Femtosecond photon-counting receiver

Michael A. Krainak, Timothy M. Rambo, Guangning Yang, Wei Lu, Kenji Numata

NASA Goddard Space Flight Center, Greenbelt, MD USA 20771
Femtosecond photon-counting receiver

AGENDA

I. Ways to achieve CORRELATION function
II. Intensity interferometer correlator
III. Experimental results
IV. Summary
I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
Correlation Function
Definition

\[R(t) = \int f(t)g(t-t) \, dt \]
Correlation Function
Optical Implementation

Intensity autocorrelator

Interferometric (2nd order) autocorrelator
Correlation Function
Optical nonlinear crystal

\[R(t) = \int f(t)g(t-t) \, dt \]

Real-time product originates from:
2nd harmonic crystal: \(\chi^{(2)} \)

\[P^{NL} = (2) f(t)g(t) \]

But to implement:
We step the delay (\(\tau \)) and calculate at each step.

NOT “real-time”.
equal intensity in each arm the fringe visibility is given by
\[\gamma(\tau) \] and the position of the fringe pattern is determined by the phase of \(\gamma(\tau) \), where \(\gamma(\tau) \) is the normalized second-order auto-correlation function of the incoming wave field. If \(V_0(\tau) \) is the complex analytic signal representing the incident stationary, polarized wave, then

\[
\gamma(\tau) = \frac{\langle V_0^*(\tau)V_0(\tau + \tau) \rangle}{\langle |V_0(\tau)|^2 \rangle}.
\]

(1)

Because \(\gamma(\tau) \) is of second order in the field amplitude, we refer to this procedure as second-order interferometry and to the corresponding coherence time \(\tau_c \) as the second-order coherence time.

By varying the path difference \(\delta \tau \) and measuring the fringe visibility as a function of \(\tau_c \), one can readily determine \(\tau_c \). Although the method enables us to

\[\tau_R \gg \int_{-\infty}^{\infty} \lambda(\tau) d\tau. \]

(16)

Hence for large \(\tau_R \) Eq. (12) simplifies to

\[
\Gamma_M = 2RT(R^2 + T^2)\langle I_0 \rangle^2 \tau_R \left[1 - \frac{RT}{R^2 + T^2} |\gamma_{00}(\delta\tau)|^2 \right],
\]

(17)

where \(\gamma_{00}(\tau) = \Gamma_{00}(\tau)/\langle I_0 \rangle \) is the normalized second-order correlation function of the incident optical field. Although, for simplicity, we have treated a polarized field, a similar equation can be derived even for unpolarized light when certain symmetry conditions are satisfied.

Since \(\gamma_{00}(0) = 1 \) by definition, it follows that a measurement of the correlation \(\Gamma_M \) as a function of the variable time delay \(\delta \tau \) must yield results satisfying the condition

\[\langle |\gamma_{00}(\delta\tau)|^2 \rangle = 1 - \frac{RT}{R^2 + T^2}. \]

(8)

The scheme for measuring both the coherence time and the pulse duration time of the input optical field, with virtually no limit on time resolution. Measurement is made at photon-counting intensity levels and is applicable to a wide range of wavelengths.

We have tested our scheme by applying it to the measurement of the output pulses of a cw modelocked dye laser. The results are in good agreement with values obtained by the conventional second harmonic (SH) autocorrelation technique.

The scheme is illustrated in Fig. 1. Let us assume that the incident optical field is a pulse train of polarized light and that each pulse can be expressed by the complex field

\[C_1(t) = \sum_{n=1}^{N} C_n(t). \]

(1)

where \(C_1(t) \) is the complex field of the pulse and \(C_n(t) \) is the complex field of the nth pulse. The count rate of the signal is given by

\[C_n(t) = \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\tau \exp \left(-\frac{(\tau - \tau_0)^2}{2\tau_0^2} \right) \cdot \exp \left(-\frac{(\tau - \tau_1^2)}{2\tau_1^2} \right) \cdot \exp \left(-\frac{(\tau - \tau_2^2)}{2\tau_2^2} \right). \]

(2)

where \(\gamma_{00}(\tau) = \langle C_1^*(\tau)C_1(\tau + \tau) \rangle/\langle |C_1| \rangle \) is the normalized second-order correlation function of the input optical field. The intensity correlation function is that it is limited by the resolving time \(\tau_R \) of the detectors and the electronics to fourth order coherence times \(\tau_c \) that are much larger than \(\tau_R \) (typically of the order of 10^{-9} \text{ sec}), and it becomes useless when \(\tau_c \ll \tau_R \).

In what follows, we discuss the results obtained in experiments to measure the coherence time of the pulses and to measure the duration of the pulse train.

\[K \text{ is an appropriate proportional constant, } T_h \text{ is detector response time, and } \langle |\lambda_{00}|^2 \rangle \text{ denotes average over detector counts.} \]

(3)

3.1 Optical pulses with interference

Baba, and M. Matsuoka

1993 / Vol. 18, No. 11 / OPTICS LETTERS

We show a plot of this function in Fig. 2. There is a slight decrease in the coincidence count rate at \(\delta \tau \sim 0 \) that consists of two components, corresponding to the first and second Gaussian terms of Eq. (9), which in turn are related back to the two terms in Eq. (7). The narrower component corresponding to the first term is caused by the second-order interference, which occurs only when \(\tau_c \) is smaller than the pulse field coherence time of 10^{-9} sec.
Unlike second-order interference, this method does not require that path differences be kept constant to within a fraction of a wavelength. The method is applicable to other situations in which pairs of single photons are produced, but becomes less efficient for more intense pulses of light, because the "visibility" of the interference is then reduced and cannot exceed 50% at high intensities. In principle, the resolution could be better than 1 pm in length or 1 fs in time.
Absolute measurement of a long, arbitrary distance to less than an optical fringe

Jun Ye

JILA, National Institute of Standards and Technology, and Univeristy of Colorado, Boulder, Colorado 80309-0440
Real-time product originates from: square law detector

\[[f(t) + g(t)]^2 \Rightarrow f(t)g(t) \]

But to implement:
We step the delay (\(\tau \)) and calculate at each step.

NOT “real-time”.
Femtosecond photon-counting receiver

AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
IDEA!
Use Statistics “DEFINITION”

\[\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2 \]

IDEA: Use Intensity interferometer (a.k.a. fourth order)

\[\text{Var}(I_1(t) - I_2(t)) = E[(I_1(t) - I_2(t))^2] - (E[I_1(t) - I_2(t)])^2 \]

Calculated product originates from: Variance DEFINITION
MathCad “intensity” simulation

Pulse train – $I(t)$ - with Poisson intensity distribution

$0.5 \left[Var(I_1(t), I_2(t)) + E(I_1(t)) - E(I_2(t)) \right]$
AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
Detector: Sensl MicroFM-SMA-10020
Lot # 131218

Active Area: 1mm x 1mm
of Cells: 1144
Fill Factor: 48%

Biased at -32V unless noted otherwise

NOTE: New “Red” version available with higher near-IR QE. NOT used in these tests.
Detected photon number discrimination

$\lambda = 0.8$

$\lambda = 1.7$

$\lambda = 3.2$
Proof-of-concept experiment
Intensity Interferometer Correlator
(Macroscopic Hong-Ou-Mandel)

REFERENCE:

\[
\frac{\text{Var}(N(t))}{\langle N_+ \rangle} = \frac{1}{2} \langle N_+ \rangle \exp \left[2 \ln 2 \frac{2 t^2}{T^2} \right]
\]

\[
\langle N_+ \rangle = N_1 + N_2
\]

\[
\frac{1}{2} = \frac{1}{2c^2} + \frac{1}{T^2}
\]

T = pulse width
\(\tau_c \) = coherence time
AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
SUMMARY

I. Reviewed methods for forming correlator product
 1) Nonlinear crystal
 2) Heterodyne – 2nd order interferometer
 3) Photon number statistics (variance of intensity difference) - 4th order interferometer

II. Experimental demonstration of intensity interferometer correlator for laser ranging
 1) Optical delay interferometer
 2) Moving mirror => to “wash out” second order interference effects
 3) Commercial (Sensl Inc.) Geiger-mode silicon APD array (photon number) detector)
 4) Demonstrated tens of micron level accuracy of Photon Counting Ranging

III. Future

Femtosecond-pulse Carbon-nanotube mode-locked frequency-doubled fiber laser source