Femtosecond photon-counting receiver

Michael A. Krainak, Timothy M. Rambo, Guangning Yang, Wei Lu, Kenji Numata

NASA Goddard Space Flight Center, Greenbelt, MD USA 20771
AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
Correlation Function
Definition

\[R(t) = \int f(t)g(t-t)\,dt \]
Correlation Function
Optical Implementation

Intensity autocorrelator

Interferometric (2nd order) autocorrelator
Correlation Function
Optical nonlinear crystal

\[R(\tau) = \int f(t)g(t-\tau)\,dt \]

Real-time product originates from:
2nd harmonic crystal: \(\chi^{(2)} \)

\[P^{NL} = (2) f(t)g(t) \]

But to implement:
We step the delay (\(\tau \)) and calculate at each step.

NOT “real-time”.
4th order Interferometer
(Using coincidence detection)

1989

By measuring the photoelectric correlation as a function of τ, we can determine the range of $\lambda(\tau)$ and therefore the correlation time. In general, the ranges of $\lambda(\tau)$ and of $|\gamma(\tau)|$ may be quite different, however, although in the special case of polarized light with thermal statistics $\lambda(\tau)$ and $\gamma(\tau)$ are related by:

$$\lambda(\tau) = |\gamma(\tau)|^2.$$

(3)

But for other fields, such as laser beams, there may be little connection between $\lambda(\tau)$ and $|\gamma(\tau)|$. One weakness of the intensity-correlation technique is that it is limited by the resolving time τ_R of the detector and the electronics to fourth-order correlation times τ, which are much longer than τ_R (typically of the order of 10^{-7} sec), and it becomes useless when $\tau \ll \tau_R$.

In what follows, we consider relations for noncoincidence pairs.

$$\tau_R \gg \int_{-\infty}^{\infty} \lambda(\tau) d\tau.$$

(16)

Hence for large τ_R Eq. (12) simplifies to

$$\Gamma_M = 2RT(R^2 + T^2)\langle I_0 \rangle^2 \tau_R \left[1 - \frac{RT}{R^2 + T^2} |\gamma_{00}(\delta\tau)|^2 \right],$$

(17)

where $\gamma_{00}(\tau) = \Gamma_{00}(\tau)/\langle I_0 \rangle$ is the normalized second-order correlation function of the incident optical field. Although, for simplicity, we have treated a polarized field, a similar equation can be derived even for unpolarized light when certain symmetry conditions are satisfied.

Since $\gamma_{00}(0) = 1$ by definition, it follows that a measurement of the correlation Γ_M as a function of the variable time delay δt must yield results equivalent to those of a standard coincident scheme for measuring both the coherence time and the pulse duration time of the input optical field, with virtually no limit on time resolution. Measurement is made at photon-counting intensity levels and is applicable to a wide range of wavelengths.

We have tested our scheme by applying it to the measurement of the output pulses of a cw modelocked dye laser. The results are in good agreement with results obtained by the conventional second-harmonic (SH) autocorrelation technique.

The scheme is illustrated in Fig. 1. We assume that the incident optical field is a pulse train of polarized light and that each pulse can be expressed by the complex field:

$$E(t) = A(t) e^{i\phi(t)},$$

where $A(t)$ and $\phi(t)$ are the amplitude and phase, respectively, of the nth pulse. The detectors sense the field $E(t)$ and $E(t + \delta t)$, and the output count rate is given by:

$$Count_{\lambda,\delta\tau} = K \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} d\delta t \gamma_\lambda(t) E_2^*(t + \delta t) E_2(t) \lambda,\delta\tau.$$

K is an appropriate proportional constant, T_0 is detector response time, and $\lambda,\delta\tau$ denotes ensemble averages with respect to $A(t)$ and $\phi(t)$.

Optics Letters 1993 / Vol. 18, No. 11 / OPTICS LETTERS

We show a plot of this function in Fig. 2. There is also a decrease in the coincidence count rate at $\delta\tau \sim 0$ that consists of two components, corresponding to the first and second Gaussian terms of Eq. (9), which in turn go back to the two terms in Eq. (7). The narrow component corresponding to the first term is caused by second-order interference, which occurs only when $\tau < \tau_R$ and is smaller than the pulse field coherence time.
Unlike second-order interference, this method does not require that path differences be kept constant to within a fraction of a wavelength. The method is applicable to other situations in which pairs of single photons are produced, but be-comes less efficient for more intense pulses of light, be-cause the "visibility" of the interference is then reduced and cannot exceed 50% at high intensities. In principle, the resolution could be better than 1 pm in length or 1 fs in time.
Conventional (2nd order) interferometer

Absolute measurement of a long, arbitrary distance to less than an optical fringe

Jun Ye

JILA, National Institute of Standards and Technology, and Univeristy of Colorado, Boulder, Colorado 80309-0440
Heterodyne correlator

Real-time product originates from: square law detector

\[
\left[f(t) + g(t) \right]^2 \Rightarrow f(t)g(t)
\]

But to implement:
We step the delay (\(\tau\)) and calculate at each step.

NOT “real-time”.
I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
IDEA!
Use Statistics “DEFINITION”

\[\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2 \]

IDEA: Use Intensity interferometer (a.k.a. fourth order)

\[\text{Var}(I_1(t), I_2(t)) = E[((I_1(t) - I_2(t))^2] = (E[I_1(t) - I_2(t)])^2 \]

Calculated product originates from: Variance DEFINITION
MathCad “intensity” simulation

Pulse train – $I(t)$ - with Poisson intensity distribution

$$0.5 \left[\text{Var}(I_1(t) - I_2(t)) \right]^{\dagger} \left[E(I_1(t)) - E(I_2(t)) \right]$$
AGENDA

I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
Sensl Silicon APD Array

Detector: Sensl MicroFM-SMA-10020
Lot # 131218

Active Area: 1mm x 1mm
of Cells: 1144
Fill Factor: 48%

Biased at -32V unless noted otherwise

NOTE: New “Red” version available with higher near-IR QE. NOT used in these tests.
Detected photon number discrimination

$\lambda = 0.8$

$\lambda = 1.7$

$\lambda = 3.2$
Proof-of-concept experiment
REFERENCE:

\[
\frac{\text{Var}(N(t))}{\langle N_+ \rangle} = \frac{1}{2} \langle N_+ \rangle \exp \left[2 \ln 2 \frac{T^2}{\tau_c^2} \right]
\]

\[
\langle N_+ \rangle = N_1 + N_2
\]

\[
\frac{1}{\tau_c^2} = \frac{1}{T^2} + \frac{1}{c^2}
\]

T = pulse width
\(\tau_c\) = coherence time
Experimental RESULTS

Micrometer position (µm)

Variance of difference

Delay (ps)
I. Ways to achieve CORRELATION function

II. Intensity interferometer correlator

III. Experimental results

IV. Summary
SUMMARY

I. Reviewed methods for forming correlator product
 1) Nonlinear crystal
 2) Heterodyne – 2nd order interferometer
 3) Photon number statistics (variance of intensity difference) - 4th order interferometer

II. Experimental demonstration of intensity interferometer correlator for laser ranging
 1) Optical delay interferometer
 2) Moving mirror => to “wash out” second order interference effects
 3) Commercial (Sensl Inc.) Geiger-mode silicon APD array (photon number) detector.
 4) Demonstrated tens of micron level accuracy of Photon Counting Ranging

III. Future

 Femtosecond-pulse Carbon-nanotube mode-locked frequency-doubled fiber laser source