sensitivity coefficients, x = 1mm (c) Pulse sensitivity coefficients, x = 5mm

(d) Temperature Response, x = 1mm (e) Temperature Response, x = 5mm

Figure 1: Duhamel solution for example case with two TC depths (x = 1 mm and x = 5 mm) exposed to the same
heating profile to illustrate how different sensitivity coefficients will affect the thermal response.
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III. INHEAT Reconstruction Algorithm

III.A. Derivation

The algorithm implemented here is based on the trial function specification algorithm of Beck et al.8 It is a least-
squares optimization of the modeled temperature to the measured temperatures with a Tikhonov regularization term
for stability. The function to be minimized is given by

S = (Y− T)
T
Ψ−1 (Y− T) + α [H (q− q̃)]

T W [H (q− q̃)] (7)

where Y is the vector of temperature measurements (the reconstruction target), T is the temperature resulting from
the numerical model of the system, Ψ−1 is a covariance matrix describing Y, α is the regularization parameter, H
the regularization matrix, W is the regularization weighting matrix, and q is the vector of boundary condition values.
The term q̃ is a vector of expected boundary condition values that can be used to fine-tune regularization if desired.
It is assumed to have the form q̃ = Bq + q̃f with B and q̃f specified by the user. Note that an arbitrary number
of regularization terms of this form can be applied as desired, but only one is shown to simplify the presentation.
The specific structure of all of these matrices will be described in Section III.B. Depending on how they are defined,
sequential function specification or whole domain solutions (or combinations in between those limits) can be obtained.

We seek to minimize the objective function S, so we take the derivative of Equation 7 with respect to each of the
boundary condition values

∂S

∂q
= −2XTΨ−1 (Y− T) + 2α [H (I− B)]

T WH (q− q̃) (8)

where

X =
∂T
∂qT

∣∣∣∣
q∗

=


∂T1

∂q1
∂T1

∂q2
. . . ∂T1

∂qL
∂T2

∂q1
∂T2

∂q2
. . . ∂T2

∂qL
...

...
. . .

...
∂TK

∂q1
∂TK

∂q2
. . . ∂TK

∂qL


q∗

(9)

is the sensitivity coefficient matrix evaluated around the current solution vector q∗ where K indexes the total number
of measurements and L indexes the total number of unknownsa. Computation of the objective function requires
temperatures corresponding to the new flux vector, so a Taylor series expansion about the current solution yields

T = T∗ + X∆q (10)

where T∗ is the temperature evaluated with the solution vector q∗, and ∆q = (q− q∗) is the update to the estimated
solution vector. Setting the objective function derivative to zero, substituting in the Taylor series expansion, and
rearranging yields the system

L∆q = R (11)

where

L =XTΨ−1X + α [H (I− B)]
T W [H (I− B)] (12)

R =XTΨ−1 (Y− T∗)− α [H (I− B)]
T WH

(
(I− B) q∗ − q̃f

)
(13)

The term containing q∗ does not appear in the derivation of Beck et al.8 as their derivation makes the assumption that
q∗ = 0 when evaluating T∗. This term is necessary for the regularization to appropriately smooth the solution q if T∗
and X are evaluated using non-zero values of q∗. If this term is omitted, the regularization smooths the update ∆q.

Introducing the Taylor series approximation (Equation 10) linearizes the problem about q∗, so iteration will likely
be required to converge the solution q if the problem is non-linear.

aTemperatures are measured at locations xj and times ti so K = JI . Unknowns are defined at xn distinct locations (different boundaries)
and at times tm, so L = NM . However, as will be described in the next section, K and L can be smaller if only a subset of the unknowns are
evaluated.
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III.B. Matrix Definition

It is common in the literature to assume that boundary condition values are estimated on a uniform time scale that
is consistent with measurement times. This is notationally convenient; however, it can cause difficulties in practical
applications. The cost of a reconstruction scales with the number of unknowns estimated, so it may be desirable to
reconstruct at a lower frequency than data is available. Additionally, reconstructing boundary conditions on a different
time scale could be motivated by missing or otherwise compromised data, changes in data rate near an expected
transient event, or a mismatch in measurement times of data supplied by multiple sensors. In an attempt to make
this as general and flexible as possible, the algorithm has been defined to allow measurement and boundary condition
estimation times to be completely flexible, and it is up to the user to specify a reasonable problem for which a solution
exists. This choice will make the notation more complex.

The algorithm presented in this work permits sequential evaluation of the terms in q. Each of the sequential
evaluation steps will be referred to as a local solution. A local solution will solve the non-linear system of Section III.A
for a subset of the q vector on an appropriate subdomain. Introduction of the local solution and keeping the global
and local index systems distinct further complicates the notation. Furthermore, an arbitrary number of sensors can
be providing data and multiple distinct unknown boundary conditions could be estimated at a given time, further
complicating the notation.

Given the complexity of this system, the notation will be explained in detail. Figure 2 presents an illustration of
how time is indexed in this definition using two timelines. The top timeline describes the notation for the overall
problem, and the red line below shows the nomenclature for a specific local solution. The top row of each timeline
denotes the measurement times for which target data is provided to the algorithm, with the letter i identifying the
global index and r identifying the local index. Note that the spacing between these times are not uniform, but the
times in the local solution are a subset of the global measurement times. The bottom row of each line denotes the time
intervals for which BC values are to be estimated, with the letterm indexing the global set and f indexing the local set.
There is no requirement that these intervals be regularly spaced, and the BCs defined in each interval are assumed to
be constant through the interval (the estimated function is assumed to be piecewise-constant). The max measurement
time in the global problem is denoted by I , the max measurement time index in a particular local solution is R, the
max BC interval index in the global problem is M , and the max BC interval index in a particular local solution is
F . Note that for different local solutions in the same global problem, R and F may change based on the length of
the future time window (which defines the length of the local solution) and the defined global measurement and BC
intervals.

time

Global Solution Timeline
Measurements (Yi): Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

BC Intervals (qm): q1 q2 q3 q4 q5 q6 q7 q8

Already estimated BCs Yet to be estimated BCs

Local Solution Timeline
First Measurement i = 6
First BC Interval m = 4

Future Time Window

Local Measurement Index:
R ≡ max r = 6
measurementsr = 1

Y6

2

Y7

3

Y8

4

Y9

5

Y10

6

Y11

Local BC Interval Index: F ≡ max f = 4
unknowns

q4
f = 1

q5
2

q6
3

q7
4

Figure 2: Definition of nomenclature describing the time-scales of the reconstruction.

Beyond the times described in Figure 2, there may be input from multiple sensors at each measurement time (for
instance, if there are several TCs in the system), and there may be multiple distinct BC values estimated on each
interval. Multiple measurement locations are indexed using the letter j (max J) in the matrix definitions, and multiple
BCs on each interval are indexed with the letter n (maxN ). In the present derivation, it is possible to have only a subset
of sensors providing data for a specific measurement time by using a special blanking matrix (whereby contributions
from ‘missing’ data are ignored). However, at this time, it is not possible to define separate intervals for each of the
distinct BCs; all distinct BCs are estimated on every BC interval. Given this, there will always be (N × F ) BC values
estimated in each local solution, and this dimension is given a special symbol P . A summary of the index system
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described is presented in Table 1.

Table 1: Summary of indices used in matrix definitions

Global Solution Indices:

j TC number (max J)
i Global measurement times (max I)
m Global boundary condition time intervals (max M )
n Distinct boundary conditions (max N )

Local Solution Indices:

r Measurement times in current local solution (max R)
f Boundary condition time intervals in current local solution (max F )
k Boundary condition values in current local solution (max P = FN )

All of the matrices presented herein are built for a specific local solution with i referring to the first global mea-
surement time in a local solution and m the first global BC interval in the local solution domain.

The vectors that represent temperature (either the target data Y or modeled temperatures T) have the following
block form:

T =


T(i)

T(i+ 1)
...

T(i+R− 1)

 R blocks (JR elements)

1

(14)

where each block is of the form

T(r) =


T1(r)

T2(r)
...

TJ(r)

 J

1

. (15)

If any data is unavailable from either Y (due to missing measurement) or T (possible due to surface recession in
ablation problems), those elements in Y and the corresponding elements in the T matrix are both set to zero to prevent
that time point from contributing to the objective function (Equation 7).

The vectors that represent the estimated boundary condition values have a similar block form:

q =


q(m)

q(m+ 1)
...

q(m+ F − 1)

 F blocks (P = FN elements)

1

(16)
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where each block is given by

q(f) =


q1(f)

q2(f)
...

qN (f)

 N

1

. (17)

The sensitivity coefficient matrix has the form:

X =


ã(i)

ã(i+ 1)
...

ã(i+R− 1)



1 super block (F blocks, P = FN columns)

R blocks (JR rows)

(18)

where

ã(r) =


a11(r) a12(r) . . . a1F (r)

a21(r) a22(r) . . . a2F (r)
...

...
. . .

...
aJ1(r) aJ2(r) . . . aJF (r)



F blocks (P = FN columns)

J

(19)

and each term in ã(r) is of the form

ajf (r) =
[
a(r, f, j, 1) a(r, f, j, 2) . . . a(r, f, j,N)

]N

1
(20)

and

a(r, f, j, n) =
∂T (xj , tr)
∂qn(tf )

(21)

Note that in Equation 21, tf refers to the BC time interval f and not a specific time.
The regularization matrix H governs how the algorithm attempts to provide stability by smoothing the solution.

Tikhonov regularization is a penalty function, where the penalized condition is defined by H. One common regular-
ization method is to penalize based on the absolute magnitude of the solution, α0

∑F
i=1 q

2
i , which is often referred to

as 0th-order regularization. Alternatively, 1st-order regularization penalizes based on the difference of one solution
value compared to the next, α1

∑F−1
i=1 (qi+1−qi)2. For 0th-order regularization, the definition of H is straightforward;

however, for higher-order regularization where multiple solution terms are included, the structure of H will be different
if the smoothing is applied to multiple BCs in space, multiple BC values in time, or both.

In a departure from the method described in Beck et al.8, temporal and spatial regularization are handled in separate
regularization terms, each with their own H (with dimensions P × P ) and α. Spatial regularization is highly problem
dependent and requires the user to input a matrix hx of dimensions N ×N that provides the desired mapping between
uncertain components. The overall spatial regularization matrix is then given by putting F copies of hx in block
diagonal form

Hx = diag
[
hx hx . . . hx

]
(P×P )

. (22)
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Temporal regularization is a bit more straightforward given the known temporal connectivity of the solutions. 0th-
order temporal regularization is obtained by setting Ht = IP . 1st-order regularization is obtained by defining the
temporal regularization matrix as the block (F × F ) matrix of the form:

Ht =


−IN IN 0 0 . . . 0

0 −IN IN 0 . . . 0
...

...
. . . . . . . . .

...
0 . . . 0 0 −IN IN
0 . . . 0 0 0 0


(P×P )

(23)

Selection of the value for the regularization parameter α is a common topic in the literature. A too-small value of
α will not provide the desired smoothing effect, but a too-large value will overly smooth the solution and introduce too
much bias in the reconstructed temperature vector. As pointed out by Mahzari et al.13, the value of αwill depend on the
magnitude of the unknowns (in their case, small values of the heat transfer coefficient in their reconstructions required
regularization parameters that were orders of magnitude greater than those needed for heat flux reconstructions in the
literature). Many authors resort to a trial-and-error method for defining appropriate values for α. The “discrepancy
principle” described by Woodbury17 captures a commonly stated notion that α should be chosen as the minimum value
that will yield an average difference between measured and modeled temperatures that is consistent with the expected
accuracy of the measurements. The cross-validation method16,21,22 is a commonly cited method to quantitatively define
an optimum value. In the present implementation, it was observed that the α term seemed to work the best when the
two terms in Equation 12 contained elements of approximately the same magnitude. To this end, the user may indicate
that α should be chosen for every local solution iteration to be a constant input factor c of the maximum element of
the squared sensitivity coefficient matrix:

α = c ·
∥∥XTΨ−1X

∥∥
∞ (24)

A degree of experimentation is still required as this metric does not take into consideration how much noise is present
in the data to be fit. However, a value of c = 1 generally provides a good starting point considering the thermal
properties of the system and the magnitude of the solution vector.

The regularization weighting matrix W has taken on a novel form to permit ‘focusing’ the regularization for
sequential subdomain solutions. For pure whole domain solutions, shifting the emphasis of the regularization likely
will not have any benefit. However, as is shown later, there is an advantage for certain problems to suppress the
regularization at different ends of the local solution time domain (different f indices) with the following:

W = diag
[
W(1) W(2) . . . W(F )

]
(P×P )

(25)

W(f) = diag
[

1

10fWf

1

10fWf
. . . 1

10fWf

]
(N×N)

(26)

where Wf is a user input factor. For pure whole domain solutions, Wf can be set to 0 to obtain W = IP as desired.
However, a positive value of Wf will result in less regularization at later f , whereas a negative Wf will yield less
regularization on earlier f .

The covariance matrix Ψ describes the nonsystematic errors in the measurements provided to the algorithm. This
matrix can be of considerable concern in parameter estimation and experiment design23; however, in inverse heat
conduction problems, the transient nature of the problem complicates the computation of this matrix. When several
“standard” assumptions are made of the measurements, specifically that the measurement errors are uncorrelated,
additive, normally distributed with zero mean, the inverse of this matrix reduces to the reciprocal variance matrix

Ψ−1 = diag
[
Ψ−1(i) Ψ−1(i+ 1) . . . Ψ−1(i+R− 1)

]
(JR×JR)

(27)

with

Ψ−1(r) = diag
[
σ−2
Y1

(tr) σ−2
Y2

(tr) . . . σ−2
YJ

(tr)
]

(J×J)
(28)
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where σY (t) is the standard deviation of measurement Y at time t. In this form, this matrix effectively scales the
difference between the measurements and numerical model in such a way that if the error is less than the measurement
uncertainty, the least-squares objective function contribution is reduced; but, if it is larger than the measurement
uncertainty, the least-squares contribution is increased. If off-diagonal elements of Ψ are included, then additional
contributions of 2Ψ−1

kl (Yk − Tk)(Yl − Tl) for k 6= l are added to the least-squares objective function to similarly
weight contributions according to expected correlated deviations of the measurements.

In the present implementation, Ψ−1 is defined to be the identity matrix unless an override is provided by the user.
It is shown by Beck et al.8 that Ψ−1 cancels out under the “standard” measurement assumptions unless regularization
terms are present. If regularization is present, neglecting Ψ will simply change the effective value of the regularization
parameter. However, if the variance of measurements are not equal in space or time, then including Ψ will result in
modeled errors at more precise measurements being weighted heavier in the objective function and potentially reduce
the reconstruction bias at those measurements.

At the present time, very little has been done to characterize the behavior of the B matrix enabling the trial function
capability. For all presented results, B = 0(P×P ) and q̃f = 0(P×1).

III.C. Algorithm Variants

The algorithm presented here can be considered a unified method since it has a number of parameters, set by the
user, which significantly alter the behavior of the algorithm and yield performance ranging from pure whole domain
Gauss-Newton to Beck’s Future Time algorithm.

• Length of the future time window. This determines the length of time covered in a specific local solution.
It affects how many measurements will inform this reconstruction step, and what period of time over which
sensitivity coefficients must be calculated.

• Discretization of BC interval times. Determines how many boundary condition values must be estimated and
how many measurements will inform each boundary condition interval. Note that having multiple measurements
inside a boundary condition interval implicitly adds stabilization to the algorithm in the same manner as Beck’s
future time algorithm.

• The number of considered BC intervals (Parameter F ). If the user specifies F to be lower than the number
of intervals covered by the future time window, then it will ignore the intervals f > F . The f = F interval will
be assumed to apply all the way to the end of the future time window (equivalently, all intervals f > F will
be assumed equal to F ). The step sensitivity coefficient is evaluated for interval F whereas pulse sensitivity
coefficients are calculated for f < F .

• How many estimated BC intervals are retained after a local solution. This algorithm allows the user to
retain a subset of the estimates calculated in a given local solution. In this way, solutions earlier in the future
time window, which have sensitivity coefficients that have had time to develop, are retained as they are likely
more accurate, and estimates at later times go towards improving the initial guess of those intervals.

• Regularization parameters: α and Wf . If F > 1, these options control solution stabilization beyond that
implicitly included if multiple measurements are included in the defined solution intervals.

All of these options can be varied for different local solutions in a global problem if it is desirable for a particular
reconstruction.

III.C.1. Beck’s Future Time Algorithm

The Future Time (FT) algorithm of Beck et al.8 can be obtained by setting F = 1, discretizing the boundary condition
intervals to match the measurement times, and setting the length of the future time window to the appropriate number
of ‘future times’ in Beck’s algorithm. Since F = 1, the heat flux is assumed constant through the future time window
(equivalently, the boundary condition intervals on the future time window are assumed equal to the first). A couple
steps of this algorithm are illustrated in timeline form in Figure 3.
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time
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8

Local Solution 3:

Y3 Y4 Y5 Y6

q3 4 measurements
1 unknown

time
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8

Local Solution 4:

Y4 Y5 Y6 Y7

q4 4 measurements
1 unknown

Figure 3: Timeline illustrating two local solutions of a Future Time reconstruction.

III.C.2. Whole Domain Algorithm

On the other end of the spectrum, a pure Whole Domain (WD) algorithm solution can be obtained by setting F = M
to include all intervals, discretizing the boundary condition intervals to match the measurement times, and setting the
length of the future time window to the whole problem domain. Regularization will need to be specified to stabilize
the solution, and all solution values must be retained. This is illustrated in timeline form in Figure 4.

time
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8

Local Solution 1:

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8 8 measurements
8 unknowns

Figure 4: Timeline illustrating the local solution of a pure Whole Domain reconstruction.

III.C.3. Sequential Subdomain Algorithm

An example illustrating the proposed hybrid algorithm, which we will refer to as the Sequential Subdomain (SSD)
algorithm, is obtained by setting F to a value in the range 1 < F < M , setting the length of the future time window
long enough to cover the F boundary condition intervals, and setting the terms retained in each local solution to a
desired value (typically 1). In Figure 5, the values of q3 through q6 are estimated in Local Solution 2, but only q3

and q4 are retained. The initial guess for q5 and q6 are updated based on the results of Local Solution 2, but they are
re-estimated in Local Solution 3.

This algorithm is proposed to address the concerns raised in Section II.D. It was shown that the minimum length of
the future time window is a constraint of the material properties, the measurement distance from the boundary, and the
accuracy of the measurements. Given that constraint, Figure 3 shows why the future time algorithm can perform poorly

14 of 39

American Institute of Aeronautics and Astronautics



time
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8

Local Solution 2:

Y3 Y4 Y5 Y6

q3 q4 q5 q6 4 measurements
4 unknowns

time
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

q1 q2 q3 q4 q5 q6 q7 q8

Local Solution 3:

Y5 Y6 Y7 Y8

q5 q6 q7 q8 4 measurements
4 unknowns

Figure 5: Timeline illustrating two local solutions of a Sequential Subdomain reconstruction with two retained terms.

if BC intervals necessary to capture the relevant behavior are short compared to the future time window: the estimated
flux is essentially going to be the ‘average’ of the true solution over all solution intervals in the future time window.
To get around this, the SSD algorithm draws on the whole domain approach of evaluating pulse sensitivity coefficients
to the end of the future time window for all solution intervals in the future time window and performs a simultaneous
estimation of all of the boundary condition values touched. Since the true ‘whole domain’ is not considered, the
solution estimates at later times are not necessarily very accurate due to the shorter development time allowed for their
sensitivity coefficients. As a result, these estimates are not retained for the final solution. They are, however, used as
an improved initial guess for subsequent local solutions. Using this approach, many problems can benefit from greatly
improved reconstructions as compared to the future time algorithm and greatly reduced computation times compared
to the whole domain algorithm.

The SSD algorithm appears similar in several aspects to Lamm’s modified local Tikhonov regularization algo-
rithm24,25. Both methods utilize Tikhonov regularization on restricted ‘local’ domains and allow the extent of these
local domains to vary in size throughout the overall problem domain. The SSD seems to differ from Lamm’s algorithm
in that the SSD considers only data at future times relative to the component being estimated (as opposed to applying
the Tikhonov regularization considering data on an interval centered on the component being estimated), it estimates
multiple components on the local domain, and it performs the overall estimation on a single sequential pass through
the time domain as opposed to iterating with multiple passes over the full domainb. There is quite a bit of material
in the applied math community on problems of this nature, and more investigation of the literature is necessary to
establish the novelty of the proposed algorithm.

III.D. Computational Cost

This implementation provides considerable flexibility for reconstruction problems, but each option has an impact on
the overall computational effort required. Two metrics are defined to compare the computational cost of different
modes: linear system cost, and sensitivity coefficient cost.

Linear system cost describes the computational effort required to solve Equation 11 once it has been defined.
General dense matrix algorithms such as LU or QR decompositions can be used to solve such a system. Generic
implementation of these methods usually require orderO(n3) operations, though more efficient algorithms can provide
some advantage. Equation 11 is solved at the local solution level, so the linear system cost scales by the unknowns in
a local solution.

bNote: INHEAT can take a user-provided initial guess, so this last point could easily be implemented to perform ‘multiple-passes’ on the data.
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The FT algorithm requires the solution of M local solutions; however, it generally does not require any non-linear
iteration, so the total linear system cost of the FT algorithm will be O(MN3). The WD algorithm only requires a
single local solution, but it will likely require iteration. If νWD iterations are assumed, the total linear system cost
for the WD algorithm will be O(νWD(NM)3). The SSD algorithm will likely require some non-linear iteration,
though it is hoped that the sequential evaluation will reduce the number of non-linear iterations relative to the WD
algorithm, so νSSD < νWD iterations will be assumed. The number of local solutions needed in the SSD algorithm
is M/Nret, where Nret is how many solution intervals are retained from each local solution. With these assumptions,
and neglecting that the linear system will be smaller for local solutions containing the end of the global problem, the
linear system cost of the SSD algorithm is O(νSSD

M
Nret

(NF )3).
Despite the cubic scaling of the linear system cost, far more time will generally be spent evaluating sensitivity

coefficients (unless a problem is linear and special accounting is made for that fact). Sensitivity coefficients are
assumed to be computed by a finite-difference approximation, which means a number of direct material response
simulations must be computed using appropriately perturbed boundary conditions. Depending on the specific problem,
the material response evaluation could be cheap or very expensive. To generalize the cost of the methods, the sensitivity
coefficient cost will be measured by accumulated simulated time. This measures the total amount of material response
time integrated over the course of the reconstruction, both for sensitivity coefficient evaluation and temperature residual
evaluation. For example, evaluating a finite-difference sensitivity coefficient on a 5 s future time window using central
differences will require two evaluations of the 5 s domain (each referred to as a future time track) with perturbed
boundary conditions, so 10 s is added to the accumulated system time for every non-linear iteration. This metric is
not a direct measure of wall-time required to compute a reconstruction as wall-time per unit of simulated time will be
problem specific. This metric also does not take into account differing parallel efficiencies of different reconstruction
approaches. However, it provides a means of comparing to a first-order the differing costs of reconstruction algorithms.

The accumulated simulated time of any local solution is the number of required tracks times the length of each
track. In the present implementation, one track must be evaluated in each local solution for residual evaluation (T∗ in
Eq: 13), and two tracks for every unknown for sensitivity coefficient evaluation (one each for the positive and negative
perturbations). For a generic solution, this yields an accumulated simulation time of (1 + 2NF )tFT , where tFT is the
length of the future time window. As with the linear system time, the cost of a single local solution is scaled by the
number of local solutions required, which gives a total accumulated simulated time of

tAST = ν
M

Nret
(1 + 2NF )tFT . (29)

For the FT algorithm, this simplifies toM(1+2N)tFT as ν, Nret, and F are all 1. For the WD algorithm, it simplifies
to νWD(1+2NM)tfull as only one local solution is used, F = M , and tFT = tfull. Note that in this implementation,
the WD algorithm does not take advantage of the parabolic nature of the problem. A more optimal WD implementation
could evaluate sensitivity coefficients using tracks that start at the first time for which the corresponding unknown can
affect the solution. If a uniform discretization of the boundary conditions is assumed, this could theoretically reduce
the cost of sensitivity coefficient evaluation by a factor of 2. The SSD algorithm accumulated simulated time takes the
form of Equation. 29 with ν = νSSD. These costs are summarized in Table 2.

Table 2: Summary of cost metrics for different algorithm modes.

Algorithm Mode Linear System Cost Accumulated Simulated Time
Future Time O(MN3) M(1 + 2N)tFT

Whole Domain O(νWD(NM)3) νWD(1 + 2NM)tfull

Sequential Subdomain O(νSSD
M
Nret

(NF )3) νSSD
M
Nret

(1 + 2NF )tFT

The formulae in Table 2 are not easily comparable due to the variable algorithm parameters. For some combi-
nations of parameters, the SSD algorithm can provide significant computational savings over a pure WD algorithm;
however, with other combinations of parameters, it is possible for the SSD to cost as much or more than a WD solu-
tion. For the sake of example, assume a problem with N = Nret = 1 with uniform distribution of boundary condition
intervals such that tft ≈ tfull

M/F . With this, the ratio of accumulated simulated time of the WD and SSD algorithms is
seen to reduce to

tAST,SSD
tAST,WD

=
νSSDF (1 + 2F )

νWD(1 + 2M)
. (30)
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If νSSD < νWD and F 2 < M , the SSD can be expected to provide a computationally cheaper result. However, if F
is too large relative to M , the SSD reconstruction could rapidly become the most expensive.

If we consider a numerical example, Mahzari et al.13 considered a time domain of tfull = 130 s with a reconstruc-
tion frequency of 1 Hz (N = 1, and M = 130) and ν = 200 non-linear iterations for the MSL reconstruction. This
means that a whole domain reconstruction requires 6.786 · 106 s of accumulated simulated time. If this were done
with a sequential method with a future time of tFT = 5 s, the accumulated simulated time would be 1.95 · 103 s–three
orders of magnitude less. The SSD algorithm in this instance, with F = 5 and the same number of non-linear itera-
tions, would have an accumulated simulated time of 1.43 · 106 s. However, if the future time window were 15 s with a
corresponding F = 15, this would jump to 12.1 · 106 s. While the accuracy of an SSD reconstruction relative to a WD
reconstruction must be taken into account, the potential for cost savings with SSD is clear.

III.E. Implementation

III.E.1. CHAR Description

The IHCP algorithm described herein has been implemented as the INHEAT module in the CHAR code. CHAR is a
1-D/2-D/3-D material thermal response code which solves general heat transfer problems on decomposing ablators as
well as non-decomposing, non-ablating TPS materials. It uses a finite-element discretization with first- and second-
order implicit time integrators. The pyrolysis gas and solid energy governing equations are solved fully-coupled and
fully implicit in serial or parallel. A rich and flexible suite of boundary conditions are implemented, and rigorous
verification using the method of manufactured solutions is used to assure accurate implementation of the governing
equations. It has been developed over several years in the NASA Johnson Space Center Applied Aeroscience and
CFD Branch to improve methods of integrating products between the aerothermal environment and thermal protection
disciplines. It is implemented in the C++ programming language and is built on the libMesh library26. A more
complete description can be found in references27,28.

III.E.2. Inverse Capabilities

INHEAT has been developed and integrated with CHAR with the goal of maximizing the user’s flexibility in spec-
ifying an inverse problem. Any time-varying boundary condition value that can be specified in a CHAR boundary
condition file can be the unknown parameter estimated in an inverse run. This includes values that serve as input to
runtime-evaluated expressions which themselves can be functions of time, space, ‘spatial’ BC input files, and tem-
perature/pressure/location values at ‘monitor points’ defined at fixed or node-following locations. Any number of
temperature targets can be specified and moving targets are permitted (in order to make use of data provided by
isotherm tracking sensors). This places a fair bit of responsibility on the user to define a problem that can actually be
solved, however this is believed to be a small cost compared to the flexibility provided. It has also been implemented
in such a way as to put as few restrictions on standard CHAR capabilities as possible (adaptive mesh refinement is the
key feature not permitted, dynamically variable time-stepping is permitted).

As the cost of computing required sensitivity coefficients can be significant, INHEAT has been implemented with
a limited threading capability over and above CHAR’s own ability to solve a direct problem on multiple processors
using MPI. The majority of time in an inverse solution is spent in evaluating sensitivity coefficients. INHEAT has
been implemented to compute sensitivity coefficients using finite-difference approximations. Each direct simulation
of the future time window with a perturbed BC value is referred to as a future time track. Evaluation of the future
time tracks needed for sensitivity coefficient evaluation is an embarrassingly-parallel problem, so parallel efficiency is
maximized by assigning minimum-sized ‘threads’ to solve the tracks in parallel as opposed to all processors working
on one track at a time (which maximizes parallel communication inside the direct solver). The desired number of
threads are specified, the available processors are divided up between the threads, and future time tracks are divided up
between threads for evaluation. If a direct problem is too large to fit on a single processor, the threads may themselves
use multiple CPUs managed by CHAR. At this time, INHEAT is not capable of dynamically adjusting the number of
threads to optimally fit the specified problem. CHAR was also given the ability to return the state of the object to a
previously saved state to permit multiple passes through the future time window without having to recompute times
prior to the current local solution. It should be noted that solving sensitivity coefficients using dedicated sensitivity
equations could be more computationally efficient, however this greatly complicates the addition of physical models.
CHAR has been developed with the intention that physical models can be quickly added, so finite-difference sensitivity
coefficients maintains this development paradigm.
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INHEAT has been used for several recent flight and ground test data reconstruction activities and has a small user
base that has assisted with identifying bugs and providing advice on desirable input options and capabilities. It is now
a standard component included with the CHAR distribution.

IV. Examples

The behaviors of the different algorithms are perhaps best described by illustration. A standard linear benchmark
case will be considered to demonstrate the basic function of the different algorithm modes. Next, a reconstruction
of a decomposing ablator will be considered to assess the non-linear performance. Then a case representative of
rapid steering jet heating augmentation will be considered to demonstrate performance when representative time-
scales change during a reconstruction. Finally, a multi-component/multi-dimensional benchmark case will be shown
to demonstrate the capability.

IV.A. Benchmark Case

A 1-D semi-infinite slab of material with the constant properties (ρ = 280 kg/m3, k = 0.4 W/m ·K, and Cp =
1000 J/kg ·K) is subjected to the heating profile defined in Figure 6(a) to generate artificial data for reconstruction.
A single thermocouple is placed at a depth of 3.8 mm and is sampled at 10 Hz. Two sets of simulated data will be
considered: ‘clean’ data taken directly from this simulation, and ‘noisy’ data which is truncated to 0.2 K resolution,
simulating a low resolution data acquisition system.

(a) Heat flux profile (b) Temperature Data

Figure 6: Truth heating profile and target temperature data for benchmark example problem

The sensitivity coefficient at the sensor for this case peaks at approximately 5 s, as seen in Figure 7. With this
profile, the regularization parameter suggested by Equation 24 is approximately 2 · 10−9. This is a relatively simple
linear problem and does not stress the different algorithms, but it does demonstrate the general characteristics of typical
solutions. All reconstructions assume a uniform distribution of solution intervals at 10 Hz to match the measurements.

Figure 7: Pulse sensitivity coefficient for benchmark example problem

Future Time algorithm results are presented in Figure 8. Increasing the future time increases smoothing, as ex-
pected, with sharper features in the heating profile suffering as a result. The introduced noise is apparent only with
the shortest future times. Since the future time window is not centered on the solution interval that it defines, this

18 of 39

American Institute of Aeronautics and Astronautics



algorithm tends to ‘lead’ a transient heating profile, as evident by the forward shift in the peak near 20 s.

Truth FT=2 s FT=3 s FT=4 s FT=5 s

(a) Clean Data (b) Noisy Data

Figure 8: Reconstruction results of benchmark heating profile using the Future Time algorithm for several future time
window lengths

The Whole Domain algorithm results in Figure 9 show some interesting contrasts with the Future Time results.
First of all, even with fairly strong regularization, the peak heating is much more accurately resolved, and there is no
apparent forward shift in time. The WD reconstructions appear to degrade more than the FT due to measurement noise;
however, close examination of the higher values of the regularization parameter yield reasonable reconstructions.

Truth α1 = 2 · 10−5 α1 = 2 · 10−6

α1 = 2 · 10−7 α1 = 2 · 10−8 α1 = 2 · 10−9

(a) Clean Data (b) Noisy Data

Figure 9: Reconstruction results of benchmark heating profile using the Whole Domain algorithm for several values
of the first-order regularization factor α1

Sequential Subdomain results are presented in Figure 10. It is interesting to note that with a future time window
of 2 s (before the peak in sensitivity coefficient), the SSD algorithm is largely unaffected by the regularization param-
eter. Conversely, for the longer future time window, the solution becomes defined by the regularization parameter and
independent of the future time window. Given the formulation of the SSD algorithm, it is to be expected that as the
first-order regularization parameter is increased, the solution components on the future time window will be driven to
a constant value. This is consistent with the assumptions of the FT algorithm, so FT behavior should be recovered.
Similarly, If the future time window is long enough that the sensitivity coefficients develop sufficiently and regulariza-
tion is low enough that the influence of later flux components in the future time window (which have poorly developed
sensitivity coefficients) is sufficiently reduced, WD behavior should be recovered. For the longer future time window,
even with a larger α1, the time shift in the peak heating is largely removed. When noise is introduced, the SSD shows
more effects of the noise than the FT results, however, for higher regularization parameters, it is a little bit smoother
than the WD.

Figure 11 shows select reconstructions from each of the three algorithms on clean and noisy data. SSD recon-
structions with short future time windows and larger regularization parameters very closely match FT reconstructions.
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(a) Clean Data, Future Time = 2 s (b) Clean Data, Future Time = 3 s

(c) Clean Data, Future Time = 4 s (d) Clean Data, Future Time = 5 s

Truth α1 = 2 · 10−5 α1 = 2 · 10−6

α1 = 2 · 10−7 α1 = 2 · 10−8 α1 = 2 · 10−9

(e) Noisy Data, Future Time = 2 s (f) Noisy Data, Future Time = 3 s

(g) Noisy Data, Future Time = 4 s (h) Noisy Data, Future Time = 5 s

Figure 10: Reconstruction results of benchmark heating profile using the Sequential Subdomain algorithm for various
values of α1
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Similarly, for longer future time windows and smaller regularization parameters, the SSD algorithm closely matches
WD reconstruction. For this case, the SSD algorithm seems somewhat less likely to overshoot the true solution than
the WD solution. It is also apparent in this figure that the time shift introduced by the FT algorithm is mitigated in the
SSD algorithm (provided the regularization is not too strong).

Quantitative measures of the accuracy of each reconstruction are presented in Figure 12. Since the true heat-
ing profile will generally not be known in practice, the metric used is the residual temperature error defined as
(Y − T)T (Y − T), which is a direct measure of how well the reconstruction matches the target temperature data.
Figures 12(a) and 12(b) show errors of the FT and SSD algorithms as a function of the length of the future time win-
dow for clean and noisy data, whereas Figures 12(c) and 12(d) show errors of the WD and SSD algorithms vs. the
regularization parameter. The errors in the clean reconstructions behave as expected, with errors decreasing with de-
creasing future time window lengths and decreasing regularization parameter. SSD reconstructions with high α1 show
a tendency to follow the pure FT reconstructions, but below about α1 = 2 ·10−7, the SSD reconstructions are indepen-
dent of the length of the future time window (consistent with earlier observations). For a constant future time window,
the SSD reconstructions show a tendency to converge to a common trend with sufficiently small α1 that decays at the
same rate as the WD solutions, however there is an offset such that the SSD error at a given value of α1 is higher than
the WD error.

Introducing noise changes the behavior for the lowest regularization parameters, as the errors appear to asymptote
to a relatively high level of error. If the residual temperature error of the noisy TC data relative to the clean TC data is
computed, an error of approximately 3.93 K2 is obtained (and is indicated on the noisy plots). Note that for low values
of α1, reconstructions achieve an error lower than the level of error in the data. This means that the reconstructions are
are more faithfully representing the noisy data than the noisy data is representing the true signal. In other words, the
reconstruction is following the noise and not the signal, and is a justification for added bias in a real reconstruction.
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(a) Clean, Future Time = 2 s, α1 = 2 · 10−8 (b) Clean, Future Time = 2 s, α1 = 2 · 10−5

(c) Clean, Future Time = 5 s, α1 = 2 · 10−8 (d) Clean, Future Time = 5 s, α1 = 2 · 10−5

Truth Future Time Sequential Subdomain Whole Domain

(e) Noisy, Future Time = 2 s, α1 = 2 · 10−8 (f) Noisy, Future Time = 2 s, α1 = 2 · 10−5

(g) Noisy, Future Time = 5 s, α1 = 2 · 10−8 (h) Noisy, Future Time = 5 s, α1 = 2 · 10−5

Figure 11: Comparison of algorithms on benchmark heating profile test case
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Future Time

α1 = 2 · 10−4

α1 = 2 · 10−5

α1 = 2 · 10−6

α1 = 2 · 10−7

α1 = 2 · 10−8

α1 = 2 · 10−9

α1 = 2 · 10−10

(a) Clean Data (b) Noisy Data

Whole Domain FT = 2 s FT = 3 s FT = 4 s FT = 5 s

(c) Clean Data (d) Noisy Data

Figure 12: Residual error in benchmark reconstructions for FT and SSD algorithms.
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IV.B. Decomposing Ablator Case

The problems considered so far have been linear and iteration has not been required of the SSD or WD algorithms.
Recall that an inverse problem will be non-linear if the sensitivity coefficients depend on the boundary condition
solution. Sequential algorithms such as the FT algorithm generally do not require iteration as the sequential estimates
provide an initial guess of the boundary condition solution sufficiently close to the correct value that the sensitivity
coefficient evaluation is accurate. The SSD algorithm was designed to take advantage of this to reduce the number of
required iterations in a non-linear problem.

To demonstrate the non-linear performance of the SSD algorithm, a 1-D decomposing ablator will be considered.
Temperature-dependent thermal properties introduce a degree of non-linearity; however, decomposing ablators expe-
rience a change of state in response to heating that further complicates the problem. As illustrated in Figure 13, a
decomposing ablator starts out as a virgin composite material containing volatile and non-volatile constituents. Af-
ter sufficient heating, volatile constituents thermally decompose into pyrolysis gas in an endothermic reaction. The
pyrolysis gas percolates through the remaining non-volatile material (referred to as char) and out of the domain. The
thermal properties of the virgin and char states are typically quite different (which is further compounded if the contri-
bution of percolating pyrolysis gas is considered), and a mass-weighted interpolation of properties is generally used in
the decomposition zone. All of these effects result in a highly non-linear thermal response, and sensitivity coefficients
will have to be evaluated from perturbations very near the correct solution values in order to be accurate.

Figure 13: Regions of interest in a charring ablator. Obtained from reference29.

The 1-D domain in this example consists of 40 mm of TACOT20 on 3.175 mm of aluminum. TACOT is a fictitious
low density charring ablator model that was developed to permit open publication of ablation modeling results; how-
ever, the model responds similarly to models for real materials such as PICA and AVCOAT and should be sufficiently
realistic to assess the performance of INHEAT on those materials. An array of thermocouples are placed below the
surface at depths of 3.175 mm, 6.35 mm, and 9.525 mm. Surface recession will be neglected in this example to avoid
issues of missing data due to thermocouple burn-through.

Figure 14: Heat flux and pressure boundary conditions for TACOT example problem.
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Figure 15: Simulated measured temperatures for TACOT example problem.

Figure 14 shows the heating and pressure profile used as the truth reference in this example. The simulated TC
traces that result are shown in Figure 15. Representative sensitivity coefficients for this problem are shown in Fig-
ure 16. Sensitivity coefficients for pulses starting every 50 s are shown to illustrate the extent to which the coefficients
change through the entry. The heating profile and the decomposition state of the material at depth during the simulated
entry (with TC depths indicated) are shown on the same time scale to provide context. Several observations can be
made: first, note that TC 1 sensitivity coefficients peak after approximately 4 s of development time when the TC is in
virgin material, and this reduces to approximately 3 s when the TC is in charred material. TC 2 shows a similar trend
with the peak moving from 13 s in virgin to 10 s in char. TC 3 peaks after about 25 s but does not get into enough char
by the end of the trajectory to see much of a shift in time. Secondly, the amplitude of the coefficients vary through time,
with the TCs being generally more sensitive in virgin material than in charred material. The sensitivity coefficients
that start at 50 s have a somewhat depressed nature because of the ablator decomposition process. Decomposition is
typically modeled as a temperature driven endothermic reaction30. An increase in heat flux to a decomposing material
element will increase the rate of decomposition, which leads to more heat being carried away in the pyrolysis gas
and proportionally less heat available to heat up the material element and those below it. The TACOT material model
assumes a two-reaction decomposition model, which leads to the two local minima in the TC 1 response (at shallow
depths, the reactions are advancing fast enough for their effects to appear separate). Finally, though it may be intu-
itively obvious, it is worth repeating that a different heating profile would lead to decomposition occurring at different
times and rates, which would yield significantly different sensitivity coefficients, making this inverse problem highly
non-linear.

INHEAT is used for the reconstructions presented. Identical CHAR settings are used in all sensitivity coefficient
evaluations. The TACOT domain is represented by 300 uniformly spaced elements and 0.5 s time steps are used in time
integration. The domain was initialized to 300 K and 20 Pa. INHEAT was set to use un-scaled sensitivity coefficients
with regularization applied to the solution magnitude. All unknown boundary conditions values were initialized to
10 W/m2 with a minimum finite-difference perturbation of 5 W/m2 (nominal perturbations are 0.1% of the boundary
condition value).

Reconstructions using the Future Time algorithm are shown in Figure 17. Figure 17(a), reconstructions based on
TC 1 are shown for several values of the future time window. As expected from previous examples, longer future time
windows lead to overly-smoothed peaks. Figure 17(b) shows reconstructions based on the three different TCs holding
the future time window constant at 8 s. In this instance, the results may seem counter-intuitive, as the deepest TC
produces the most accurate reconstruction. Consider, however, the differences in development time of the sensitivity
coefficients at each TC, and it becomes apparent that 8 s is too long for the shallow TC but more appropriate for the
deeper ones.

Reconstructions using the Whole Domain algorithm are shown in Figure 18. Given the dependance of the sensi-
tivity coefficients on the unknown solution, the regularization parameter was specified using Equation 24 with c given
by -a 1 (the INHEAT input nomenclature) as 1st-order regularization is used. Figure 18(a) shows the reconstructions
obtained from each of the three TCs with a 1 = −1.0. Visible differences are apparent, with the regularization having
a much stronger effect on reconstructions based on the deeper TCs. Figure 18(b), in contrast, shows all three recon-
structions collapsing to the resolution of the plot with a 1 = −0.001 (three orders of magnitude less regularization).
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Figure 16: TACOT sensitivity coefficients for 1 s pulse perturbations from the true environment relative to applied flux
and material decomposition state.

Reconstructions using the Sequential Subdomain algorithm are shown in Figure 19. All successful reconstructions
using future time windows of 3 s, 5 s, and 8 s, each with 1st-order regularization scaling parameters of −1.0, −0.1,
−0.01, and −0.001, are shown on the plot with all virtually collapsing onto a single line at this resolution. Some
combinations of future time window and regularization scaling parameter (noted later) yielded insufficient smoothing
and were either clearly unstable or resulted in CHAR/INHEAT aborting when material property table bounds were
exceeded. While the individual FT and WD algorithms show some sensitivity to the input parameters, it is perhaps
surprising, and desirable, that the SSD is much less sensitive to the input parameters.

The maximum instantaneous relative solution error,
∥∥∥ qm,reconstructed

qm,truth
− 1
∥∥∥
∞

over the first 200 sc of the trajectory,
is shown in Table 3. This table shows variation in the error metric as a function of the future time window length across
the horizontal dimension (with the WD results in the red-highlighted column) and the regularization scaling parameter
in the vertical dimension (with the FT results in the gray-highlighted row), with a separate table for reconstructions
based on each TC. In general, trends are as would be expected: increasing smoothing (either by increasing the future
time window or regularization parameter) increases the error for this case with no measurement noise. Even without
explicitly added noised, reconstructions based on the deeper TCs became unstable and failed to complete for FT and
SSD reconstructions with shorter future time windows. A stark observation from these tables is that the SSD–if it
converges–produces a result that is more accurate than WD and FT solutions with the same reconstruction inputs.
Furthermore, there is less variation in the accuracy of the results across the same spread of reconstruction inputs for
the SSD reconstructions than for the FT and WD algorithms.

Part of the reason that the SSD performs perhaps better than the other algorithms is that the actual regularization
parameter derived from Equation 24 is different for the SSD and the WD algorithms for the same a 1. Because α1

is made a function of the sensitivity coefficients, differences in the development time for the different algorithms (and
different future time windows within the SSD) can lead to different values of α1. Furthermore, the SSD will derive α1

based only on sensitivity coefficients within the future time window, whereas the WD will derive α1 based on the whole
cThe final 37 s of the trajectory were discarded for this assessment as the end of the reconstructions can become erratic as later coefficients do

not have time to fully develop.
dNote that even though explicit noise is not added, there is still some noise introduced by rounding the measurement data to 10 significant digits

as was done in this example
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(a) TC 1 (b) Future Time = 8 s

Figure 17: Reconstructions of TACOT test case using Future Time algorithm

(a) a 1 = −1.0 (b) a 1 = −0.001

Figure 18: Reconstructions of TACOT test case using Whole Domain algorithm

time domain. As is seen in Figure 16, the peak values occur early and drive the values for the WD reconstructions,
but the SSD can pick a value based on the solution intervals it is dealing with for a particular local solution. The
actual values of α1 used in the reconstructions using a 1 = −1.0 are shown in Figure 20. For all three TCs, the SSD
regularization parameter is one to three orders of magnitude lower than the WD regularization parameter, with greater
discrepancies at deeper TCs where the shorter future time windows do not allow the sensitivity coefficients to fully
develop. The SSD regularization parameter is also seen to vary by an order of magnitude or more during the course of
a reconstruction. Note that all presented results were taken from the final non-linear iteration of a given local solution.
As the sensitivity coefficients change through the non-linear iterations, different α1 values are used in each iteration.
Understanding this fact, it perhaps makes more sense to compare the accuracy of the SSD reconstruction of TC 1 with
an 8 s future time window and a 1 = −1.0 to the WD reconstruction of TC 1 with a 1 = −0.1 which brings the
accuracy of the SSD more in line with observations from the previous section.

A goal of the SSD was to reduce the computational expense of non-linear inverse problems, so we will now
consider the non-linear convergence behavior of the SSD and WD implementations in INHEAT. Figure 21 shows the
non-linear convergence of the residual temperature error and the normalized update vector ‖∆q‖2 (normalized by the
value at the first iteration) for the WD reconstructions. All were run for 30 iterations regardless of convergence level
to show the full behavior. Both plots show the error metric at the next iteration plotted against the error metric at the
current iteration. As the Taylor series approximation for the modeled temperature (Equation 10) which introduces the
sensitivity coefficients that form the Jacobian matrix is 2nd-order accurate, it is expected that points on this plot for
a solution in the asymptotic range with exact Jacobians should move down and to the left parallel to the 2nd-order
reference line until the precision limit is reached.

For the residual temperature convergence in Figure 21(a), the early iterations loosely follow the 2nd-order reference
line until the limit allowed by the regularization is reached, at which point the iterations stall (denoted by points on
the diagonal of the plot). It is reasonable that the final converged level of residual error is different according the
magnitude of the regularization scaling parameter as the residual temperature error is only a part of the non-linear
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Figure 19: Reconstructions of TACOT test case using Sequential Subdomain algorithm. All successful solutions are
included, showing insensitivity to reconstruction parameters.

Whole Domain SSD, FT = 8 s SSD, FT = 5 s SSD, FT = 3 s

(a) TC 1 (b) TC 2

Figure 20: Regularization parameter value for WD and SSD reconstructions for a 1 = −1.0.

system residual (Equation 13) which is actually being driven to zero in the iteration loop. The normalized update
vector trend in Figure 21(b), however, does not show any significant difference in convergence behavior based on the
regularization scaling parameter. Similar near 2nd-order behavior is seen in the normalized update vector, however
all solutions appear to have a larger error at the second iteration than the first (due to the poor initial guess), before
beginning to converge at nearly 2nd-order rates. Varying the size of the finite-difference perturbations has a very slight
impact on the convergence rate. Neither error metric shows inconsistent or distinct behavior for reconstructions based
on different TCs.

For local solutions in an SSD reconstruction, it is seen that very few local solutions require more than three
iterations to converge. Figure 22 shows the number of iterations required of each local solution to reach different
levels of convergence (defined by

∥∥∥∆q
q

∥∥∥
2

dropping below the specified level). It indicates that for all local solutions
in this problem, three iterations are all that is required to converge the solution to better than 6 digits. The impact
of this on the computational effort required to complete the reconstruction is shown in Figure 23. This figure shows
the accumulated amount of time that must be computed by the direct solver to evaluate the sensitivity coefficients
for each of the reconstructions presented in this section. Figure 23(a) compares the FT, SSD, and WD algorithms
as a function of the length of the future time window. For this case, the SSD required fewer simulated seconds than
the WD algorithms when both algorithms take the same number of non-linear iterations (30). Figure 23(b) shows
the simulation time in sensitivity coefficients if convergence tolerances are used to limit iteration. The WD solutions
plateau to a

∥∥∥∆q
q

∥∥∥
∞

of between 10−5 and 10−6 in 6 iterations, so for tolerances of 10−5 and greater see a factor of 5
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Table 3: Maximum instantaneous error in reconstructed heat flux for TACOT example.

(a) Reconstructions using TC 1

WD FT = 3 s FT = 5 s FT = 8 s

FT algorithm 2.3% 4.7% 10.0%

SS
D

a 1 = −0.001 0.3% 0.1% 0.2% 0.2%

a 1 = −0.01 0.4% 0.2% 0.3% 0.3%

a 1 = −0.1 0.9% 0.7% 0.4% 0.6%

a 1 = −1.0 2.4% 1.7% 2.2% 1.4%

(b) Reconstructions using TC 2

WD FT = 3 s FT = 5 s FT = 8 s

FT algorithm 1.9% 3.1% 6.7%

SS
D

a 1 = −0.001 0.5% Failed 0.3% 0.3%

a 1 = −0.01 0.8% 0.9% 0.3% 0.4%

a 1 = −0.1 1.8% 0.9% 1.0% 0.5%

a 1 = −1.0 3.7% 1.0% 2.5% 2.8%

(c) Reconstructions using TC 3

WD FT = 3 s FT = 5 s FT = 8 s

FT algorithm Failed 2.3% 4.5%

SS
D

a 1 = −0.001 0.6% Failed Failed 1.1%

a 1 = −0.01 1.4% Failed Failed 0.5%

a 1 = −0.1 2.7% Failed Failed 0.9%

a 1 = −1.0 5.2% Failed 1.7% 3.6%

reduction in effort (from 30 to 6 non-linear iterations). The SSD algorithm shows a wider spread in the plateau levels,
but iterations can be limited with convergence tolerances above 10−8. For this example, the SSD clearly requires less
overall computational effort. However, it should be noted that using 48 processors, it required less wall-time to process
the embarrassingly-parallel WD solutions than the FT = 8 s SSD solutions because the sequential approach limits the
parallel scalability of the SSD.
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a 1 = −0.001 a 1 = −0.01 a 1 = −0.1 a 1 = −1.0

TC 1 TC 2 TC 3

(a) Temperature Error (b) Update Vector Magnitude

Figure 21: Non-linear convergence for WD reconstructions.

∥∥∥∆q
q

∥∥∥
2
< 10−4∥∥∥∆q
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∥∥∥
2
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q

∥∥∥
2
< 10−6∥∥∥∆q

q

∥∥∥
2
< 10−7∥∥∥∆q

q

∥∥∥
2
< 10−8

Figure 22: Non-linear iterations used in SSD reconstruction of TC 1 with a 1 = −0.001 as a function of the scaled
solution convergence tolerance.

Future Time Sequential Subdomain Whole Domain

(a) Algorithm Comparison (b) SSD, FT = 8 s

Figure 23: Amount of time simulated to evaluate sensitivity coefficients.
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IV.C. Jet Augmentation Case

It is not uncommon for transient events which significantly decrease the representative time-scales of the heating
profile to occur in flight, and in some instances it would be desirable to be able to accurately characterize the heating
behavior in these transient events. These rapid changes in relevant time scale can pose a challenge to IHCP algorithms,
and particularly the regularization approaches employed. Transient events of this nature can increase the required
reconstruction frequency and greatly increase the overall number of unknowns. While a WD reconstruction would
likely be most able to cope with the changing time-scales, the number of total unknowns could make solution of the
problem infeasible without special treatment of the numerical solution. In this situation, the SSD provides a means of
obtaining a nearly WD-quality result without the computational expense or complexity of solving the whole problem
in one step. In this example, the transient event in question will be the aerodynamic heating augmentation due to the
firing of a nearby steering jet.

The material properties assumed in this example are representative of a reusable silica tile like those used on the
heatshield of the Space Shuttle Orbiter (25.4 mm of LI-900 coated with 0.5 mm of black reaction-cured glass (RCG),
with material properties obtained from reference31). An aeroheating boundary condition is assumed on the RCG
surface with the film coefficient and recovery enthalpy shown in Figure 24. Each of the spikes are caused by steering
jet firings which augment the nominal film coefficient by a factor of 2 for 0.5 s, with the middle 0.1 s being augmented
by a total factor of 3.2 to simulate an overlapping firing of a second jet. The surface is assumed to reradiate to a 300 K
farfield. The simulated thermocouple is placed at a depth of 0.5 mm at the interface between the RCG and LI-900.
The TC is sampled at 50 Hz, and a ‘noisy’ trace is constructed by truncating the resolution of the sampled TC data to
a level representative of a 12-bit data acquisition system (Figure 25).

Figure 24: Film coefficient condition and resulting convective heating for RCS augmentation example problem.

The sensitivity coefficients that result for this case are shown in Figure 26. These coefficients are markedly different
than those from earlier problems, and the effects of this will be seen in the results. The coefficients at early times show
a very rapid rise (peaking approximately 0.3 s from the start of the pulse) followed by a slow decay. The magnitude
of the peaks is observed to drop of rapidly in time, with the coefficients after the heat pulse very small by comparison.
This reduction is due to the fact that the aerodynamic heat flux is given by

q′′aero = ρeueCh(Hrec −Hw) (31)

with ρeueCh being the film coefficient, Hrec the recovery enthalpy, and Hw the wall enthalpy. The TC actually
responds to the heat flux, which is scaled by the recovery enthalpy. Since the recovery enthalpy drops during the
entry profile, the TC becomes less sensitive to changes in the film coefficient. Note that the slight variation of the
peaks relative to the co-plotted recovery enthalpy profile are caused by non-linearities in the thermal properties and
reradiation which is a strong function of surface temperature.

Reconstructions are performed with the same integration time as the direct problem (0.1 s) and the same grid. The
reconstructed film coefficient profile is assumed to be composed of uniformly distributed 0.1 s intervals, so there is
an implicit factor of 5 future-time smoothing since the data rate is higher than the reconstruction rate. The FT and
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Temperature Response q′′aero Sub-sampled 50 Hz 12-bit Resolution

(a) Overall Response

(b) 150 s Firing Detail

Figure 25: Target temperatures for jet augmentation case.

SSD algorithms will be employed, but the WD algorithm was not used since this setup requires the solution of 2,300
unknowns.

Figure 27 shows the reconstructions produced by the FT algorithm for several future time window lengths. Two
features of the overall solution stand out: the ‘glitch’ seen at approximately 110 s and the growing instability of the
noisy reconstructions at later times. The glitch at 110 s occurs at the time that the aerodynamic heat flux passes through
zero (when the recovery enthalpy drops below the wall enthalpy at the onset of cooling, see the flux in Figure 25).
At this point, the term (Hrec − Hw) is very near zero, so the TCs become very insensitive to the film coefficient,
making the IHCP particularly unstable. The growing noise later in times are caused by a combination of the small
sensitivity coefficients late and the relatively large amount of noise introduced by quantizing the temperature trace to
a 12-bit level. As the nominal signal is slowly decaying, the truncation operation yields correlated errors in the noisy
trace, which the reconstruction algorithm tries to reproduce. The reconstruction with a future time window of 1 s is
seen to significantly smooth out the transient profile of the jet firing, and even the shortest future time window of 0.3 s
under-predicts the magnitude of the peak augmentation.

Reconstructions using the SSD with a future time window of 1 s are shown in Figure 28. The overall solutions
show similar behavior as the FT reconstructions, however the detail views show much improved reconstructions of
the transient heating pulse (only the 150 s firing is shown here as it is the most difficult, however all firings show
very similar trends). This figure also shows the effect of varying the parameter Wf . Recall from the discussion of
Equation 26 that a positive Wf effectively decreases the regularization applied at the end of a local solution. Looking
at the overall solution, it is apparent that having a positive Wf slightly decreases the overall regularization applied
(note the more rapidly growing instabilities late), however the transient pulse is more accurately represented with less
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Figure 26: Sensitivity coefficients for jet augmentation example problem. Several curves are highlighted for clarity.

Truth

Clean: FT = 0.3 s Clean: FT = 0.5 s Clean: FT = 1.0 s

Noisy: FT = 0.3 s Noisy: FT = 0.5 s Noisy: FT = 1.0 s

(a) Overall Solution (b) 150 s Firing Detail

Figure 27: Reconstructions of jet augmentation test case using Future Time algorithm

tendency to undershoot before and after the firing. It would seem that this problem benefits from permitting more
variation between later solution components in the local solution as the step change is approached.

The different reconstruction algorithms are compared in Figure 29. Figure 29(b) shows the transient response
of each algorithm to with the minimum stable regularization applied. The SSD reconstruction with Wf = 1.0 is
seen to capture the transient behavior the best, though the solutions outside the RCS firing are quite noisy. As the
regularization is increased in Figures 29(c) and 29(d), the solutions behave as expected, with noisy responses being
suppressed, but the under-prediction of the peak heating increases. Though not shown here, firings earlier in the entry
profile, where the temperatures vary more rapidly (minimizing the quantization error) and the sensitivity coefficients
are larger, the reconstructions with low regularization yield results comparable to 29(b) without the noise surrounding
it.

IV.D. Multi-Component Case

This example will demonstrate the multi-component reconstruction capability of INHEAT. The case is representative
of a wind tunnel test with measurable lateral conduction. Generally, materials and time scales are controlled to min-
imize lateral condition effects in a wind tunnel test to permit the use of 1-D reconstruction techniques; however, it
is not always feasible to design a test for which 1-D reconstructions are sufficient. Multi-component reconstructions
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Truth

Clean: a 1 = −0.01 Clean: a 1 = −0.1 Clean: a 1 = −1.0

Noisy: a 1 = −0.01 Noisy: a 1 = −0.1 Noisy: a 1 = −1.0

(a) Overall Solution, Wf = 0.0 (b) 150 s Firing Detail, Wf = 0.0

(c) Overall Solution, Wf = 1.0 (d) 150 s Firing Detail, Wf = 1.0

Figure 28: Reconstructions of jet augmentation test case using SSD algorithm with different values of Wf .

considering all of the simultaneous measurements will be compared to individual 1-D reconstructions at each sensor.
The 2-D domain considered is shown in Figure 30(a). The surface is broken up into 7 zones each with spatially

uniform heating of different magnitudes. The surface left of the protuberance (simulating heating upstream of a protu-
berance) is represented by a low heating zone (red) and a very small peak region (green), which is crudely consistent
with observed trends. The front face of the protuberance is broken into three sections, with heating increasing from
the lower level (blue) through the middle region (gray) to the peak heating region high on the front face (orange).
The top of the protuberance (magenta) has lower heating, but still higher than the upstream level. The aft portion
of the protuberance, domain sides, and backface are all adiabatic. For all of the heated faces, the transient profiles
of specified heat flux in Figure 31(a) (which are loosely representative of the flux in a convective environment) are
applied for the direct problem using the grid in Figure 30(b) with an integration time step of 0.05 s. Thermocouples
are located 0.1 in below the surface of each heating zone. Material properties are ρ = 7900 kg/m3, k = 17 W/m·K, and
C = 400 J/kg·K. The temperature in the domain at t = 10 s is shown in Figure 31(c), and the TC profiles are shown in
Figure 31(b). Measurement noise will not be considered in this example.

Reconstruction of the temperatures in Figure 31(b) is performed using the SSD at 10 Hz, with a future time window
of 0.3 s, and first order regularization scale factor of a 1 = −1.0 (both 1-D and multi-component). There are 6
uncertain components in the multi-component reconstruction, one for the heat flux on each heated region in the domain.
As the problem is linear, one-sided sensitivity coefficients and only one non-linear iteration are used. Since noise is
not added, spatial regularization was not needed and was not applied.

Reconstruction results are shown in Figure 32. Notice first that the multi-component reconstruction results closely
match the symbols (the true heating) very closely for each of the 6 components. The 1-D reconstructions of each
individual TC are also shown in this plot. For some of the areas farther from geometric discontinuities (far upstream in
red and on the protuberance top in magenta), the 1-D and multi-component reconstructions are reasonably close. For
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Truth

Clean: SSDWf = 0.0 Clean: SSDWf = 1.0 Clean: FT

Noisy: SSDWf = 0.0 Noisy: SSDWf = 1.0 Noisy: FT

(a) SSD: a 1 = −0.001, FT: FT = 0.3 s (b) SSD: a 1 = −0.001, FT: FT = 0.3 s

(c) SSD: a 1 = −0.01, FT: FT = 0.3 s (d) SSD: a 1 = −1.0, FT: FT = 1.0 s

Figure 29: Comparison jet augmentation test case reconstructions with FT and SSD algorithms with varying regular-
ization.

the other components, however, significant errors are observed in the 1-D reconstructions due to lateral conduction
(typically high heating sensors are under-predicted and lower heating sensors are over-predicted). Note particularly
the green trace, which has the highest heating, is significantly under-predicted when lateral conduction is not taken
into account. The multi-component reconstruction algorithm, however, is able to account for the lateral conduction
effects in the sensitivity coefficient evaluation and is therefore able to obtain an accurate reconstruction.

V. Conclusions and Future Work

This paper has presented the formulation of the IHCP algorithm implemented as the INHEAT module of the CHAR
thermal response code. A description of the key parameters in the algorithm have been provided. Furthermore, the
algorithm has been demonstrated for several cases including a linear benchmark, a non-linear decomposing ablator,
and a case representative of steering jet augmentation in a flight vehicle. While no one algorithm always performs
best, the FT algorithm is seen to perform well when sensitivity coefficients develop rapidly compared to the rate
change of the heating boundary condition, but suffers from over-smoothing otherwise. The WD algorithm can provide
accurate reconstructions for any reasonable instrumentation depth and material combination, however constraints on
the linear system limit the number of unknowns that may be estimated. The SSD algorithm presented here is a blend
of the two algorithms, and provides many of the accuracy benefits of the WD algorithm while maintaining some of the
computational efficiency of the sequential FT algorithm.

A number of improvements are planned for INHEAT. The first is adding the capability to assume piecewise linear
functions in time as opposed to the piecewise constant assumed presently. Secondly, while multi-component recon-
structions are possible and have been performed, the case-specific nature of these problems requires the user to input
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4.0 in 2.0 in

1.0 in

0.5 in

#1 #2

#3
#4
#5

#6

(a) Domain overview. Note that line colors are consistent with the remaining figures in this
section.

(b) Grid

Figure 30: Domain and grid for multi-component example case.

(a) Applied heat flux (b) Temperature response

(c) Volume solution at t = 10 s

Figure 31: Applied flux for direct problem and resulting temperature response. Note that line colors are defined by the
colors in Figure 30(a).
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Multi-Component Reconstruction 1-D Reconstruction Truth

Figure 32: Reconstruction results of multi-component example case. Note that line colors are defined by the colors in
Figure 30(a).

spatial regularization matrices in non-intuitive formats; it is desired to make this interface more user-friendly. Simi-
larly, while the measurement covariance matrix can be provided (again, it an inconvenient form), more work is needed
to fully understand the utility of this term and develop methods of inputting relevant information. Finally, the need for
uncertainty estimates is well understood, but the present implementation has no built-in capability to assist in evaluat-
ing uncertainties. A number of methods are being investigated with the goal of easing the estimation of accuracy of
inverse solutions for practical flight data analysis.
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