Orion EFT-1 Post-Flight Inspection and Analysis

Joshua E. Miller
University of Texas El Paso/CASSMAR
in support of NASA JSC/Jacobs JETS
April 26, 2016
Acknowledgements

- Hypervelocity Impact Tech. Group (HVIT)
 - Dr. Eric Christiansen
- Jacobs JSC Engineering and Technical Support Team
 - James Hyde
 - Bruce Alan Davis
 - Ovidio Oliveras
 - Dr. Eve Berger
- Lockheed Martin Space Systems Company
 - William Bohl
 - Kevin Deighton
- JSC-Remote Hypervelocity Test Laboratory
Detailed inspection of the unique Orion EFT-1 mission has identified six candidate solid particle impacts

- Orion’s ascent fairing, backshell and landing recovery system design provide a nearly pristine return surface of in-flight solid particle impacts
- Orion’s EFT-1 mission profile took the vehicle into some of the highest density debris bands surrounding the Earth beyond where most returned surfaces have ventured
 - Pre-flight preparatory ground based testing demonstrated the anticipated crater characteristics for particles in the sub-millimeter size range
 - Pre- and post-flight visual inspections identified six candidate impact craters with characteristic dimensions in the millimeter range
 - CT scans revealed crater characteristics and depths point to impact particles in the submillimeter size range
- On-going analysis efforts are focused on identifying the material and impact characteristics that generated the identified craters
 - Scanning electron microscope and spectrum measurements are looking for traces of the remnants of the embedded impactor
 - Hydrodynamic simulations consider impact speed, obliquity and shape effects
Orion’s crew module uses a shrouded, ceramic tile that does not significantly ablate on atmospheric reentry.
Orion’s EFT-1 flight profile was planned to visit Earth’s highest debris bands multiple times in the brief flight.
Preparatory tests performed to identify crater characteristics from sub-millimeter impacting particles

0.3 mm Al @ 7.13 km/s & 45°
Feature Size = 6.0 x 5.9 mm
Depth = 2.3 mm

0.25 mm SS @ 6.97 km/s & 45°
Feature Size = 4.7 x 5.5 mm
Depth = 3.8 mm
Inspections of the crew module took place in four phases from pre-flight to detailed post-flight inspections.
The detailed pre- and post-flight inspections identified six craters with millimeter range characteristic dimensions.

EFT-1 Post-Flight MMOD Inspection Results

Possible 6 MMOD impacts found on Orion tiles post-flight, 5 of which are >0.5mm deep

Panel A, Tile 33
Feature Size: 0.51 x 0.50 mm, Depth: 0.50 mm

Panel C, Tile 73
Feature Size: 1.29 x 1.10 mm, Depth: 0.05 mm

Panel H, Tile 144
Feature Size: 0.63 x 0.56 mm, Depth: 0.54 mm

Panel I, Tile 45
Feature Size: 1.18 x 1.15 mm, Depth: 0.60 mm

Panel F, Tile 45
Feature Size: 1.06 x 1.02 mm, Depth: 1.02 mm

Panel A, Tile 8
Feature Size: 1.88 x 1.27 mm, Depth: 0.70 mm
Detailed CT scans of the Panel A tile

4. Panel A, Tile 33
Feature Size = 0.51 x 0.50 mm
Depth = 0.50 mm
The Panel C candidate impact crater is very shallow and has a very smooth and specular reflective base.

7. Panel C, Tile 73
Feature Size = 1.3 x 1.1 mm
Depth = 0.05 mm
Detailed CT scan of the Panel H tile

20. Panel H, Tile 144
Feature Size = 0.63 x 0.56 mm
Depth = 0.54 mm
The Panel I candidate impact crater has been optically measured and preserved from destructive evaluation

23. Panel I, Tile 45
Feature Size = 1.2 x 1.1 mm
Depth = 0.60 mm
Detailed CT scan of the Panel F tile

24. Panel F, Tile 45
Feature Size = 1.1 x 1.0 mm
Depth = 1.02 mm
Detailed CT scans of the second Panel A candidate crater

25. Panel A, Tile 8
Feature Size = 1.88 x 1.27 mm
Depth = 0.70 mm
SEM spectrum measurements are being performed to identify remnants of the impacting body.

Spectrum 1: Iron, chromium, nickel, vanadium, copper, and minor AETB and salts.
Spectrum 2: Barium, iron, and minor AETB and salts
Spectrum 3: iron oxide, and minor AETB and salts
Spectrum 4: AETB and salts
Spectra 5-6: AETB, salts, and minor titanium and/or iron
Spectrum 7: AETB and salts, iron, chromium, nickel
Spectrum 8: AETB
Hydrodynamic simulations are used to see how impact conditions affect crater morphology.

Panel A candidate crater

Panel F candidate crater
Environments can be examined pending verification of the impact craters and performance of the tile.

*Assuming ROI #7 was caused by a natural impactor

Environment model extrapolations are within order of magnitude of observations.
Detailed inspection of the unique Orion EFT-1 mission has identified six candidate solid particle impacts

- Orion’s ascent fairing, backshell and landing recovery system design provide a nearly pristine return surface of in-flight solid particle impacts
- Orion’s EFT-1 mission profile took the vehicle into some of the highest density debris bands surrounding the Earth beyond where most returned surfaces have ventured
 - Pre-flight preparatory ground based testing demonstrated the anticipated crater characteristics for particles in the sub-millimeter size range
 - Pre- and post-flight visual inspections identified six candidate impact craters with characteristic dimensions in the millimeter range
 - CT scans revealed crater characteristics and depths point to impact particles in the submillimeter size range
- On-going analysis efforts are focused on identifying the material and impact characteristics that generated the identified craters
 - Scanning electron microscope and spectrum measurements are looking for traces of the remnants of the embedded impactor
 - Hydrodynamic simulations consider impact speed, obliquity and shape effects