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Outline

• Description of the Multi-Purpose Crew Vehicle Program’s (MPCV’s) 
Orion Vehicle

• Introduction to Natural Environments
• Examples of Terrestrial Environments Support

− Design
− Test
− Mission

• Summary
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Orion Description

• Designed to carry astronauts beyond low-Earth orbit.
• Originated during NASA’s Constellation Program.
• Undergoing various tests.

− Underway Recovery Test (URT) 
− Capsule Parachute Assembly System (CPAS) drop tests
− Exploration Flight Test (EFT) – 1
− Ascent Abort 2 (AA2)
− Exploration Mission (EM) – 1 and EM – 2

http://www.nasaspaceflight.com/2012/07/nasa-esd-key-orion-requirement-lunar-missions/

Launch Abort 
System (LAS)

Crew Module 
(CM)

Service Module 
(SM)



Introduction to Natural 
Environments
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Natural Environment Concerns

• The “Natural Environment” is a phenomena that occur regardless of human 
constructed objects.

• Vehicles are exposed to the natural environment throughout any mission.
• Mission phase and potential environmental considerations.

− Pre-launch (ground winds, temperature, moisture, lightning, ionizing radiation)
− Launch (ground and near-surface winds, visibility, lightning)
− In-flight (winds aloft, atmospheric density, space environments, ionizing radiation, 

plasma, spacecraft charging)
− Entry and descent (winds aloft, atmospheric density)
− Landing and recovery (ground winds, visibility, sea conditions)

• Lifecycle consists of vehicle design and operation.
− Robust design implies fewer operational constraints, but higher upfront cost.
− Operational constraints are implemented when design is insufficient.
− Design process must predict how the vehicle will be operated.

• Meteorological climatologies provide data to use in design phase, and one 
must address the same data during operations (e.g., wind constraint).
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MSFC NE Terrestrial and Planetary 
Environments Team
• Terrestrial and Planetary Environments (TPE) Team is part of the Marshall Space Flight 

Center Natural Environments (MSFC NE) Branch.
• Serve as a bridge between meteorological data collection sources and engineering 

analyses.
• Obtain and maintain meteorological archives.

− Instrumentation at flight ranges and other sites of interest.
− Global climatologies.
− Implements quality control procedures and processes data for interrogation.
− Develop in-house datasets and models.

• Define environment criteria for vehicle design. 
• Provide tailored assessments to the engineering community for specific applications.

DATA SOURCES

TPE

APPLICATIONS



Examples of Support during 
Vehicle Design
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Launch Wind Constraint
• Wind constraint is defined at 18.3 m, and 

depends on wind direction.
− Adjust constraint based on vehicle 

sensitivities.
− Process generates a constraint versus 

wind direction.
• Space Launch System (SLS) is 

designed to a peak wind profile based 
on a measurement at 18.3 m.
− Log profile that envelopes winds given 

an 18.3 m wind.
− Compare to measurements.

• Threshold determined during design 
evaluated on day-of-launch (several 
exist).

• SLS constraints apply to Orion for 
launch commit.
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Defining Sea Conditions

• Sea conditions influence the CM’s 
landing and recovery limits.

• Usually do not apply to launch 
vehicles.

• Parameters of interest.
− Significant wave height (SWH)
− Wave period
− Wind speed

• Use global climatologies to derive 
the probability of not exceeding 
specified constraints.

• Define constraints based on 
practical thresholds and probability 
of occurrence.
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Temperature for CMUS Helium Tanks
• Composite Overwrapped Pressure Vessels 

(COPVs) store helium to inflate CMUS bags.
− Amount of helium needed to inflate the CMUS bags 

increases as temperature decreases.
− Excessive helium exerts too much pressure on the 

COPV.
• Initial requirement was to fill bags at -2°C.
• Performed analysis using multiple global 

climatologies to support increasing the ambient 
temperature threshold to 10°C for EFT-1.
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Examples of Orion Test 
Support
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Wind shear analysis for CM Descent

• CM can swing in various oscillatory 
modes late in descent.

• Compared wind shears from CPAS test 
site (Yuma, AZ) to near-shore locations.
− Could shears generated near mountains 

exist at landing site?
− Used balloon archives.
− Found some differences below 5,000 ft.
− Little differences where modes would 

start (as high as 10,000 ft).
• Verified balloon measurement accuracy.
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Determining Optimal URT Locations

• Orion recovery personnel performed URTs leading 
up to EFT-1 off the CA coast.
− EFT-1.
− Off-nominal conditions.

• MSFC NE received request to quantify locations 
within the URT zone that climatologically best 
represent conditions at the EFT-1 site.

• Generated difference maps of concurrent SWH 
and average wave period counts between each 
gridpoint within the URT zone and the EFT-1 site.
− Computed root mean square (RMS) difference from 

EFT-1 at each gridpoint.
− Determined which gridpoints had lowest RMS 

differences.
• Concluded that testing in the west-northwest 

regions of the URT zone would likely best replicate 
EFT-1 conditions.

• Included caveat that this analysis is only based on 
climatology, and not any forecast.
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Examples of Orion Mission 
Support



EFT-1 Mission Overview:  

7) Entry &
Landing

6) CM/SM-DCSS Sep
EI-50 min

4) Stage 2 
Boost Burn 

2) Fairing & LAS 
Jettison

3) LEO Coast

5) HEO Coast

Objectives 
• Demonstrate core CM systems performance 
• Demonstrate high energy entry (~9 km/s) and TPS performance
• Demonstrate integrated entry, descent, and landing operations

Delta IV Heavy 
• 3 Common Booster Core
• DCSS Upper Stage

1) Launch
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EFT-1 Landing Availability

• For EFT-1, nominal landing conditions 
had to be met at launch.

• EFT-1 site exists within gradient of 
good and poor sea conditions.

• Questions arose relating to launching 
if landing conditions were marginally 
“no-go” at launch time.
− “If we are no-go now, will we be no-go 

at landing?”
− Requires climatological and forecast 

input.
• MSFC NE assessed the probability of 

violating sea condition constraints for 
specified durations.
− Provides likelihood for staying no-go 

for a certain time.
− Violating conditions persist longest 
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EFT-1 and Significant Wave Height

• SWH description
− Represents average of the highest 1/3 of waves.
− Computed directly from wave spectrum.

• SWH does not apply to Orion landing design, but 
is important for recovery operations.

• Recovery threshold is typically near 2 m SWH, but 
captain makes decision.

• EFT-1 originally scheduled for September, but 
moved to December, which led to accounting for 
higher seas.

• MSFC NE provided the probability of not 
exceeding different SWH for different months to 
MPCV.  
− Produces consequence of adjusting SWH limit.
− Shows distribution of SWH for different months to 

support possibility of moving mission.
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Videos 

• EFT-1 End-of-Mission recovery (1:00-2:30, 4:30-5:30)
https://www.youtube.com/watch?v=PbRgTRSdBLg

• What could happen if we’re not careful…
https://www.youtube.com/watch?v=A1lqHRufgI8

https://www.youtube.com/watch?v=PbRgTRSdBLg
https://www.youtube.com/watch?v=A1lqHRufgI8


EM-1: Uncrewed Distant Retrograde Orbit

SLS Configuration:
• 5-seg SRBs and 4 RS-25D
• Interim Cryogenic Propulsion Stage
• 28.5 – 35 deg inclination parking orbit

2) Perigee Raise 
Maneuver (PRM)

1) Launch

3) Trans-Lunar
Injection (TLI)
ICPS

12) 
Entry &
Landing

11) CM/SM Sep
EI-20 min

Total Mission Duration: 25-26 days

4) Outbound Trajectory 
Correction (OTC) burns

5) Outbound 
Powered Flyby 
(OPF) burn

Outbound: 7 days
8) Distant Retrograde orbit
Departure (DRD) burn

6) Distant Retrograde orbit
Insertion (DRI) burn

7) Distant 
Retrograde Orbit 
~37,797 nmi 
(~70,000 km)

DRO: 6 days
10) Return Trajectory 
Correction (RTC) burns

9) Return Powered 
Flyby (RPF) burn

Return: 12 days

Objectives and Mission Notes: 
• Demonstrate spacecraft systems performance prior to crewed flight
• Demonstrate high speed entry (~11 km/s) and TPS performance prior to crewed 

flight
• Landing off the coast of California



EM-2: Crewed (High) Lunar Orbit

SLS Configuration:
• 5-seg SRBs and 4 RS-25D
• 28.5 – 35 deg inclination parking 
orbit

1) Launch 2) Perigee Raise 
Maneuver (PRM)

3) Trans-Lunar
Injection (TLI)
ICPS

9) Entry &
Landing

8) CM/SM Sep
EI-20 min

Total Mission Duration: 10-14 days

4b) Outbound Trajectory 
Correction (OTC) burns

Outbound: 3-6 days

5) Lunar Orbit
Insertion (LOI)

4a) Outbound Trajectory 
Adjust (OTA)
Orion

High Lunar Orbit 
(HLO) for 3 days
54x5400 nmi 
(100x10,000 km)

6) Trans-Earth
Injection (TEI)

Return: 3-6 days

7) Return Trajectory 
Correction (RTC) burns

Objective and Mission Notes:  
• Demonstrate crewed (up to 4) flight beyond LEO
• Demonstrate baseline Orion vehicle
• TLI places Orion on a lunar flyby free-return trajectory
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Launch Availability
• MSFC NE has an in-house tool to 

compute the probability of meeting 
specified constraints for launch.

• Sea conditions are incorporated to 
overall launch availability assessment for 
Orion.
− Segregate global climatology to 

represent landing areas.
− Conditions usually worse from Dec-Mar.

• Analysis is tailored to individual launch 
and landing vehicle constraints.
− EFT-1 flew on a Delta IV.
− EM-1 and EM-2 will fly on the SLS.
− Cargo and uncrewed missions do not 

require sea condition constraints.
• SLS can fly on different azimuths, which 

lead to accounting for sea conditions 
across different ground tracks for EM 
missions.

PROBABILITY (%) OF SATISFYING ALL CONSTRAINTS
Hour (UTC) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann

0 77.1 73.6 70.6 81.3 84.8 76.4 85.6 80.4 77.3 75.3 77.5 76.1 78.1
1 77.7 76.6 76.8 81.7 86.3 80.3 87.6 85.5 78.7 79.5 77.9 76.2 80.6
2 76.8 73.3 76.7 86.0 87.9 81.0 91.0 86.2 79.1 78.2 76.9 71.6 80.8
3 74.2 72.1 75.8 85.8 89.1 86.6 94.3 91.1 86.3 77.1 76.6 70.9 82.0
4 77.0 75.2 76.4 86.3 92.0 90.9 94.2 90.1 87.8 80.3 75.1 73.2 83.7
5 70.8 74.8 72.8 87.0 92.4 93.7 96.3 91.9 90.2 79.4 74.3 75.3 83.7
6 70.9 72.6 77.0 85.3 91.2 93.1 95.6 92.6 92.5 81.5 71.8 73.8 83.7
7 72.1 71.6 78.7 82.6 91.3 92.5 94.8 94.4 87.7 81.4 71.0 71.3 83.0
8 68.8 71.1 75.7 84.6 90.9 90.8 95.4 93.7 87.7 79.3 71.0 65.9 81.9
9 65.5 67.0 75.4 79.3 89.1 88.9 92.8 92.1 87.2 78.5 72.4 69.1 80.2

10 64.4 66.2 73.5 77.7 85.2 83.4 91.0 91.6 86.1 78.5 73.5 67.4 78.6
11 59.9 59.1 72.0 74.0 78.6 77.9 82.1 84.3 79.8 72.7 72.8 63.3 73.4
12 59.6 56.1 66.7 74.2 80.6 81.6 86.0 86.7 77.8 67.8 67.0 59.8 72.5
13 59.2 57.8 67.5 75.4 87.8 84.0 88.3 89.6 80.3 73.0 70.7 56.9 74.8
14 69.8 61.3 69.4 76.8 83.8 81.4 90.0 90.6 81.4 74.5 73.1 67.3 76.8
15 72.6 59.9 66.7 76.1 83.4 77.6 88.3 87.5 78.5 73.9 69.3 68.4 75.4
16 71.7 61.3 65.4 74.6 83.5 75.6 83.9 81.7 75.1 73.7 71.7 62.1 73.6
17 68.1 61.1 64.7 74.1 84.1 70.5 77.0 76.2 71.5 71.7 71.0 61.2 71.2
18 68.4 64.4 67.3 74.9 83.6 67.3 74.2 67.0 72.6 72.2 68.6 59.0 70.2
19 68.4 62.9 64.7 75.2 80.4 64.5 72.5 65.4 71.0 69.3 70.2 62.5 69.0
20 68.7 61.9 65.6 77.2 81.1 61.4 70.5 67.5 72.7 74.2 72.3 63.2 69.7
21 71.5 63.1 63.3 77.4 82.7 69.2 69.9 71.8 70.0 70.7 73.8 66.3 70.9
22 71.9 66.6 67.8 76.6 83.1 72.5 72.8 75.5 69.9 74.3 75.1 69.1 73.0
23 74.4 68.4 69.1 77.5 82.8 72.3 77.8 77.7 76.9 75.6 75.3 69.6 74.8
All 70.0 66.5 70.8 79.2 85.7 79.7 85.6 83.7 80.0 75.5 72.9 67.5 76.7

P < 60% 60% <= P < 70% 70% <= P < 80% 80% <= P < 90% P >= 90%
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Wind Profiles for Ascent

• Generated a database of DRWP wind 
profile triplets.
− SLS loads and trajectory design (design 

trajectory, check, fly).
− Earth-Global Reference Atmospheric Model 

(Earth-GRAM) characterizes upper 
atmosphere.

• MPCV program incorporates SLS wind 
profiles.
− Goal: Use same winds as SLS.
− Includes pad and ascent aborts.
− Ensured that database represents winds for 

early aborts.
• Determine locations of insufficient water 

depth for MPCV pad abort landings.
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Summary

• Accounting for environmental dispersions during vehicle design is paramount 
to success of a space vehicle program.

• Understanding and properly designing for natural environments early in a 
program mitigate adverse cost, schedule, and risk impacts.

• MSFC NE’s TPE has provided terrestrial environments support to MPCV and 
SLS to ensure robust design, detailed operational planning, and 
understanding of accepted risks.
− Define environments across different mission phases.
− Analyses utilize archives of measured and modeled meteorological data.
− Iterate with end users to tailor environment for specific applications.
− Also provided space environment definition.
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