Human Research Program

John B. Charles, Ph.D.
Chief Scientist

Mark J. Shelhamer, Sc.D.
Chief Scientist (Emeritus)
Human Research Program

- The Human Research Program (HRP) focuses on applied research
- Program goals
 - Perform research necessary to understand and reduce spaceflight human health and performance risks in support of exploration
 - Enable development of human spaceflight medical and human performance standards
 - Develop and validate technologies that serve to characterize and reduce medical risks associated with human spaceflight

Clay Anderson centrifuges Nutrition blood samples during Increment 15

Seat layout for contingency EVA

Example of a study on the effects of center of gravity on performance
Planned Exploration Activities

Evolvable Mars Campaign
A Pioneering Approach to Exploration

Earth Reliant

- International Space Station
- Low-Earth Orbit
- Commercial Cargo & Crew
- Space Launch System 70 mt
- Space Launch System 130 mt

Proving Ground

- Asteroid Redirect Vehicle
- Robotic Lunar Surface
- Global Exploration Roadmap
- Exploration Augmentation Module Concept

Earth Independent

- Mars Cargo Pre-Deployment
- Mars Vicinity
- Phobos
- Deimos

The Trade Space

Across the Board
- Solar Electric Propulsion
- In-Situ Resource Utilization (ISRU)
- Robotic Precursors
- Human/Robotic Interactions
- Partnership Coordination
- Exploration and Science Activities

Cis-lunar Trades
- Deep-space testing and autonomous operations
- Extensibility to Mars
- Mars-system staging/refurbishment point and trajectory analyses

Mars Vicinity Trades
- Split versus monolithic habitat
- Cargo pre-deployment
- Mars Phobos/Deimos activities
- Entry descent and landing concepts
- Transportation technologies/trajectory analyses
One-Year Missions and Twins Study

- Scott Kelly of NASA and Mikhail Kornienko of Roscosmos launched to the International Space Station on 27 March 2015 and returned on 1 March 2016, the longest space mission ever assigned to a NASA astronaut.

- This one-year mission will show if observed physiological trends continue as before or if we are approaching any “cliffs” that will require new treatments while providing new insights.

- Possibly five additional one-year missions.

- The Twins Study (Scott and Mark Kelly) is NASA’s first foray into 21st-century omics research and will examine differential effects on homozygous twin astronauts associated with differences in exposure to spaceflight factors.

- The Twins Study will examine:
 - Genome, telomeres, epigenome
 - Transcriptome and epitranscriptome
 - Proteome
 - Metabolome
 - Physiology
 - Cognition
 - Microbiome
Components of HRP

- HRP is composed of six Elements
 - Human Health Countermeasures
 - Physiology
 - Behavioral Health and Performance
 - Individual and interpersonal
 - Space Human Factors and Habitability
 - Interfaces between humans and vehicles/habitats
 - Exploration Medical Capability
 - Medical care for missions
 - Space Radiation
 - Radiation exposure and biological effects
 - ISS Medical Project
 - Infrastructure for flight experiments

- HRP funds the National Space Biomedical Research Institute (NSBRI) through a cooperative agreement to pursue research that complements the HRP portfolio
Venues for Conducting Research

International Space Station

NASA Space Radiation Lab

:envihab

Human Exploration Research Analog
Risk Mitigation

1. **Determine Relevant Risks**
 - 33 risks and risk factors relevant to exploration within HRP research portfolio
 - Focused on risks that could have a substantial negative effect on an exploration mission

2. **Identify gaps in**
 a) knowledge
 b) mitigation capability

3. **Identify the research products required to fill the gaps**

4. **Generate research products**

5. **Validate research products (as needed)**

6. **Reassess gaps in a) knowledge or b) mitigation capability and return to step 3 as needed**

Evidence → Risks → Gaps → Tasks → Deliverables
<table>
<thead>
<tr>
<th>Planetary DRM (Mars)</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
<td>LxC</td>
<td></td>
</tr>
<tr>
<td>Space Radiation Exposure (Radiation)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Cognitive or Behavioral Conditions (BMed)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Medications Long Term Storage (Stability)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Vision Impairment/Intracranial Pressure (VIIP)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Inadequate Food and Nutrition (Food)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Team Performance Decrements (Team)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Inflight Medical Conditions (Medical)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Human-System Interaction Design (HSID)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Bone Fracture (Fracture)</td>
<td>2x4</td>
<td></td>
</tr>
<tr>
<td>Renal Stone Formation (Renal)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Sensorimotor Alterations (SM)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Injury from Dynamic Loads (OP)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Altered Immune Response (Immune)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Host-Microorganism Interactions (Microhost)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Injury Due to EVA Operations (EVA)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Hypobaric Hypoxia (ExAtm)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Sleep Loss (Sleep)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Reduced Muscle Mass, Strength (Muscle)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Reduced Aerobic Capacity (Aerobic)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Celestial Dust Exposure (Dust)</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Decompression Sickness (DCS)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Orthostatic Intolerance (OI)</td>
<td>3x2</td>
<td></td>
</tr>
<tr>
<td>Cardiac Rhythm Problems (Arrhythmia)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Concern of Intervertebral Disc Damage (IVD)</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Concern of Effects of Medication (PKPD)</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- ISS Required
- ISS Not Required
- Milestones Requires ISS
- ISS Mission Milestone
- Anticipated Milestone Shift
- Ground-based Milestones
- Mission Milestone

Accepted Risks
- HI LxC
- MID LxC
- LOW LxC
- Optimized
- Insufficient Data

Concerns
- Outcomes for all DRM
- Standards Dev Measures (Dev & Val)
- CMs Developed
- CMs Validated
- CMs Developed & Validated
- CMs Validated
- CMs Identified
- CMs Identified
- CMs Identified
- CMs Identified

End ISS
- Anticipated Milestone Shift
- ISS Mission Milestone
- ISS Required
- ISS Not Required
Program Constraints & Goals

- Constraints on schedule, crew access, and need for risk mitigation are different from those in NIH and NSF solicitations
 - ISS and analogs are limited resources

- An investigation should significantly contribute to the risk-reduction focus of HRP
 - It is not mandatory that it greatly advance the discipline in general or be highly innovative.
 - Results may still be critical in addressing the gaps of the HRP
Statistical Considerations

- ISS is significantly oversubscribed with respect to experiments
- Analog facilities also have limitations on subject count and available time
- Robust statistical design of experiments will be part of the solution to oversubscription as well as a way to make more efficient use of limited resources more generally
- Small-n studies might not achieve ideal sample size, statistical power, control of extraneous variables, margin of error, etc.
 - Nevertheless it is critical that data analysis plan is sound
- Proposed sampling procedure, experimental design, and data analysis methodology will be evaluated by statistician on review panel
Flagship Topics

- Flagship topics represent the primary mechanism for soliciting HRP grants
- Topics are selected from HRP Integrated Research Plan and critical path for each discipline
- Flagship awards typically range from $50K to $400K per year, for 3-4 years
Omnibus Solicitation

• In order to expedite progress in other than Flagship areas, HRP accepts short-term investigations that address any risk and gap in the Integrated Research Plan
• Omnibus grants last no more than one year and cost no more than $100K total per award

Basic Investigations for New Investigators (BINI)
• To explore novel ideas that might not be directly aligned with HRP risks, HRP accepts omnibus proposals in the Basic Investigations category on any aspect of human adaptation to space flight
• Open to new investigators only (no NASA or NSBRI funding as PI in the last ten years)
• Project must adhere to Omnibus guidelines (budget and duration), but can be renewed for one year based on progress
After Merit Review

- Program Alignment Review follows Merit Review
 - Alignment with Integrated Research Plan, programmatic balance, feasibility (analog definition or flight definition) and cost

- Analog-definition and flight-definition proposals undergo further reviews for feasibility

- Selection Official is HRP Program Manager
Summary

• HRP is focused on understanding and mitigating crew health and performance risks and funding work that directly aligns with those risks. Due to various constraints, HRP does not generally pursue basic research.

• HRP is an applied research program in which the research products must fill the knowledge or mitigation gaps for which research is solicited.

• Thank you

humanresearch.jsc.nasa.gov
Additional Material
Review Criteria: Significance

• From the NRA:
 – Does this study address a research emphasis stated in this solicitation?
 – Does the study test a significant hypothesis or produce data that would enable a significant hypothesis to be generated?
 – If the study is non-hypothesis driven, are the data produced needed to understand or reduce the risk addressed by the research emphasis?
 – If the task will produce a software model or tool, how will it serve to better quantify or mitigate a risk?
 – If the aims of the application are achieved, how well will the product(s) address the research emphases?
 – If the aims of the application are achieved, how will scientific knowledge or technology advance?
HRP Risks and Risk Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHP</td>
<td>Adverse Behavioral Conditions and Psychiatric Disorders</td>
</tr>
<tr>
<td>BHP</td>
<td>Performance Decrement Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team</td>
</tr>
<tr>
<td>BHP</td>
<td>Performance Errors Due to Fatigue Resulting from Sleep Loss, Circadian Desynchronization, Extended Wakefulness, and Work Overload</td>
</tr>
<tr>
<td>ExMC</td>
<td>Unacceptable Health and Mission Outcomes Due to Limitations of In-flight Medical Capabilities</td>
</tr>
<tr>
<td>HHC</td>
<td>Bone Fracture</td>
</tr>
<tr>
<td>HHC</td>
<td>Cardiac Rhythm Problems</td>
</tr>
<tr>
<td>HHC</td>
<td>Clinically Relevant Unpredicted Effects of Medication</td>
</tr>
<tr>
<td>HHC</td>
<td>Compromised EVA Performance and Crew Health Due to Inadequate EVA Suit Systems</td>
</tr>
<tr>
<td>HHC</td>
<td>Crew Adverse Health Event Due to Altered Immune Response</td>
</tr>
<tr>
<td>HHC</td>
<td>Decompression Sickness</td>
</tr>
<tr>
<td>HHC</td>
<td>Early Onset Osteoporosis Due to Spaceflight</td>
</tr>
<tr>
<td>HHC</td>
<td>Impaired Control of Spacecraft, Associated Systems and Immediate Vehicle Egress Due to Vestibular/Sensorimotor Alterations Associated with Space Flight</td>
</tr>
<tr>
<td>HHC</td>
<td>Impaired Performance Due to Reduced Muscle Mass, Strength and Endurance</td>
</tr>
<tr>
<td>HHC</td>
<td>Inadequate Nutrition</td>
</tr>
<tr>
<td>HHC</td>
<td>Injury from Dynamic Loads</td>
</tr>
<tr>
<td>HHC</td>
<td>Intervertebral Disk Damage</td>
</tr>
<tr>
<td>HHC</td>
<td>Orthostatic Intolerance During Re-exposure to Gravity</td>
</tr>
<tr>
<td>HHC</td>
<td>Performance Decrement and Crew Illness Due to an Inadequate Food System</td>
</tr>
<tr>
<td>HHC</td>
<td>Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity</td>
</tr>
<tr>
<td>HHC</td>
<td>Renal Stone Formation</td>
</tr>
<tr>
<td>HHC</td>
<td>Spaceflight-Induced Intracranial Hypertension/Vision Alterations</td>
</tr>
<tr>
<td>SHFH</td>
<td>Adverse Health Effects Due to Alterations in Host-Microorganism Interactions</td>
</tr>
<tr>
<td>SHFH</td>
<td>Adverse Health Effects of Exposure to Dust and Volatiles During Exploration of Celestial Bodies</td>
</tr>
<tr>
<td>SHFH</td>
<td>Inadequate Critical Task Design</td>
</tr>
<tr>
<td>SHFH</td>
<td>Inadequate Design of Human and Automation/Robotic Integration</td>
</tr>
<tr>
<td>SHFH</td>
<td>Inadequate Human-Computer Interaction</td>
</tr>
<tr>
<td>SHFH</td>
<td>Incompatible Vehicle/Habitat Design</td>
</tr>
<tr>
<td>SHFH</td>
<td>Performance Errors Due to Training Deficiencies</td>
</tr>
<tr>
<td>SR</td>
<td>Acute and Late Central Nervous System Effects from Radiation Exposure</td>
</tr>
<tr>
<td>SR</td>
<td>Acute Radiation Syndromes Due to Solar Particle Events (SPES)</td>
</tr>
<tr>
<td>SR</td>
<td>Degenerative Tissue Or Other Health Effects From Radiation Exposure</td>
</tr>
<tr>
<td>SR</td>
<td>Radiation Carcinogenesis</td>
</tr>
</tbody>
</table>
Flight Constraints

- Implementation of human life sciences research during space flight is limited by various resource constraints such as crew time (before, during, and after flight), up and down mass, and cold stowage.
- Experiments that require fewer of these resources will be more feasible to implement.
- Flight experiment proposals must represent mature studies strongly anchored in previous or current ground-based or flight research.