MICROMETEORITE IMPACT TEST OF FLEX SOLAR ARRAY COUPON

K. H. Wright(1), T. A. Schneider(2), J. A. Vaughn(2), B. Hoang(3), F. Wong(3), G. Gardiner(3)

(1) UAH, Jacobs ESSSA Group, 301 Sparkman Drive, Huntsville, AL 35899, USA, Email: Ken.Wright@uah.edu
(2) NASA MSFC, Mail Code: EM50, Huntsville, AL 35812, USA, Email: todd.a.schneider@nasa.gov; jason.a.vaughn@nasa.gov
(3) Space Systems/Loral, LLC, 3825 Fabian Way, Palo Alto, CA 94303, USA (email: Bao.Hoang@sslmda.com; Frankie.Wong@sslmda.com)

Abstract—Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC’s Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A – 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

1. INTRODUCTION

Space Systems/Loral, LLC (SSL) first reported charging induced electrostatic discharge of a solar array that resulted in loss power in 1997 [1]. Since then, SSL has implemented a series of design solutions that have mitigated such failure recurrence [1]. Ground tests have further demonstrated design robustness from ESD events [2, 3]. However, other possible failure mechanisms such as micrometeoroid impact, although rare in Earth geosynchronous orbit, can be a possible cause of solar array string loss. SSL is developing and qualifying an advanced flexible solar array for commercial spacecraft and possibly future NASA missions [4]. The flexible solar array technology is based on the Deployable Space System’s (DSS) Roll-Out Solar Array (ROSA) [5]. Unlike common rigid panel solar array technologies which typically have a composite rigid panel as the substrate, the ROSA substrate consists of a 2-mil thick Kapton layer and an ~0.4 mm thick fiberglass mesh. The key advantage of the ROSA technology is its low mass and low stowage volume. With estimated orbital debris velocities ranging from 0 to 16 km/s and micrometeoroid velocities ranging from 11 km/s to 72 km/s in Earth orbits [6], a typical low-mass space solar array would be penetrated easily by an impact event. Notable impact damages of such lightweight solar arrays were observed and reported from the International Space Station [7]. Although an impact would cause local mechanical damage to a solar array, SSL and NASA MSFC are evaluating the extent of the impact to this low-mass ROSA design. Furthermore, an ESD event caused by plasma generation from the impact is also a possibility [8].

2. TEST ARTICLES

Two (2) test coupons were built for micrometeoroid impact evaluation testing. The solar cell used for these coupons was SolAero ZTJ with area = 59.7cm². The coverglass was Qioptiq CMG that is 100-μm thick with a single-layer of MgF2 anti-reflective coating. Each solar cell assembly (SCA) has a discrete silicon bypass diode.

Fig. 1 presents the test coupon configuration. There are 3 solar array strings, each with 2 cells in series. As shown in Fig. 1, the strings are configured with 1-mm and 15-mm gaps between strings. The 1-mm gap represents the nominal gap between segments of cells within a string. The larger 15-mm gap represents the nominal gap between strings. The solar cell assemblies were bonded to a 50 micron thick Kapton sheet with room temperature vulcanizing (RTV) adhesive CV10-2568 from Nusil Technologies. There is no adhesive grout between the gaps of the solar cells. The photovoltaic blanket module coverglass was Qioptiq CMG that is 100-μm thick with a single-layer of MgF2 anti-reflective coating. The larger 15-mm gap represents the nominal gap between strings. The solar cell assemblies were bonded to a 50 micron thick Kapton sheet with room temperature vulcanizing (RTV) adhesive CV10-2568 from Nusil Technologies. There is no adhesive grout between the gaps of the solar cells. The photovoltaic blanket module coverglass was Qioptiq CMG that is 100-μm thick with a single-layer of MgF2 anti-reflective coating.

Fig. 1 presents the test coupon configuration. There are 3 solar array strings, each with 2 cells in series. As shown in Fig. 1, the strings are configured with 1-mm and 15-mm gaps between strings. The 1-mm gap represents the nominal gap between segments of cells within a string. The larger 15-mm gap represents the nominal gap between strings. The solar cell assemblies were bonded to a 50 micron thick Kapton sheet with room temperature vulcanizing (RTV) adhesive CV10-2568 from Nusil Technologies. There is no adhesive grout between the gaps of the solar cells. The photovoltaic blanket module coverglass was Qioptiq CMG that is 100-μm thick with a single-layer of MgF2 anti-reflective coating. The larger 15-mm gap represents the nominal gap between strings. The solar cell assemblies were bonded to a 50 micron thick Kapton sheet with room temperature vulcanizing (RTV) adhesive CV10-2568 from Nusil Technologies. There is no adhesive grout between the gaps of the solar cells. The photovoltaic blanket module coverglass was Qioptiq CMG that is 100-μm thick with a single-layer of MgF2 anti-reflective coating.
3. Test Facility

Testing was conducted at the Micro Light Gas Gun (MLGG) facility at MSFC. Figures 2-5 show the various components of the MLGG facility. The force from a blank 22-caliber shell is captured by a piston which impacts a helium pressurized chamber. The pressure pulse accelerates a 1.76 mm diameter Nylon projectile to velocities > 5 km/s. The particle velocity is determined from timing signals from a diode at the beginning of the drift tube and a diode in the target chamber.

The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. To address these challenges, a throughout checkout of the test facility was performed prior to testing with Coupon A. Several test shots were executed to validate the projectile velocity and impact location accuracy. A target was attached to a mounting plate that contains both vertical and horizontal positioning capability. To moderate the pressure increase in the target chamber after pellet firing, a baffle plate with a 3.8 cm diameter tube was installed in the upstream opening in the target chamber. Based upon several practice firings, the target chamber base pressure briefly increased from ~8e-6 Torr to ~1e-3 Torr.

A proxy coupon was constructed of copper plates that reproduced the three string morphology. This proved essential for checkout of the coupon electrical test circuit discussed in Section 4.
4. **TEST PARAMETERS**

Prior to the impact tests, Coupon A was thoroughly inspected and photo documented. Electrical test included dark I-V measurements of the cells and the bypass diodes. The NASA MSFC Large Area Pulse Solar Simulator (LAPSS) was used to measure the I-V performance of each 2-cell string.

4.1 Test Coupon A

Test Coupon A was designated for micrometeoroid impact test while the coupon is under electrical bias. Figs. 6 and 7 show the planned pellet impact locations.

Table 1. Electrical Test Parameters for Coupon A

<table>
<thead>
<tr>
<th>Test Shot</th>
<th>Impact Side</th>
<th>SAS Volt./Cur.</th>
<th>String A</th>
<th>String B</th>
<th>String C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front</td>
<td>100V/1.1A</td>
<td>High</td>
<td>Low</td>
<td>NP</td>
</tr>
<tr>
<td>2</td>
<td>Front</td>
<td>15V/1.1A</td>
<td>NP</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Front</td>
<td>22.5V/1.65A</td>
<td>NP</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Front</td>
<td>150V/1.65A</td>
<td>High</td>
<td>Low</td>
<td>NP</td>
</tr>
<tr>
<td>5</td>
<td>Back</td>
<td>150V/1.65A</td>
<td>High</td>
<td>Low</td>
<td>NP</td>
</tr>
</tbody>
</table>

High = Solar Array Simulator (SAS) voltage
Low = SAS Return
NP = Not Powered

Test shots nos. 1 and 5 were targeted at the edges of the solar cells with 15 mm gap from adjacent cells. This represented design gap between strings where the maximum voltage differential can be at 100 V. The larger voltage and current values in shots no. 4 and 5 represent a test margin factor of 1.5. Test shot nos. 2 and 3 were also targeted at the edges of the solar cells where the gap between these cells is 1 mm. This gap represented the nominal gap between cells within a string. Note that none of the gaps were filled with RTV adhesive grout. The higher voltage and current in test shot no. 3 represent a test margin factor of 1.5. These test margins were applied to demonstrate the design robustness to any ESD events caused by resulting plasma plumes during the micrometeoroid impact [8]. Test shot no. 4 was targeted at the center of a solar cell. Visual inspection and photo-documentation was scheduled after each impact shot. At the end of the 5 shots, I-V measurement using LAPSS are to be repeated for each 2-cell string on the both coupons.

As shown in Figs. 6 and 7, the projectile target locations on the Coupon A were at the solar cell edges and at the solar cell center. The targeting of the cell edges was to determine if plasma generation from the impact could result in sustained arcing between substrings of cells.
limit the duration of any sustained arc. Three oscilloscopes were used to capture the current and voltage probe data.

A special circuit (noted as RLC circuit in Fig. 8) is employed to shape a primary arc pulse. The generic attributes of the pulse were modeled after consideration of an early ROSA array application. Fig. 9 shows the primary arc pulse obtained with the proxy coupon test. Vbias was set to -650 V for all impact tests.

Prior to the first impact test, a gas only shot (no projectile) was performed in order to check-out the ESD circuit response and optimize oscilloscope settings for data capture. The gas only shot also served to verify that a temporary sustained arc would not be initiated just due to background pressure increase.

5. Test Results

Fig. 10 shows the cumulative impact location map for all impacts. Due to some uncertainty in targeting precision (pellet strikes the coupon within a semi-circle of radius 6 mm from laser spot), impact #2 was repeated to strike the intended string. The first execution of shot 2 conditions is labeled 2A while the second execution of shot 2 conditions is labeled 2B.

The size of the impact hole for the pellet striking the cell front-side is \(\sim 4 \) mm. This is applicable for impacts 1, 2A, 2B, 3, and 4. For impact 5, the pellet strikes the cell back-side first and in this case a rectangular-like section is torn away.

It is also observed that a halo of residue exists about the impact hole. This residue halo was observed in the gas-only shot that was executed before impact 1 on Coupon A. The residue halo may result from debris from the burst disk that holds the pellet in place before firing.

In Figs. 11-13, current and voltage probe data is presented for impact 2B on String C. Circuit conditions for this shot were 15 V between string C and string B (1mm gap) with the SAS set to 1.1 A. No current activity on the strings beyond the duration of the primary arc was observed. In Fig. 14, the path of the primary arc current within the circuit is illustrated.
Figure 11. Current and voltage probe data for impact 2B. CP1 shows SAS current flow and is stopped by the arc interruption circuit at ~ 3 milli-sec. The charge contained in the primary arc is calculated via two methods and is noted on the Vbias and CP4 panels. A small difference in primary arc amplitude and duration is noted between the proxy coupon with copper plates and Coupon A.

Figure 12. Current probe data for each string during impact 2B. CP6 and CP2 corresponds to String C plus and minus, respectively. CP7 and CP5 corresponds to String B plus and minus, respectively.
Figure 13. Blow-off plate data during impact 2B.

Figure 14. Diagram of paths for primary arc current during impact 2B.
6. SUMMARY

NASA MSFC has performed micrometeoroid impact tests of SSL-provided advanced low-mass flexible solar array coupons. The tests were performed in the Micro-Light Gas Gun facility at MSFC. Analysis of the ESD circuit probe data and as well as analysis of coupon functional test data is ongoing. The impact testing is part of a large risk-reduction campaign that will lead to a final ROSA flight design [10]. Although no permanent sustained arcs (PSAs) were observed from the impacts presented in this paper, further impact testing may be needed to clarify the results and to demonstrate the flexible array design robustness. Post-impact inspection showed that damage from the impacts was local and that no array structural breakdown was observed. The insulation resistance measurement that was performed after each impact shows the same value as the Beginning-of-Life value; namely, resistance > 50 GΩ at 250V between all string combinations.

7. ACKNOWLEDGEMENTS

The authors would like to thank the DSS ROSA design team, the SSL flexible solar array design team and the SolAero SPM design team for their contributions to this paper.

8. REFERENCES

