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Abstract

Dr. Fereidoun ‘Feri’ Farassat was a theoretical aeroacoustician at the
National Aeronautics and Space Administration (NASA) Langley Re-
search Center. This document contains technical derivations, notes, and
classes that Dr. Farassat produced during his professional career. The
layout of the document has been carefully crafted so that foundational
ideas through advanced theories, which altered the technical discipline
of aeroacoustics, build upon one another. The document can be used to
understand the theories of acoustics and learn one contemporary aeroa-
coustic prediction approach made popular by Dr. Farassat. Most im-
portantly, this document gives the general reader insight into how one
of NASA’s best aeroacoustics theoreticians thought, constructed, and
solved problems throughout his career.
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Figure 1. Portrait photograph of Dr. Fereidoun ‘Feri’ Farassat taken December 2006.



1 Introduction

Dr. Fereidoun ‘Feri’ Farassat was a researcher at the National Aeronautics and Space Administra-
tion (NASA), who not only was a leading theoretician in the field of aeroacoustics! but also had
incredible influence on those around him. This document contains his comprehensive mathemati-
cal derivations, notes, and classes that represent his life’s work. Dr. Farassat was an unwavering
advocate for NASA research and always followed what he believed was the correct technical path.
Beyond Dr. Farassat’s notable theoretical contributions to the scientific field of aeroacoustics, he
had an incredible influence on other researchers and those who surrounded him on a professional
and personal level. Readers who examine this document, with or without a technical background,
will gain an understanding of how one of NASA’s best theoreticians thought, worked, and lived.

This document has a unique philosophy and purpose that emerged during its creation. Origi-
nally the document was intended as simply a comprehensive set of mathematical derivations from
Dr. Farassat’s career at NASA. Certainly this task has been accomplished, and this publication
represents a comprehensive volume of the green books,? technical derivations, notes, and classes
that Dr. Farassat produced during his professional career. However, once the document was created
it was realized that it represents so much more than just a simple volume of research notes. The
layout of the notebooks, classes, and derivations has been carefully chosen so that foundational
ideas through theories, that altered the technical viewpoint of aeroacousticians, build upon one
another. With this approach, the document could be used by a student with a basic technical
undergraduate degree to understand the basics of acoustics and learn one class of very popular
prediction approaches.

This is a historical document about the life of a NASA researcher and those he interacted with. It
gives insight into the development of equations used internationally. Perhaps most importantly, this
document gives the general reader insight into how one of NASA’s best aeroacoustics theoreticians
thought, constructed, and solved problems throughout his career. Dr. Farassat’s career is evidence
of the importance of fundamental theoretical research and how it can change the course of a technical
discipline and the organization of NASA itself.

The content of this document is as follows: A brief biography of Dr. Farassat describes his life
and impact; how the document was created and how the derivations, notes, and classes are organized
are described; and finally, a comprehensive list of Dr. Farassat’s publications is presented.

1.1 A Brief Biography of Fereidoun ‘Feri’ Farassat

Dr. Fereidoun ‘Feri’ Farassat, whose portrait is shown in Figure 1 on page 5, was born on October
20", 1944 in Ramhormoz, Iran. His father was Golamhassan Farassat, who was the head of the
Gendarmerie® within the 10" province of Esfahan, Iran, and his mother was Fatmeh Roozrokh
Farassat. He had multiple sisters and brothers. The Farassat family moved throughout Iran during
Feri’s childhood, and they lived in the Iranian cities of Azarbaijan, Mazandaran, Yazd, South
Khorasan, and Tehran. Dr. Farassat enjoyed an Iranian childhood and often claimed that he had
received the highest quality education. Feri graduated from a public high school in Tehran, Iran.
He received his undergraduate degree of Bachelor of Engineering with emphasis in Mechanics in
1967 from the American University of Beiruit. After completing his undergraduate degree he moved

! Aeroacoustics is the study of how sound is generated from moving bodies and turbulence, propagated and
scattered through the fluid, and received by an observer.

2Many NASA researchers record their work within bounded books that have a green cover and are affectionately
called ‘green books.’

3 A military organization whose task is aiding the police within a civilian population.



to Scotland and worked as an engineer.

Dr. Farassat started graduate studies at Syracuse University in the United States in 1968 and
in 1970 earned his Master’s degree.* His research® at Syracuse University was focused on experi-
mental jet aeroacoustics. After this experimental investigation, he entirely focused on theoretical
approaches.

Dr. Farassat started his doctoral studies at Cornell University in 1970, after graduating from
Syracuse University. At Cornell University his doctoral advisor was Professor William Rees Sears.®
Professor Sear’s advisor was Professor Theodore von Karman, and Theodore von Karman’s advisor
was Professor Ludwig Prandtl. Dr. Farassat was undoubtedly proud of his academic lineage.
While at Cornell University, Dr. Farassat worked on theoretical approaches to predict the noise
from helicopter rotors based upon the research of Ffowcs Williams and Hawkings.” Perhaps the
main focus of Dr. Farassat’s Ph.D. dissertation is the use of generalized functions in conjunction
with aeroacoustics and was the basis for his research throughout his life. Dr. Farassat writes,
‘the period that I worked with Bill Sears at Cornell was one of the happiest periods of my life. I
often visited Bill and his wife Mabel in Tucson, Arizona where Bill had retired.” He completed his
Ph.D.2 in 1973 and joined the faculty of the George Washington University as a senior scientist
and eventually became an adjunct professor. He taught classes within the college of engineering
and held this position concurrently with his position at NASA for approximately 25 years.

Dr. Farassat joined NASA in 1979. He became a naturalized citizen in 1981. While at NASA
and fullfilling his research obligations, he continued to teach classes to both the researchers of
NASA and students of the George Washington University. Some material from these classes is
included within this publication. He remained at NASA throughout his professional career, where
he quickly became a leading theoretician in aeroacoustics. However, his interests were not limited to
theoretical aeroacoustics and included general acoustics, scattering, the Ffowcs Williams-Hawkings
(FW-H) equation, Kirchhoff formulas, helicopter noise, ducted fans, noise from propellers, and
subsonic and supersonic aerodynamics. He was also interested in more general mathematical areas
such as non-standard analysis, differential geometry, topology, and generalized functions, as just a
few select examples. These varied interests are readily apparent by examining the work within this
document.

Dr. Farassat published approximately 150 papers, many in prestigious journals, and a great
number of them are single author. He would often give away first authorship of many papers when
working in conjunction with students or colleagues, and he was known to inspire them to work on
very difficult problems. Undoubtedly, he was the main contributor of the majority of these joint
research efforts. The majority of these publications are freely available to the public on the NASA
Technical Reports Server.

Dr. Farassat, during his mid to late-career, was undoubtedly the theoretical backbone of the
Aeroacoustics Branch at NASA Langley Research Center and perhaps across the entire organiza-
tion. He had influenced the technical direction of many researchers within both the Aeroacoustics
Branch and NASA as a whole and had a considerable influence throughout the community, all of
which are still being felt today.

Dr. Farassat was highly recognized by international organizations and by NASA. He received

4Farassat, F., ‘Noise from High Speed Coaxial Interacting Jets,” Masters Thesis, Syracuse University, 1970.

5Supported by NASA Grant NGL-33-022-082.

SProfessor Sears wrote an excellent auto-biography that discusses some of his interactions with Theodore von
Karman and Dr. Farassat. Sears, W. R., ‘Stories from a Twentieth-Century Life,” Unknown Publisher, 1993.

"Ffowcs Williams, J. E. and Hawkings, D. L., ‘Sound Generation by Turbulence and Surfaces in Arbitrary Motion,’
Royal Society Philosophical Transactions A, Vol. 264, No. 1151, 1969, pp. 321-342. DOI: 10.1098/rsta.1969.0031

8Farassat, F., ‘The Sound from Rigid Bodies in Arbitrary Motion,” Ph.D. Dissertation, Cornell University, 1973.



the NASA Exceptional Scientific Achievement Medal in 1987 and 1991. Dr. Farassat was a fellow
of multiple prestigious technical societies including the American Institute of Aeronautics and
Astronautics and the American Helicopter Society. The NASA H. J. E. Reid Award was given to
Dr. Farassat in 1980.° He also received the American Institute of Aeronautics and Astronautics
Aeroacoustics Award in 1996.

Dr. Farassat enjoyed life outside of his research. He loved his family, friends, colleagues, hobbies
and he possessed an unwavering love for those around him. Dr. Farassat was very proud of his
heritage and often shared stories about Iran at work, with friends, and family. He loved Iranian
people, food, culture, history, and had an equal love for America. He was an avid cook, and he
cooked for guests of NASA Langley and for his family. His wonderful culinary creations were shared
at many NASA acoustics picnics and holiday parties. Dishes often consisted of traditional Iranian
cooking or something more experimental. He had a great interest in gardening that likely grew out
of his culinary skills and often spoke of focusing on gardening during potential retirement.

Dr. Farassat was a lover of books and possessed a considerable collection of volumes. His books
were drawn from the NASA Technical Library and through traditional stores. In fact, at one
point every book that NASA Langley purchased for the Technical Library was first reviewed by
Dr. Farassat before it was shelved within the collection. Dr. Farassat had an incredible love for
all mathematics and certainly explored almost all areas of mathematics to some degree. Perhaps
beyond all other interests, Dr. Farassat enjoyed helping those who were less fortunate and was
involved in volunteer efforts within the community. For example, he consistently volunteered at
soup kitchens within Hampton Roads and particularly with the Salvation Army and with the St.
Andrew Presbyterian Church.

Dr. Farassat, on July 9", 2011, passed away due to complications from cancer while surrounded
by his family at his home in Hampton, Virginia. At the time of his death he was a Senior Technol-
ogist'? at NASA. He was admired by his family, friends, colleagues, and many others. Dr. Farassat
was an unwavering advocate within NASA for the importance of research and was extremely sup-
portive of junior researchers. He helped those in need and always made time to listen. Certainly,
he had an extremely positive impact on everyone who knew him.

Bibliographic References

e Brentner, K. S., ‘Editorial,” International Journal of Aeroacoustics, Vol. 14, No. 1-2, 2015, pp. xxiii-xxvi.
DOI: 10.1260/1475-472X.14.1-2.xxiii

e Myers, M. K., ‘Generalized Integral Theorems and Application to the Equations of Continuum Mechanics,’
International Journal of Aeroacoustics, Vol. 14, No. 1-2, 2015, pp. 1-24. DOI: 10.1260/1475-472X.14.1-2.1

e Morino, L. and Gradassi, P., ‘From Aerodynamics Towards Aeroacoustics: A Novel Natural Velocity Decom-
position for the Navier-Stokes Equations,” International Journal of Aeroacoustics, Vol. 14, No. 1-2, 2015, pp.
161-192. DOI: 10.1260/1475-472X.14.1-2.161

e Miller, S. A. E., ‘The Scaling of Broadband Shock-Associated Noise with Increasing Temperature,” Interna-
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e Sikarwar, N. and Morris, P. J., ‘The Use of an Adjoint Method for Optimization of Blowing in a Convergent-
Divergent Nozzle,” International Journal of Aeroacoustics, Vol. 14, No. 1-2; 2015, pp. 327-352. DOI:
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e Hardin, C., ‘Some Elegant Derivations Employing Generalized Functions,” International Journal of Aeroacous-
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9H. J. E. Reid Award was given to Dr. Farassat for his paper, Farassat, F., ‘Theory of Noise Generation for Moving
Bodies with an Application to Helicopter Rotors,” NASA TR-R451, 1980.

10Senior Technologist and Senior Theoretical Aeroacoustician, which is the highest purely technical position achiev-
able at NASA.



Obituary published in Daily Press from July 12t* to July 13", 2011.

Personal discussions with Michael Myers, Williamsburg, Virginia, November 2015.

Personal discussions with Mark Dunn, Hampton, Virginia, November 2015.

e Personal discussions with Fereidoun Farassat, NASA Langley, 2008-2011.

1.2 Process of Preparation

This section discusses the process of preparing this document. A large number of belongings were
left behind by Dr. Farassat that included books, journal articles, notes, derivations, and countless
other items during his career at NASA. These belongings were placed by the members of the
NASA Langley Aeroacoustics Branch and the NASA Langley Technical Library staff into sets of
labeled boxes located at the Acoustics Research Lab and the NASA Langley Technical Library,
respectively. Eighteen catalogued boxes reside at the NASA Acoustics Research Lab pictured in
Figure 2, and twenty-one boxes reside at the NASA Langley Technical Library pictured in Figure 3.
A number of important articles reside with the family of Dr. Farassat. Those of a technical nature
were provided for the purpose of creating this document. In particular, Dr. Farassat’s personal
green books were provided to NASA for the purpose of publication and appear here. Dr. Farassat
had a large number of international and local collaborators who possessed some of his writings,
class notes, and derivations. These collaborators kindly made additional material available for
publication. It is estimated that 45 boxes of research material were recovered, in addition to many
loose notes and green books.

Once all the articles of Dr. Farassat were collected, they were meticulously searched, and items
were digitized for publication. The originals were then returned to their sources, with the majority
residing at the NASA Aeroacoustics Branch and NASA Langley Technical Library. The digitized
documents were then organized by technical category or as a class. Particular digitized documents
were then removed as they were identical, as some sources provided identical derivations or class
notes. Also, some sources provided portions of a series of derivations or portions of a class, and
these portions were combined to produce a complete derivation or class.

The importance of the green books cannot be understated, as they contain the majority of his
original mathematical derivations. These green books are all represented within this publication.
Great care has been taken to make them fully available to the reader. Many classes were taught by
Dr. Farassat, and most of the corresponding notes and presentation slides are present. A number
of unbound handwritten notes are also included.

Journal publications, conference proceedings, or presentations that are publicly available are
not included in this document, as they are already available to the reader. A comprehensive list
of these journal publications, conference proceedings, and presentations are included at the end
of this document. Also, select notes of Dr. Farassat that were used to learn well-known fields of
mathematics or physics are not included, as they have been established previously within technical
communities. Finally, some notes containing highly personal comments were removed and an
editorial comment written at their locations.

It is a challenge to present such a large and varied research material in a logical order. An obvious
approach is to arrange the material in chronological order; however, given that many technical
approaches and classes were developed intermittently, this would create a confusing publication.
Instead, we adopt the approach of presenting material as one would in a technical book used for
learning or teaching. The classes on the basics of acoustics, applied acoustics, aeroacoustics, etc.
are presented first to give those less familiar with the subject the necessary background for its
understanding. Then, the series of green books are presented in their order of importance, as they
contain more intricate ideas based upon concepts taught in the classes. Finally, important unbound



notes are presented. With this approach, the arrangement of the material is similar to a graduate
textbook on advanced mathematics, fluid dynamics, and acoustics.

Figure 2. Eighteen boxes of the collected articles of Dr. Farassat located at the NASA Langley
Acoustics Research Lab.

Figure 3. Twenty-one boxes of the collected articles of Dr. Farassat located at the NASA Langley
Technical Library. Access was courtesy of the library staff.

2 Summaries of Mathematical Derivations, Notes, and Courses

This section contains concise summaries of Dr. Farassat’s various notebooks, unbound mathe-
matical derivations, and courses. An effort was made to create summaries that are technically
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descriptive and accessible to a wide audience. Each subsection contains an overall description of
the corresponding content. Then, a description of the content on a page by page basis is given.

Dr. Farassat regularly wrote page numbers within his bound notebooks. We reference the
page numbers of his notes within these summaries. For each summary section, page numbers are
abbreviated by the acronym of the section title. Also, we reference page numbers that appear on
the bottom of each page to aid the reader in finding the sections and corresponding pages labeled
by Dr. Farassat. These two page numbering schemes are used concurrently. For example, for the
section summarizing ‘The Green’s Function Short Course’ (GFSC), we might write pages 329-330,
which refers to the numbers at the bottom of each page of this document. Alternatively, we might
write GFSC pages 3-4, which refers to pages of the GFSC shown on pages 329-330.

A Very Basic Course in Acoustics (Pages 31 - 76)

Dr. Farassat often presented lectures and courses to researchers of NASA and to students residing at
universities. The most introductory course is titled, ‘A Very Basic Course in Acoustics,” (AVBCA)
and contains five main lectures. These slides and notes were originally developed as a short course
for civil servants and contractors with no prerequisite knowledge of acoustics.

The purpose of the first lecture is to present basic definitions of linear acoustics with emphasis
on acoustic amplitude, frequency, speed of sound, wave length, period, wavenumber, and types of
signals. Dr. Farassat uses the word ‘science’ to describe the field and describes acoustics as the study
of small perturbations of quantities in a material (e.g., air, water, plasma). Concepts are presented
based on a planar wave of discrete frequency until page 38, where broadband waves are introduced
through the summation of multiple sinusoidal waves. The concept of Fourier decomposition is
examined without going into detail, as he would in more advanced courses. The first lecture ends
with the definition of the decibel among other descriptive factors such as loudness.

AVBCA lecture two starts on page 44 and focuses on plane and spherical waves. Some amount of
review material is presented from lecture one. An example is presented that shows how little energy
is contained within acoustic waves. This is an important point as the energy within an acoustic
wave is generally many orders of magnitude smaller than that contained in the prevailing flow-field.
AVBCA lecture three (pages 54-61) introduces the field of psychoacoustics, discusses biology of the
ear, critical octave and one-third octave bands, loudness, age related effects, subjective statistics
of acoustics, and perceived noise level.

Lecture four, starting on page 62, discusses the basics of superposition and constructive inter-
ference, how waves stand in ducts, beating phenomenon, plane waves, reflections, spherical waves,
diffraction, scattering, and refraction by flow gradients. The fifth and final lecture of AVBCA starts
on page 71, which focuses on microphones and noise measurements.

Applied Acoustics (Pages 77 - 158)

Dr. Farassat presented another excellent course in acoustics called, ‘Applied Acoustics,” (AA).
The class is targeted towards practicing engineers at NASA and for students within the university
classroom. Its purpose is to introduce acoustics at a more technical level than the introduction to
acoustics class previously discussed. The prerequisite is likely a junior or senior level undergraduate
engineering education, as the class is meant for those outside the field to quickly become familiar
with acoustics. The course is divided into ten lectures.

The first lecture (pages 77-83) focuses on basic governing equations of acoustics. Fundamen-
tal concepts are introduced such as speed of sound within gases, wavelength, frequency, inviscid
equations of motion, and derivation of the wave equation. Note that viscosity is not included in
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the governing equations and that a perfect gas is assumed. Select canonical equations such as
the Helmholtz equation and solutions are sought. Lecture one closes with the introduction of the
decibel scale and sound power.

The second lecture (pages 84-92) explains the use of complex numbers in acoustics, steady state
conditions, the advantages of the time versus frequency domain, and energy relations. Multiple
types of waves (plane, spherical, evanescent) are used as examples to illustrate the developed
material. AA lecture three, on pages 92-98, reviews plane waves that were presented in the second
lecture and expands on previously developed results. Particle displacement as a function of wave
intensity and the steady state assumption are explored for planar waves. The same relations are
found for spherical waves, and the concept of the monopole is introduced.

The monopole is explored further in the fourth lecture (pages 98-101), and it is shown that
the mathematical description of the monopole is also suitable for the solution of the wave equation
with a monopole source. Integral solutions of the wave equations are obtained. Rayleigh’s piston in
a wall is examined, and integral solutions are derived that include the velocity field. Lecture four
ends with the introduction of the dipole source. Lecture five (pages 101-105) explores the idea of
compact and non-compact sources. An in-depth presentation of the concepts of wave kinematics is
given. Of particular interest is the exploration of stationary and non-stationary compact sources,
which are often a source of some confusion for many practicing acousticians. The lecture closes
with an introduction to the compactness condition for a convecting monopole.

Lecture six (pages 105-116) is very technical and introduces the concept of noise from moving
bodies through presentation of the Ffowcs-Williams Hawkings (FW-H) equation, which includes
permeable data surfaces. The FW-H equation is presented in only two slides.!! A number of
other important concepts are introduced and related to the FW-H equation, including the Lowson
formula, Curle formula, Rayleigh formula, and Green’s function in an unbounded domain. These
concepts are explained in the context of the theory of generalized functions. Finally, lecture six
closes with the introduction of the theory of the Green’s function.

Lecture seven, on pages 117-122, returns to more traditional acoustics topics and discusses the
sound from a moving dipole using Lowson’s formula. Gutin’s result is then discussed, which focuses
on the sound from steady rotating forces such as those from a propeller. The lecture closes with a
discussion of Kirchoff’s formula. Lecture eight (pages 123-130) continues with the development of
the theory of noise generation from moving sources. The acoustic analogy of Lighthill is introduced.
Some important points are made regarding Lighthill’s approach in preparation for the derivation of
the FW-H equation. The FW-H equation is derived, and its terms, consisting of thickness, loading,
and quadrupole, are explained. Many of the intermediate steps are omitted given the prerequisite
of the audience.

AA lecture nine (pages 130-141) focuses on the solution of the FW-H equation, which was
developed within the previous lecture. The solution is shown for the loading and thickness source
terms and placed within the context of Dr. Farassat’s Formulation 1A. A number of the ‘tricks of
the trade’ are presented with regard to evaluation of Formulation 1A. Based on the newly derived
solution, Rayleigh’s piston, Curle’s formula, Kirchoff’s formula, moving sources, Lowson’s formula,
and Succi’s formula are revisited. The final lecture, starting on page 141, introduces perturbation
theory and applies it to the governing equations within the context of duct acoustics. These newly
developed equations are used to explain the phenomenon of acoustic waves traveling through engine
nacelles. The course ends with a discussion on concepts of duct acoustics.

1 One can imagine the large amount of discussion that occurred to explain this canonical result in aeroacoustics.
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Aeroacoustics Lectures (Pages 159 - 257)

Dr. Farassat continually lectured throughout his career, and one excellent course he presented was
on aeroacoustics. The Aeroacoustics Lectures (AL) notes are assembled from multiple sources into
a coherent single class based on lectures conducted in 2000 and 2010. The AL notes are divided into
nine lectures that were presented in 2000 and 2010 and four additional preliminary lectures that
were presented in 2010. The latter lectures, as they are more introductory and meant for NASA
Langley summer interns and relatively new employees within acoustics, are positioned after the first
nine main lectures. The last four lectures contain select redundant material relative to the first
nine lectures and are viewed as prerequisite material. In total, there are approximately 168 pages of
material. These lectures are suitable for the basis of a graduate or senior level undergraduate course
in aeroacoustics. The course generally assumes a working knowledge of differential equations and
a portion of a technical undergraduate education. Lecture number nine combines all the material
presented within the previous eight lectures into a single unified theory consisting of the solutions
of the FW-H equation.

The first lecture, starting on page 159, introduces the students to the concepts of the speed,
wavelength, and frequency of sound on AL pages 1/1-1/2. Common variables of aeroacoustics are
defined. The governing equations are derived on AL pages 1/3-1/8 using these basic concepts. Re-
sulting differential equations include simple relations for density with pressure, mass conservation,
momentum conservation (without viscosity), the wave equation and operator, and the Helmholtz
equation. A very basic result of the use of complex numbers in acoustics is presented using the
developed equations on AL page 1/9. On AL page 1/10 the basics of the sound pressure level scale
in decibels is introduced. Contours of loudness within a ‘line form’ are presented on AL page 1/11.
The first lecture ends on AL page 1/12 with a table of the sound power range and a discussion of
the scaling of subjective effects due to changes in sound power.

Lecture 2 begins on page 165 by discussing the linearity of acoustics and the advantages of
treating problems in a linear fashion (AL pages 2/1-2/2). Rayleigh’s complex amplitudes are
introduced for the field variables of pressure and velocity. The concept of steady state is examined
(introduced in AL lecture 1) on AL page 2/3 and extended with Fourier series representation of a
signal. Differences between time and frequency domain solution approaches are discussed on AL
page 2/4. Their relation is shown with use of the Fourier transform, and their advantages and
disadvantages are discussed. The energy equation was not discussed within AL lecture 1, and here,
on AL pages 2/7-2/9 it is introduced through modification of the momentum equation via the dot
product of the velocity. The acoustic intensity is derived and related to the acoustic energy density
through a differential equation. This equation is examined with the use of a volumetric (integral)
approach and some energy relations (steady state) are derived on AL page 2/9. The second lecture
ends by discussing various simplified models of waves (AL page 2/10). Plane waves are introduced
first, and the acoustic energy density and intensity are derived within a long duct. Evanescent
plane waves are described, and an example is presented for an evanescent plane wave originating
from a vibrating plane (AL page 2/13). AL pages 2/15-2/16 introduce the phase velocity and trace
velocity of plane waves. AL lecture 2 closes on page 2/17, where the wavelength and wavenumber
that were introduced in AL lecture 1 are derived for the plane wave.

Lecture three, starting on page 173, continues developing the simplified theory of waves on
AL pages 3/1-3/3. Plane waves defined in the time domain are introduced and derived from
the momentum equation concepts of the time dependent intensity and particle displacement. The
concept of acoustic pressure using the theory of steady state acoustics is shown on AL page 3/4 and
introduces summation of acoustic pressure. The summation approach uses the concept of linearity
introduced earlier. Some basic rules for finding mean square acoustic pressure are summarized on
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AL page 3/5. Another model is introduced for simplified waves. Here, spherically symmetric waves
are introduced on AL pages 3/6-3/12 with the use of the three-dimensional wave equation discussed
in AL lecture 1. A number of characteristics are derived including intensity and phase angles
between velocity and pressure. Important differences between plane and spherically spreading
waves are noted. A boundary condition that is analogous to a pulsating sphere is introduced on AL
page 3/10, which is used to explain the concept of the monopole and the pulsating monopole (AL
pages 3/10-3/11). AL lecture 3 concludes by summarizing wavenumber relations for the steady
monopole.

AL lecture 4 is relatively short (pages 179-182 and AL pages 4/1-4/6) and focuses on defining
acoustic sources. The first acoustic source is the monopole that was introduced in AL lecture 3. A
Rayleigh piston is defined that consists of a normal velocity distribution on an infinite wall on AL
page 4/2. The velocity potential of Rayleigh’s piston is derived on AL pages 4/3-4/4. The dipole
is introduced through a physical argument, and the pressure from the dipole is derived (AL pages
4/5-4/6). The near-field and far-field pressure terms are shown to be independent terms within the
solution.

The fifth lecture of AL starts on page 182 and discusses the idea of compact sources by using
the compactness condition (AL page 5/1). Frequency and wavenumber relations for observers in
motion and in wind tunnel coordinates are introduced for plane waves on AL pages 5/2-5/3. On
the next two pages (AL pages 5/4-5/5) the same relations are introduced for the point source. The
collapsing sphere approach is introduced for the solution of the wave equation on AL page 5/7.
Some further notes on the compactness condition, but now in the context of a moving source, are
shown on AL page 5/8. This compactness condition is placed within the context of the collapsing
sphere solution and closes AL lecture 5.

The sixth lecture of the AL, starting on page 186, focuses on acoustic radiation from moving
bodies and generalized function theory. It is noted on AL page 6/1 that generally two approaches are
used for noise prediction for moving bodies: computational fluid dynamics'? and acoustic analogies.
The second approach is adopted, and the FW-H equation is introduced on AL page 6/2. Lowson’s
formula is introduced on AL page 6/3, and the Green’s function is also introduced here. The focus
of the lecture shifts towards the introduction of generalized functions on AL pages 6/4-6/16. An
overview of the strengths of using generalized functions is presented, and then various functions are
defined, such as the Dirac delta and Heaviside functions. One very important point is emphasized:
that governing equations are valid if the derivatives are represented as generalized derivatives. The
remaining portion of AL lecture 6 (AL pages 6/16-6/23) are handouts and examples related to the
Green’s function and wave equation.

AL lecture 7 starts on page 198 (AL pages 7/1-7/7) and focuses on noise generation from moving
sources. Lowson’s formula is reexamined in more detail on AL pages 7/1-7/5. Gutin’s result is
introduced on AL pages 7/6-7/7, which describes the noise from steady rotating forces (a propeller).
A number of handouts are included with AL lecture 7 that focus on the Kirchhoff equation.

The eighth AL lecture (pages 204-211 and AL pages 8/1-8/12) completes the discussion from
AL lecture 7 on the noise generation from moving sources. The method of descent is discussed for
the solution of the wave equation in two-dimensions. The acoustic analogy is introduced on AL
pages 8/3-8/6 within the context of Lighthill’s acoustic analogy and uses a jet flow as an example
source. The intensity of the noise from a jet is derived, and the spectral density is given as an
integral involving the two-point cross-correlation of the turbulence (among other flow quantities).
AL pages 8/7-8/10 discuss the FW-H equation through its derivation based upon the continuity
and momentum equations with a generalized function source. The Kirchhoff equation is discussed

12Computational aeroacoustics.
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within this context. A permeable surface formulation is found on AL page 8/10. A discussion of
the implications and interpretation of the permeable FW-H equation is on AL pages 8/11-8/12. AL
lecture 8 finishes with a number of handouts that focus on the FW-H equation, Green’s functions
for discontinuous solutions, and where the Dirac delta function appears in applications.

The ninth lecture is the last of the series, and it continues to discuss the FW-H equation and its
solution (pages 212-222 and AL pages 9/1-9/22). It uses almost all the results from the previous
eight lectures and places them on a sound theoretical basis within the FW-H equation. AL pages
9/1-9/7 discuss the thickness and loading terms of the FW-H equation, the solution of the FW-H
equation in terms of thickness and loading noise sources, moving the partial time derivative within
the integral of the solution, and a summary of the traditional solution. Dr. Farassat is particularly
famous for his Formulation 1A, which is one solution of the FW-H equation that is presented on
AL page 9/8. Implications of the solution of the FW-H equation and its interpretation, along with
some ‘tricks of the trade,” are discussed on AL pages 9/9-9/11. An alternative method of writing
Formulation 1A is also included for the students. A number of classical solutions introduced in
previous lectures are now discussed in the context of the FW-H equation and solution. Rayleigh’s
piston within the wall is revisited with the FW-H equation solution on AL page 9/12. Curle’s
formula for flow over a stationary surface is found using the solution of the FW-H equation on AL
page 9/13. Kirchhoff’s formula for moving surfaces is placed in the context of the FW-H equation
on AL page 9/14. Moving observers are addressed on AL page 9/16. Lowson’s formula is examined
on AL pages 9/17-9/18 using the FW-H solution. The results of using Succi’s thickness noise
and Isom’s thickness noise theories are also derived in the context of the FW-H solution on AL
pages 9/19-9/20. The final portion of AL lecture 9 on AL pages 9/21-9/22 makes some conjecture
regarding the volumetric term of Dr. Farassat’s solution of the FW-H equation. These are addressed
in Dr. Farassat’s Formulation 4 (see Green Book 2).

During the summer of 2010 a number of introductory notes were presented for students sup-
ported by NASA internships and new researchers of NASA Langley. These lectures consisted of four
parts, which were presented before the nine AL lectures. These begin on page 223. The first lecture
on AL pages 1-8 (after the end of AL lecture 9) discusses the one-dimensional wave equation and
its solution. The wave equation in two and three-dimensions is then introduced. Poisson’s solution
and Huygens’ principle are discussed on AL page 5. A few minor corrections of previous derivations
are shown, and the uniqueness theorem of the wave equation in one, two, and three-dimensions is
presented to close the first lecture.

The second lecture (page 232 and AL prerequisite lecture 2 pages 1-6) discusses various examples
for using the solution of the wave equation in aeroacoustics. An alternative solution of the wave
equation is discussed on AL prerequisite lecture 2 pages 4-6. The third lecture (page 238 AL
prerequisite lecture 3 pages 1-14) has more substance than the second. It begins by describing a
strategy to solve the wave equation in two-dimensions. Differences between the solution of the wave
equation in two-dimensions and three-dimensions are discussed. The concept of sources in motion
is defined on AL prerequisite lecture 3 page 4. Lowson’s formula and its solution are introduced.
Compact sources are defined and discussed. The final AL lecture, on AL prerequisite lecture 4 pages
1-6, discusses Garrick’s triangle, the zone of silence, and point sources and observers in rectilinear
motion.

Lectures on the Aeroacoustics of Rotating Blades in Time Domain (Pages 258
- 327)

A number of lectures were presented on ‘The Aeroacoustics of Rotating Blades in the Time Domain,’
(LARBTD) by Dr. Farassat. The lectures were given in three parts and are approximately 71 pages
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in length. Dr. Farassat’s lectures often exceeded multiple sessions beyond the planned parts due
to the large amount of developmental work performed on the chalk board. These lectures were
originally delivered at the Department of Mechanics and Aeronautics at the University of Rome in
1989. Much like the lectures on aeroacoustics, the final lecture seamlessly combines large amounts
of material that were developed throughout the course.

The first lecture discusses the history of propeller noise and its prediction on pages 259 through 262
(LARBTD pages 1/1 - 1/3). The historical focus is on major prediction developments and NASA’s
involvement. Different sources of noise from rotating blades are defined (LARBTD pages 1/4 -
1/7) in the context of a propeller or rotors of a helicopter. It is argued that prediction theories
must account for the thickness noise, loading (steady, periodic, impulsive, random, etc.) noise, and
quadrupole noise (shocks, vortices, turbulence, etc.). Due to the difficult nature of the problem,
the focus of the lectures is on discrete frequency noise prediction, but it is acknowledged that the
effects of the broadband levels, inclusion of the nacelle or fuselage, and propagation should be
included. The first lecture closes by describing several prediction approaches, what the prediction
approaches need to include, and the benefits of frequency or time domain formulations (LARBTD
pages 1/9-1/10).

The second lecture introduces the FW-H equation (LARBTD pages 2/1-2/2), and particular
care is taken to define the variables. Within the remainder of the second lecture, various mathemat-
ical concepts are introduced to the students in preparation for solving the FW-H equation in lecture
3. These mathematical concepts include the introduction of generalized functions (LARBTD page
2/3) and a number of examples, divergence theorem with generalized functions, changing the order
of operations of limiting processes (LARBTD page 2/10), two applications of generalized deriva-
tives (LARBTD pages 2/12), support of functions involving the Dirac delta function (LARBTD
page 2/15), results of integration of surfaces involving the Dirac delta function (LARBTD page
2/17), a short discussion regarding the derivation of the FW-H equation (LARBTD page 2/18),
and basic differential geometry results (LARBTD page 2/21).

The third and final lecture, starting on page 293, is focused on finding and interpreting solutions
of the FW-H equation. The first part of the lecture (LARBTD pages 3/1-3/6) considers two
approaches for finding solutions, as illustrated through the use of two canonical inhomogeneous
wave equations. Two forms of the solution of an inhomogeneous wave equation are found on
LARBTD pages 3/2 and 3/3. Concepts of the gamma (I') and sigma (X) surfaces are introduced
on LARBTD page 3/4. Forms of solutions of the wave equation with right hand side ‘QJ’ are
shown on LARBTD pages 3/8, 3/12, and 3/14. Based on these basic forms of solutions of the wave
equation with carefully selected sources, solutions of the FW-H equation are sought under certain
conditions.

The first solution discussed within the third lecture is based upon the assumption of compact
sources (LARBTD 3/15-3/17). Explicit solutions are derived for the acoustic pressure from the
thickness and loading source terms. The solution is discussed in the context of Succi’s formula
(LARBTD page 3/17) and Lowson’s formula (LARBTD page 3/18) is recovered.

A second solution is derived for the situation where a solid body is rotating subsonically
with a shock-wave attached (LARBTD pages 3/19-3/23). The approach begins by examining
the quadrupole term and placing it in a form that captures the noise from the shock wave. The
modified FW-H equation is presented on LARBTD page 3/20, and each term is explained. A closed-
form integral solution is derived on LARBTD page 3/23, and all of the arguments are analytical.
Evaluation for cases when terms are singular requires special care.

The final portion of lecture three (LARBTD pages 3/24-3/35) discusses the solution of the FW-
H equation for the case of rotating bodies of motion that have attached shock waves. A number
of complex mathematical operations are performed to obtain the FW-H equation in an alternative
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form shown on LARBTD page 3/28, where the terms are interpreted in detail. The right hand side
of the FW-H equation now contains source terms that were examined previously and also some new
source terms. Two forms of the FW-H equation are identified for solution that were not examined
within the previous parts of LARBTD. Three solutions result as shown on LARBTD pages 3/33-
3/35, and together with previously developed forms, the full solution of the FW-H equation for the
noise from supersonic rotating bodies with attached shock waves can be constructed.

The Green’s Function (Course) (Pages 328 - 411)

A short course on Green’s functions (Green’s Function Short Course, GFSC) was prepared by
Dr. Farassat. The course uses the traditional note format as opposed to presentation slides. The
length of the course is approximately 90 handwritten pages. These notes could be used as a
general introduction to the mathematical field of Green’s functions. As a prerequisite, one should
have knowledge of partial differential equations and some knowledge of the canonical differential
equations of physics. The course highlights include the definition and development of the Green’s
function, linear operators, adjoint Green’s functions, the wave equation, the Helmholtz equation,
the Laplace equation, and the uniqueness theorem. The closing of the course contains an important
discussion of the application of Green’s function theory to the field of aeroacoustics.

The Green’s function notes (page 329 and GFSC pages 3-6)'2 start with an examination of the
linear ordinary differential equation operator and define the Green’s function. A basic example
of using the Green’s function is shown for a second-order ordinary differential equation. The
adjoint operator is introduced with the use of examples on GFSC pages 7-10. The definitions of
the adjoint operator and self-adjoint operator are presented. Existence of the Green’s function is
investigated. A note on self-adjoint operators of the Green’s function is presented on GFSC page
11. Tt is illustrated through the use of the complex conjugate of the operator and corresponding
Green’s function. A method is presented on GFSC pages 12-13 to quickly check if the Green’s
function is self-adjoint for homogeneous second-order ordinary differential equations. A few simple
examples are presented, and the question is posed regarding how to conduct the same analysis if the
ordinary differential equation boundary conditions are inhomogeneous. GFSC pages 13-17 answer
this question by showing two different methods.

The general second-order linear ordinary differential equation is again considered, but now gen-
eralized derivatives are used (GFSC pages 18-26).!* Adjoint linear differential operators are exam-
ined on GFSC pages 27-30. An important characteristic of functions defined in three-dimensional
space used for the solutions of the FW-H equation is presented. A few other examples and informal
proofs of properties of Green’s functions are given.

Dr. Farassat next presents an example using the previously developed theory of Green’s func-
tions. The Green’s function of the Laplace equation is sought on GFSC pages 31-34. Details of
the Dirac delta function are presented, and the spherical coordinate system is defined. The Dirac
delta function is written in the spherical coordinate system, and the solution of Laplace’s equation
is derived on GFSC page 34. Using the previously developed Green’s function for the Laplace
equation in unbounded space, the solution of the Laplace equation is derived (GFSC pages 35-36).
The general solution is shown to satisfy the Laplace equation. Before finding additional Green’s
functions, the partial differential equation invariant under translation of space and time (about the
origins) is presented on GFSC pages 37-38. Invariants are useful to understand in the proceeding
derivations of Green’s functions that correspond to various partial differential equations.

I3GFSC pages 1 and 2 are blank.
1Ppage 24 is blank and some pages contain redundant numbers.
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The Green’s function of the Helmholtz equation within an unbounded three-dimensional space
(GFSC pages 39-41) is derived. This is a logical partial differential equation to examine because
of its similarity to the Laplace equation, which was previously examined. The Green’s function is
derived by assuming a solution that is similar to the Green’s function of the Laplace equation. It
is curious that a complex solution is derived, and this is addressed.

The Green’s function of the wave equation in three-dimensional space is derived on GFSC pages
42-43. Here, the Green’s function is written with arguments containing both the observer and
source, spacial and temporal positions, which are characteristically used in the field of acoustics.
The Green’s function is derived by making use of the Fourier transform and using the Green’s
function derived previously for the Helmholtz equation on GFSC pages 39-41. The retarded time
solution of the wave equation is then derived in the time-domain on GFSC page 43.

The heat equation is another canonical partial differential equation, and the Green’s function
of the heat equation operator is derived on GFSC pages 44-47. The heat kernel, that is the Green’s
function of the heat equation, is derived in one-dimension through three-dimensions. Solutions
using the heat kernel are presented.

Focus is returned to the Laplace equation (GFSC page 48), and the Green’s function of the
Laplace equation is examined in higher dimensions than three within an unbounded domain. The
result is shown without derivation. The Green’s function of the Laplace equation in a bounded
domain is derived on GFSC pages 49-51. GFSC pages 52-59 show the solution of the Laplace
equation in a bounded domain in two-dimensions, and some pages are omitted as they are simple
plots of the solution. GFSC pages 60-65 explore the uniqueness theorem for the Laplacian operator
within bounded domains. Proofs are presented for the uniqueness theorem for the Direchlet and
Neumann boundary conditions. Pages 66-67 of GFSC summarize Green’s theorem.

The Green’s function of the heat equation in an unbounded domain was found on GFSC pages
44-47; and here on GFSC pages 68-72, the Green’s function is derived within a bounded domain.
Page 73 of GFSC contains a note on the Green’s function of the wave equation. Here, an alternative
approach is presented for deriving the Green’s function relative to that presented on GFSC pages
42-43.

At this point, the basics of Green’s functions have been presented, and on GFSC pages 74-79
some notes are presented on their application. In particular, on GFSC pages 78-79 their application
to the Kirchoff formula is discussed. The final entry on GFSC pages 80-85 discusses the uniqueness
theorem of the Green’s function for the wave equation in a bounded domain.

An appendix is included on GFSC pages A1-A5 that shows a general method for finding adjoint
boundary conditions for second-order linear ordinary differential equations. When working with
adjoint equations, corresponding adjoint boundary conditions must also be used. The appendix
closes with three recommended references for further study.

The Mathematics of Near Field Acoustical Holography (Pages 412 - 442)

Dr. Farassat taught a class at NASA Langley on ‘The Mathematics of Near Field Acoustical
Holography’ (NAF) at the end of the summer of 2000. Acoustic holography is an inverse problem
that attempts to characterize or map the source of acoustic radiation. NAF consists of seven main
lectures plus an appendix that summarizes some analytical results. In total, there are sixty pages.

The class starts on NAF page 1/1 by defining it as an inverse problem. NAF involves the
combination of mathematics, physics of acoustics, and experimental measurement. The first lecture
continues on NAF pages 1/2-1/5 with the introduction of Fourier transforms. The Dirac delta
function and corresponding Fourier transform are defined on NAF page 1/6. Within the second
lecture, more definitions and development work are presented. The acoustic intensity, steady state
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acoustics, wave equation, and decomposition are shown on NAF pages 2/1-2/7. Evanescent waves
are reviewed on NAF pages 2/8-2/10.

The third lecture, starting on NAF page 3/1, introduces standing waves on an infinite wall or
vibrating plane. These waves are interpreted in wavenumber space on NAF page 3/2. Velocities
of particles within the fluid field are found on NAF page 3/3. Additional discussion of evanescent
waves is given on NAF page 3/4. The so-called angular spectrum Fourier transform for acoustics
is introduced on NAF pages 3/5-3/7.

The fourth lecture, on NAF pages 4/1-4/8, introduces some basic acoustic concepts such as
the monopole and dipole. Rayleigh’s first and second integrals are derived on NAF pages 4/3-4/8.
The concept of the propagator, that is like a Green’s function, is introduced in the fifth lecture on
NAF page 5/1. Ewald’s sphere construction is introduced on NAF pages 5/3-5/6. This approach
allows for a method of visualizing the directivity of planar sources. Planar near field construction
is examined on NAF pages 5/6-6/2. The remaining part of the sixth lecture discusses strategies to
handle ill-posed problems.

The seventh NAF lecture examines traveling waves on square plates (NAF pages 7/1-7/2).
Other plate radiation problems are examined, such as the radiation from a simply supported struc-
ture. Bouwkamp’s result (NAF page 7/7) is found. Edge and corner modes are discussed on NAF
page 7/8. The remaining part of the seventh lecture shows various figures and diagrams. The final
seven pages show some analytical results for the prediction of trailing edge noise.

The Workshop on Kirchhoff Formulas (Pages 443 - 472)

Dr. Farassat hosted a workshop at NASA Langley Research Center on Kirchhoff formulas. The
Workshop on Kirchhoff Formulas (WKF) was hosted in February of 1995. The workshop sought
to convey to the participants the derivation of two Kirchhoff formulas for the noise radiation from
subsonic and supersonic surfaces, respectively. The advantage over traditional approaches is a
more direct and simple derivation which is subsequently easier to interpret. Also, the participants
gained some understanding of generalized functions, partial differential equations, and differential
geometry. The workshop contains 57 pages of carefully prepared handwritten slides that were also
distributed to participants.

Introductory material is presented first on page 443. The workshop (WKF page 1) opens by
discussing three possible methods for noise prediction within the field of aeroacoustics. They are
acoustic analogies, Kirchhoff methods, and computational fluid dynamic-based methods (compu-
tational aeroacoustics). After discussing these three approaches, the classical Kirchhoff formula
is introduced on WKF pages 2-3. Here, the form of the equation is compared with the Laplace
equation. Dr. Farassat attempts to convince the workshop participants that the Kirchoff approach
has potential benefits over the other approaches on WKF page 4. WKF page 5 states the purpose
of the workshop, as previously mentioned, as the derivation of two Kirchhoff formulas for subsonic
and supersonic surfaces. As a secondary goal, tools are developed for generalized functions, partial
differential equations, and differential geometry.

The methodology for deriving the Kirchhoff formulas (WKF page 6) is discussed through re-
duction of solutions of the wave equation with select generalized function sources. WKF pages 7-8
discuss traditional and generalized functions through simple examples. A motivational slide (WKF
page 9) for generalized functions with emphasis on the so-called sifting property is presented based
upon the Dirac delta function. Generalized functions are defined on WKF pages 10-14. In partic-
ular, the concepts and examples of ordinary, continuous, regular, singular, and symbolic functions
are defined. Particular operations on generalized functions are presented on WKF pages 15-16.
Differentiation of generalized functions is discussed on WKEF pages 17-18. Here, Dr. Farassat de-
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scribes the general properties of derivatives applied to generalized functions using examples. Some
important results of generalized function theory in the context of the WKF are presented on WKF
page 19.

Our attention turns temporarily from generalized functions to the Green’s function (WKF pages
20-21) of a second-order linear ordinary differential equation. Here, the definition of the Green’s
function is introduced through example and connected to the Dirac delta function. It is noted that
the boundary conditions must also be posed correctly for the Green’s function to be found. Focus
is returned to generalized functions within multiple dimensions (WKF page 22). As the Dirac delta
function and generalized functions can be perceived as very abstract to those not familiar with the
subject, Dr. Farassat on WKF pages 23-24 shows some examples of how they appear in the system
of equations for the Green’s function and acoustics of shock waves.

The mathematical theory of differential geometry plays a key role in the work of Dr. Farassat.
On WKF pages 25-32 differential geometry is introduced and many important results are shown that
are used later in the workshop. Major results are presented without a great deal of mathematical
derivation.

The integration and differentiation of the Dirac delta function are presented on WKF page 33.
Integration of a function that is a product of the Dirac delta function is presented on WKEF page
34. These concepts are important for evaluating Kirchhoff formulas. Some illustrations explain
generalized function manipulation (WKF page 35-36).

Focus is returned to the theory of Green’s functions on WKF pages 37-38. In particular, the
Green’s function of the wave equation is examined in unbounded space. Source-to-observer vectors
are defined. The domain of dependence is illustrated. WKF page 39 gives an example for the
Green’s function of the Laplace equation and its relation to discontinuous solutions. Two forms
of the solution of the wave equation in unbounded space with volumetric sources are presented on
WKF page 40.

The governing wave equation for deriving Kirchhoff formulas is presented on WKF page 41.
Here, the wave equation is chosen to have a very specific right hand side. The entire WKEF up
to this point has been carefully devised to present this equation and its set of solutions. The
first solution sought is the classical Kirchhoff formula (WKF page 42). Perhaps the main point is
the proposed governing wave equation can recover the classical result. The first major result of
WKF on pages WKF 43-46 is the derivation of the so-called subsonic Kirchhoff formula. Here, a
deformable moving surface that is restricted to subsonic motion creates acoustic radiation. The
final form of the subsonic Kirchhoff formula is shown on WKF page 46. Dr. Farassat introduces
a trick to simplify the formulation of the solution of the governing wave equation of WKF page
41 on pages WKF 47-48. Finally, the derivation and solution of the governing wave equation is
presented on WKF pages 49-53 using the theories developed throughout the workshop. A note
on the evaluation of the supersonic Kirchhoff formulation is made on WKF page 54, where it is
emphasized that singularities might occur. Nonetheless, the result remains integratable.

The WKF closes with a number of references that were used for development of the workshop.
Finally, Dr. Farassat acknowledges his collaboration with M. K. Myers of George Washington
University.

Summary of Notebook One (Pages 473 - 655)

As mentioned previously, Dr. Farassat took excellent research notes, and many of these appear
within his green books. The first entry appears in green book (GB1) on April of 1978 and the
last entry appears on February of 1982. GB1 contains, as summarized below, an extremely varied
research portfolio. Here, we gain insight into how an early NASA researcher explores mathematical
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concepts that are eventually integrated into a coherent research methodology. It is difficult to
concisely classify or summarize the material within GB1 due to its wide variety. With this difficulty
in mind, GB1 could be generally summarized to contain introductory material, derivations of the
solutions of the wave equation, integrals involving generalized functions, notes on nonlinear ordinary
differential equations, derivatives of integrals and singular functions, and the thickness noise from
wings. We now concisely describe the contents of GB1.

The first entry of GB1 on April of 1978 (GB1 pages 1-4) is a review of boundary layer turbulence
pressure fluctuations based upon order of magnitude analysis. The same month a short initial
review of propeller noise (GB1 pages 5-6) is conducted in the context of the theory of Gutin.
A short overview of the statistical theory of isotropic turbulence is presented (GB1 pages 7-9),
which discusses the result of Kolmogorov (/1*5/ 3 energy spectrum in the inertial range where x
is wavenumber). Most basic results of the kinematic theory of gases is recorded on GB1 pages
10-11. Nonlinear acoustics of plane waves are explored using the approach of Riemann (GB1 pages
12-15), which are governed by the Euler equations. Select inequalities and other algebraic results!®
are summarized (GB1 pages 16-22) in a proof theorem format. Important theorems of partial
differential equations (GB1 pages 23-26) are reviewed based on the work of Weinberger.!® Of
particular interest to Dr. Farassat is the maximum principle, which was often used within some of
his lectures.

Dr. Farassat, who was undoubtedly an international expert on the theory of generalized func-
tions, gives some concise proofs in GB1 pages 27-29. A large section is devoted to a review of
difference (or differential) equations and finite differences (GB1 pages 30-51) in April of 1979. Most
of the review represents the basis of differential equations until GB1 page 43, where a number
of solution techniques are summarized and special classifications are noted. Mikusinski calculus,
which is also known as operational calculus or operational analysis, is a mathematical approach to
transform differential equations into an algebraic form involving a polynomial equation. Mikusin-
ski’s approach is reviewed by Dr. Farassat on GB1 pages 52-64 based upon Fenyo and Frey.!'” On
GB1 page 59, a general polynomial is found (using the method of Feyno) and on GB1 page 62
an example is presented for the solution of a linear differential equation with constant coefficients.
Dr. Farassat writes on GB1 page 64 that he, ‘finds Mikusinski operational calculus as one of the
most beautiful parts of modern mathematics.” Some brief notes are presented on number theory
on GB1 pages 65-68, including a note on Fermat primes and coordinate changes on GB1 pages
69-71. Isoperimetric inequalities are summarized (GB1 pages 72-76), where the inequality involves
the square of the perimeter and area within a plane. On GB1 pages 77-78, he proposes a proof to
a problem given in The American Mathematical Monthly, 1978, page 496. Additional exploration
of proofs of various inequalities appear on GB1 pages 79-83.

The first entry that contains a more direct application to acoustics appears on GB1 pages 84-
86, where an identity is derived that has application for an acoustic source on a surface in motion.
Dr. Farassat writes an interesting note at the bottom of GB1 page 86 regarding the inclusion
(during numerical evaluation) of the blade tip, which he thought had a non-negligible contribution
to the resulting acoustic pressure. In May of 1980, results from Dr. Farassat’s study on conversion
of spacial derivatives to temporal derivatives within solutions of the wave equation with application
to sources on moving surfaces was completed (GB1 pages 87-91). He considers solutions of the wave
equation with a sigma (X) surface. These notes were corrected at the later date of February 1982

15These are adapted from Crystal, G., ‘Algebra: An Elementary Text-Book,” Adam and Charles Black, 1904.

6\Weinberger, H. F., ‘A First Course in Partial Differential Equations: with Complex Variables and Transform
Methods,” Blaisdell Publishing Company, 1965.

"Fenyo, S. and Frey, T., ‘Modern Mathematical Methods in Technology,” North-Holland Publishing Company,
1975.

21



on GB1 page 161.

The focus returns to more pure mathematical explorations of inequalities on GB1 page 92 and
total differential equations on GB1 pages 93-99. Boundary conditions and their derivatives within
a one-dimensional second-order inhomogeneous differential equation are explored (GB1 pages 100-
108). It is argued that, under certain circumstances, the two boundary conditions (involving zeroth
and first-order derivatives) can be related to one another.

From January through March of 1981, GB1 focuses on integrals and generalized functions. Two
integrals involving the Dirac delta function and their evaluation (one from Dr. Farassat’s Ph.D.
thesis) are discussed on GB1 pages 109-114. The evaluation is much more compact relative to
his Ph.D. thesis. He returned to this entry approximately ten years later in 1991 and illustrated
an arguably better approach. Divergent integrals can appear upon taking a derivative within a
convergent integral. Regularization of divergent integrals involves the use of the Heaviside function.
GB1 pages 115-118 address divergent integrals with corrections noted on GB1 pages 119-120. A
notable definition of the generalized derivative resides on the middle of GB1 page 120. There are
some divergences from investigations of integrals on GB1 pages 112-114 on Mersenne primes'® and
notational discussions of partial derivatives.!?

Solutions for first-order non-linear partial differential equations are examined (GB1 pages 121-
124) using Charpit’s method. The generalized Fourier transform of the natural logarithm of the
absolute value of an argument is examined (GB1 pages 125-127). This approach draws on the
definition of the regularization of the divergent integral developed previously on GB1 pages 115-
118, and the result is shown on the bottom of GB1 page 126. In April of 1981, a philosophical
entry on generalized functions appears on GB1 pages 128-139 that has application to discontinuous
integrals. These represent more exploratory thoughts and mathematics and, relative to earlier
entries, contains less review. Dr. Farassat presents multiple proofs (GB1 pages 140-141) of a
problem proposed by Lass,?® which involves the relation between two curves intersecting and their
curvature. A number of examples are devised by Dr. Farassat (GB1 pages 142-151) to illustrate the
use of variable transforms for the solution of partial differential equations. Geometric acoustics or
ray theory and its assumptions are reviewed on GB1 pages 152-153 based upon the wave equation
and the assumption that the wavelength is small. Technical readers might note the similarities
of the results with those of classical optics. A number of theorems and proofs involving complex
variables are presented on GB1 pages 154-157 that are based on the notes of MacRobert.?!

Pages 158-160 of GB1 present an example of ‘regularizing’ an integral of the solution for the
Laplace equation defined in the space above the x — y plane. This basic example leads to the more
complicated regularization of the divergent surface integral that represents the acoustic pressure
from the aerodynamic pressure on the surface of a rotating blade (GB1 pages 161-170). These pages
heavily use methods developed previously in GB1, such as overcoming the divergence of integrals
when the time derivative is applied within the integrand. Note that some of the development and
explanation reside in GB2.

The final set of technical notes within GB1 are on GB1 pages 171-177 and discuss what he
calls the thickness problem for wings. Here, the intersection between aerodynamics and acoustics
is not entirely physically intuitive. This is because the velocity potential is governed by an acoustic
equation, specifically the wave equation. It is shown that the classical results found in aerodynamic
theory, for subsonic and supersonic flow, correspond to those found with this purely acoustic theory.
These results continue in GB2.

18Dr. Farassat’s proof is incorrect for Mersenne primes as counter examples exist.
19A form adopted that involves the partial derivatives represented as a matrix.
29Lass, H., ‘Vector and Tensor Analysis,” McGraw Hill, 1950.

2IMacRobert, T. M., ‘Functions of a Complex Variable,” MacMillan, 1954.
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The final five pages (GB1 pages 5-1)?? contain equations of motion and ‘things to remember.’
Throughout the other green books and unbounded notes these constants and units are considered
universal unless stated otherwise.

Summary of Notebook Two (Pages 656 - 843)

The second notebook, green book two (GB2), is a direct continuation of the first (green book
one, GB1). Entries within GB2 span from February 8t 1982 to May 8, 1998. Unlike GBI,
Dr. Farassat’s focus narrows within GB2 towards more specific research goals. Major sections
consist of the examination of thickness noise, equations describing the noise and aerodynamics of
moving bodies, a very large section on generalized function theory, development of some of his
formulations, and much more. A large number of notes within the notebook focus on predicting
noise from propellers moving supersonically. As one can imagine, this is a very difficult problem
due to the shock waves, which are radiated from the supersonic moving body. The preface of GB2
begins with a drawing by Dr. Farassat’s daughter, Daria. We now concisely describe the contents
of GB2.

Examination of the thickness of wings and its implication on acoustics is continued from GB1
pages 171-177. Here, the potential flow is derived from an acoustics solution and compared with
the results of Ashley and Landahl.?® Dr. Farassat’s solution is greatly simplified compared to the
traditional approach. A new formulation of the solution of the FW-H equation is proposed for the
prediction of noise from a propeller on GB2 pages 7-11. The thickness and loading noise terms
are treated separately, the time derivative remains outside the surface integrals, and a frame of
reference is used that rotates with the propeller. Sources on edges, that appear within solutions
of the wave equation and involve Dirac delta functions, are examined on GB2 pages 12-15. The
integrand involving multiple Dirac delta functions is examined in three and four dimensions and is
written in more simplified forms on GB2 page 15. Missing terms in the integral equation for the
acoustics from moving bodies are examined on GB2 pages 16-25, and this work is a continuation of
GBI pages 161-170. Here, the surface integral is evaluated at a small distance above the surface of
the moving body, which is not the usual approach of Dr. Farassat, who normally evaluated integrals
upon the moving surface. It is noted that his student, Lyle N. Long,?* found an incompatibility
with the previous approach that is corrected here.

One of the largest sections, GB2 pages 26-91, discusses generalized function theory and its
application to a new prediction approach involving supersonic propeller noise. Integration of non-
closed surfaces is discussed on GB2 pages 26-33. On GB2 pages 34-36, Dr. Farassat notes his
efforts to overcome assumptions of his previously developed models (specification of pressure, steady
surface pressures, and thin airfoil theory). His simplified approach for the prediction of supersonic
propeller noise and associated aerodynamics is outlined in a number of steps starting on GB2 page
37. The basis is the FW-H equation, and within the first step the right hand side is written as a
decomposition of two vectors: the first in the normal direction and the second in the tangential
direction. On step 2 (GB2 page 40) the solution is solved directly with the Green’s function.
Step 3 (GB2 page 41) eliminates the derivative of the Dirac delta function. The near-field term is
isolated (involving the inverse square of the propagation distance) on step 4 (GB2 pages 42-43).
Now, the far-field term involves two main components that are isolated and simplified on step
5 (GB2 pages 43-45). Further simplification is performed on step 6, and some new notation is

22Note that the last five pages are in reverse order and labeled from 5, 4, 3, 2, and 1. This is likely due to the fact
that the number of pages in the end of the book are unknown as they are created.

23 Ashley, H. and Landahl, M., ‘Aerodynamics of Wings and Bodies,” Dover Publications, 1985.

2Professor Long is now a professor at The Pennsylvania State University Department of Aerospace Engineering.
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introduced (GB2 pages 45-53). The discontinuity of the trailing edge is addressed on step 7 (GB2
pages 54-55). The near-field and far-field terms are combined, and the delta functions within the
integrands are examined on step 8 (GB2 pages 56-60). Step 9 revisits focus on evaluation of the
terms resulting from the previous steps (GB2 pages 61-82). A number of notes (represented as step
10), simplifications, and methods for evaluation of the prediction equation are presented on GB2
pages 82-89. Finally, on GB2 pages 90-91, a summary of the final equation suited for numerical
evaluation is presented, which includes the corrections noted within the previous steps.?®

GB2 returns to more exploratory work on GB2 pages 92-99 with generalized functions. Com-
ments are written on the theory of partial differential equations, their difficulty, and Dr. Farassat’s
view of the subject. Dr. Farassat reexamines the appearance of line integrals within his supersonic
propeller prediction theory (GB2 pages 100-106) and confirms that they should be present. The
spatial integration involving Delta prime is investigated on GB2 pages 107-109. Recall that the
mathematical term Delta prime appeared within step 3 of GB2 page 41. The supersonic propeller
noise theory previously developed on GB2 pages 26-91 is revisited on GB2 pages 110-119 after it
was programmed by Sharon Padula. Dr. Farassat notes a missing term that involves a line integral
along the tip of the propeller blade. On the bottom of GB2 page 91, it is noted that the equa-
tions were correctly derived, but this missing line integral greatly improved the agreement between
prediction and measurement.

A general entry is made approximately eight years after the previous entry within GB2 as
Dr. Farassat was working on loose paper and not making regular entries into his research notebooks.
On GB2 pages 120-122 he summarizes his achievements over these years that include: creating the
Advanced Subsonic and Supersonic Propeller Induced Noise computer program, lectures involving
the FW-H equation, the application of the acoustic equations to traditional aerodynamic problems,
examining the Kirchhoff theory for moving surfaces, examining the quadrupole term within the
FW-H equation, and examining singularities within the solutions of acoustics from rotating blades.

Entries are continued on GB2 pages 123-129, and involve a discussion of the FW-H equation
and its evaluation. Emphasis is placed on the thickness and loading terms. Examination of the
solution for the wave equation with source terms that consist of generalized functions is explored
on GB2 pages 130-140. Some additional related miscellaneous investigations are shown on GB2
pages 141-149. A second general entry appears in November of 1993 on GB2 page 150 and discusses
the publication of a paper on the 80" birthday of Professor William Sears, who was Dr. Farassat’s
advisor at Cornell.

Technical entries continue on GB2 pages 151-152 with a small note on normal vectors. A general
entry is made on GB2 page 153 that discusses reviews of non-standard analysis, algebra, topology,
and generalized functions. Some of these review notes are shown in other sections of this document.
A few non-technical notes are written regarding personnel assignments with respect to evaluating
developed theory. Thoughts on the development of Dr. Farassat’s Formulation 3 are shown on GB2
pages 154-157. This approach eventually appeared in print in 1983. A large entry is created on
the mean curvature of the sigma surface that is rigid (GB2 pages 158-173) and deformable (GB2
pages 174-180). This theory is required because the curvature of a surface is an argument in the
theory of the noise from supersonic propellers. On GB2 page 181, Dr. Farassat notes that another
researcher confirms his deformable surface theorem on GB2 pages 174-180 and that he has been
recording some of his research in other notebooks.

The final entries of GB2, on GB2 pages 184-185, show some minor corrections to previous
results on solutions of the wave equation containing a derivative Dirac delta function source. The

25Tt is noteworthy (bottom of GB2 page 91) that the final equation was written in February of 1983, and it took
until June of 1991 for a computer program without error to be developed and validated to evaluate the final equation.
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notebook ends on his 1998 vacation in Duck, North Carolina.

Summary of Notebook Three (Pages 844 - 876)

The third and final general notebook, green book 3 (GB3), follows the second but has many fewer
entires. GB3 begins in June of 1998, and the last entry is in October of 1998. It contains 32 pages
and is focused on four topics.

GB3 begins with further examination of the symbol of Christoffel, which represents arrays of
real numbers and has applications in topology. Christoffel symbols are used in Farassat et al.?6 The
Christoffel symbol actually appeared within GB2 in many discussions for the prediction of noise
from supersonic propeller blades. Two major corrections of one of Dr. Farassat’s AIAA papers are
discussed on GB3 pages 4-8. Examinations of a classical approach and another approach using
Formulation 4 for solving the wave equation are shown on GB3 pages 9-28. Computer aided
symbolic mathematical software?” is used, and the results are printed and copied to GB3. Further
examination of edge length elements appears on GB3 page 28, which was developed in GB2. In
the context of Formulation 4, the final three pages of GB3 (GB3 pages 29-31) discuss a singularity
of sinf in the denominator, and the ability to handle higher order singularities is explored. It
is shown that for a second power involving sin 6 that Formulation 4 remains integratable. The
notebook closes on GB3 pages 31-32 by presenting an example solution for dipoles on a sphere or
circle using Dr. Farassat’s Formulation 4.

Ducted Fans (Pages 877 - 933)

Dr. Farassat’s notebook on ducted fans (DF) is a comprehensive treatment of the fundamentals of
predicting the noise from a rotor residing within a duct. The methods have application to aircraft
engines where the fan creates very high intensity tones that are scattered or suppressed by the
duct. Highlights of the DF notebook include the development of perturbation equations, acoustics
within cylindrical ducts with a mean flow, graphical solutions, and rotating sources in a moving
frame. The DF notebook consists of 56 pages.

The first part of the DF notebook on DF pages 1-4 discusses perturbation equations for the
acoustic waves within a fluid mean flow. Each of the field variables of the governing equations is
written as a mean and perturbation quantity. These are substituted into the governing equations
of mass, momentum, and energy. Irrotational flow and the equation of state are also considered.
Equations for the velocity potential are derived on DF pages 5-6.

The focus of DF pages 7-20 turns toward the acoustics of a cylindrical duct with uniform
flow. The wavenumber of the acoustic wave is an important quantity within this analysis. Modal
solutions of the system of equations are found, and the roots are analyzed. Roots are real or complex
valued. The cut-off ratio is defined on DF page 9. Wavenumber is defined to be dependent on the
circumferential mode on DF page 10. The pressure within the flow-field is derived and is in the form
of a double summation on DF page 11. Attention is turned toward the analysis of circumferential
modes on DF pages 13-16. The question of which modes are excited is then addressed through DF
page 20.

DF pages 21-25 (starting on page 898) examine a graphical solution approach for the propagating
modes in a duct with a uniform flow. The approach is used in two-dimensions and then extended

26Farassat, F., Brentner, K. S., and Dunn, M. H., ‘A Study of Supersonic Surface Sources - The Ffowcs Williams-
Hawkings Equation and the Kirchhoff Formula,” ATAA Paper 1998-2375, 1998.

2"Dr. Farassat, an early proponent of using symbolic mathematical software for research, makes use of the software
program Mathematica.
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to cylindrical ducts. An example illustrates the two and three-dimensional approaches. A few
miscellaneous notes are written on DF page 26 that include fan properties of several large turbofan
engines for aircraft and a correction to DF pages 18-19. Some explanation is written by Dr. Farassat
on DF pages 27-28 on how a rotating microphone®® can be used to discern the acoustic mode within
a duct. Additional data on engines with large ducted fans®® are shown on DF page 29.

Rotating sources in a moving frame are addressed on DF pages 30-36 for the purpose of modeling
rotating blades within a duct. The problem is modeled with the inhomogeneous wave equation with
a periodic forcing function. DF pages 32-36 contain a number of pages copied from Kinsler et al.,3"
which discusses power radiation from pipes. Acoustic energy and intensity relations within moving
media (DF pages 37-40) are reviewed based on the journal article of Myers.3! A differential equation
for the conservation of energy is derived. Analysis based on the review of Myers is continued through
DF page 43, and a number of similar analyses are explored on DF pages 43-47. A note on data
analysis from a circular microphone measurement is made on DF page 48. This theory is reviewed
on DF pages 48-54. The final entry occurs on DF pages 55-56 and is a summary of the derivation
of the energy equation for uniform flow with a perturbation velocity. It is noted that the mean
velocity is divergence free and the result should apply to non-uniform mean flows.

Sound Propagation in a Duct and Interaction Tones (Pages 934 - 956)

Based upon the ducted fan notebook previously discussed, Dr. Farassat developed a class called
Sound Propagation in a Duct and Interaction Tones (SPDIT). The class contains 43 slides that are
directly based upon the notebook. The presentation of the material is very graphical compared to
the notebook.

Lecture slides of SPDIT 1 through 34 follow the DF notebook very closely. Like the DF
notebook, the slides examine the governing equations and perturbation theory, time independent
uniform mean flow (SPDIT page 5), acoustics of cylindrical ducts with uniform flow (SPDIT pages
6-10), mode cut-off (SPDIT pages 11-14), mode cut-on (SPDIT page 15), graphical approaches
(SPDIT pages 16-18), phase and group velocity (SPDIT pages 19-20), cut-off frequency (SPDIT
pages 21-22), vector wavenumber (SPDIT page 23), annular ducts (SPDIT page 24), directivity of
peak radiation given a mode (SPDIT page 25), modes in a duct with rotors and vanes (SPDIT
pages 26-28), interaction modes (SPDIT pages 29-33), and how rotating microphones separate
modes (SPDIT page 34). All these topics reside in detail in the DF notebook. An additional nine
pages (SPDIT pages labeled 1-9 starting after SPDIT page 34) discuss spinning acoustic modes
within annular ducts with rigid non-porous walls.

Nonstandard Analysis Notebook (Pages 957 - 1006)

A notebook on non-standard analysis (NSA) examines the fluid dynamic properties of a shock
wave using the relatively newly developed field in mathematics of non-standard analysis. Insall
and Weisstein®? define non-standard analysis as ‘a branch of mathematical logic, which introduces
hyperreal numbers to allow for the existence of “genuine infinitesimals,” which are numbers that
are less than 1/2,1/3, 1/4, 1/5, ..., but greater than 0.” Non-standard analysis, among some other

28The microphone rotates about a fixed point in space and not about its axis.

29 Aircraft engines with a high bypass ratio, which is the ratio of the airflow through the fan to the airflow through
the core.

39Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., ‘Fundamentals of Acoustics,” Wiley, 1982.

31Myers, M. K., ‘An Exact Energy Corollary for Homentropic Flow,” Journal of Sound and Vibration, Vol. 109,
No. 2, 1986, pp. 277-284. DOI: 10.1016/S0022-460X (86)80008-6

32Insall, M. and Weisstein, E. W. ‘Nonstandard Analysis,” MathWorld - A Wolfram Web Resource, 2015.
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mathematical methods, is used to estimate the shock jump conditions using the conservation laws
of fluid dynamics. In particular, the entropy generation, shape, and thickness of a shock wave
under varying conditions is examined. It is argued that the shock wave thickness decreases as
Mach number increases. The notebook has 49 pages.

The NSA Greenbook begins (NSA pages 1-2) by discussing applications of nonstandard analysis
for finding shock jump conditions from conservation laws in the non-conservative form. Here, a
shock jump condition is interpreted as a discontinuity of a function. The product of the function
with a Dirac delta function can be explored if the concepts of NA are used. Shock jump conditions
(NSA pages 3-6) are reviewed based upon Salas and Iollo.>® Through an entropy conservation law,
presented on NSA pages 7-9, the Heaviside function is explored through two approaches. NSA page
9 provides some interpretation of these two approaches. Variation of the conditions with increasing
Mach number (in front of the shock wave) is explored on NSA pages 9-11.

Almost a year after NSA pages 9-11 were written, Dr. Farassat’s interest returned to the subject
on NSA page 12, where he hoped to find the structure of one of the Heaviside functions within the
context of the shock problem. The governing equations within a single dimension are examined on
NSA pages 12-15 and written with a jump condition. It is concluded that the resulting system of
equations can be solved numerically, but here Dr. Farassat chooses to continue using NSA (NSA
pages 16-23). An improved approach is discussed on NSA pages 24-26, where a closed-form solution
of a second-order nonlinear ordinary differential equation is found. Much of these analyses are
performed by Dr. Farassat through the use of Mathematica. Some of the output of Mathematica
of the preceding analyses are shown on NSA pages 27-31. A note on the bottom of NSA page
31 lays claim by Dr. Farassat of the asymptotic (analytical) result of the width of a shock wave
in the limit of Mach number. NSA page 32 notes journal articles used in the development of the
preceding results. NSA pages 32-39 examine a second case for the shock structure of a viscous and
heat-conducting fluid. Mathematica notebooks for its evaluation are shown on NSA pages 39-48.
Some general conclusions are drawn regarding the shock thickness as a function of Mach number
on NSA page 49. It is concluded that shock thickness decreases as Mach number increases and that

the form of the Heaviside functions for entropy and temperature have a peculiar behavior near the
shock.

Notes on Differential Geometry (Pages 1007 - 1067)

Dr. Farassat was interested in differential geometry (DG) as it has applications within the formula-
tions he developed in the field of aeroacoustics. Differential geometry involves the use of calculus to
solve geometry problems. These notes are suitable for a detailed review of DG and are not meant
as an introduction to this advanced topic in mathematics. The DG notebook is approximately 60
pages in length.

The DG notes begin with some basic theory. The theory of curves is introduced along with
the fundamental theory of the curve (DG pages 1-2). Surface theory is examined following the
development of curve theory on DG pages 3-5. Change of variables on a surface is introduced
on DG pages 6-8. A contravariant basis vector is introduced on DG pages 8-10. The developed
contravariant basis vector dot product with a surface normal is defined to be zero (DG page 10).
Classifications of points on surfaces are placed within three categories on DG pages 11-12.

Spherical and Gaussian mapping are introduced on DG pages 12-14. The Gauss and Weingarten
formulas are defined on DG page 15. Christoffel symbols are defined on DG pages 16-17 and were
also introduced in the beginning of green book three. Formulas of Gauss and Codazzi are defined on

33Salas, M. D. and Iollo, A., ‘Entropy Jump Across an Inviscid Shock Wave,” Theoretical and Computational Fluid
Mechanics, Vol. 8., 1996, pp. 365-375. DOI: 10.1007/BF00456376
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DG pages 18-19, and the fundamental theorem of surfaces is defined on DG pages 19-20. Attention
is turned toward the geometry of surfaces and the curvature of a curve on the surface on DG pages
21-29. In particular, the differentiation of vectors is addressed. The parallel transport of vectors
on a curve, which preserves the scalar product of two vectors, is discussed on DG pages 29-31.

The Gauss-Bonnet theorem is discussed on DG pages 32-38. A few short notes on extrinsic
geometry of surfaces are shown on DG page 39. Meusnier’s theorem is introduced. DG pages
40-45 examine the spherical image of tangent vectors. Useful results of differential geometry are
summarized on DG pages 45-51. The notebook closes with an introduction to manifolds on DG
pages 52-60.

Aerodynamics, Aeroacoustics, and Propfan Notebook (Pages 1068 - 1147)

Dr. Farassat, in this early green book called Aerodynamics, Aeroacoustics, and Propfan Notebook
(AAPN), sets out to develop a simplified computer program to predict the noise from propeller fan
blade geometry. Major topics include the design of early computer programs to evaluate the noise
from propellers and to plot their results. The AAPN is not characteristic of his other notebooks in
that it is more of a working document and contains a number of loose scratch pages. The AAPN
was started in December of 1977 and contains 82 pages.

The problem to be solved and blade geometry are defined on AAPN pages 1-5. It is concluded
that a simpler approach than those that exist is required for numerical evaluation. A computer
program for this purpose is devised on AAPN pages 6-10 with a flow-chart on AAPN page 7. Input
and output of the computer program are defined on AAPN pages 11-15. Part of the code is shown
on AAPN page 16, and the programming language is FORTRAN 77. Additional subroutines and
example output are shown on AAPN pages 17-23. A number of common block definitions and
subroutine descriptions are shown on AAPN pages 24-41. Dr. Farassat describes a discretization
scheme along the chord of the blade on AAPN pages 42-44. A numerical check of the computer
code for the Fourier transform is written on AAPN pages 45-50. Example outputs from various
test functions are shown. Analysis of an actuator disk (AAPN page 51) is performed. Examination
of a deformed biconvex parabolic curve is examined for application to the propeller noise problem
on AAPN pages 52-53. AAPN page 54 discusses the inclusion of friction and wave drag in the
acoustic calculation. The final numbered pages of AAPN, AAPN pages 55-60, are used to check the
developed code for errors. The remaining portion of AAPN, dated February to May of 1982, is used
to describe various aspects of the computer program PROPFAN.34 In particular, a numerical root
finding algorithm is developed. A number of potential research directions are noted on page 1140 in
May of 1982 within AAPN. The final portion of the notebook describes miscellaneous subroutines
and Fourier transform calculations. The last pages of the notebook contain graph paper used to
plot functions and are omitted here.

Ray Acoustics (Pages 1148 - 1161)

A very short notebook with the title ‘Acoustics’ focuses on reviewing ray acoustics. The ray
acoustics (RA) notebook?® is focused on examining some canonical results of acoustic ray theory.
Ray theory draws on classical optics and assumes that the wavelength of the radiating waves is
much shorter than other length scales within the domain. The RA notebook has 13 pages.

34Martin, R. M. and Farassat, F., ‘User’s Manual for a Computer Program to Calculate Discrete Frequency Noise
of Conventional and Advanced Propellers,” NASA TM-83135, 1981.
35This notebook has a blue cover while all others have a green cover.
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This notebook starts on RA pages 1-2 with a discussion on stationary medium, Huygens’ princi-
ple, and the differential equation for the slowness vector. Acoustic rays contained within a moving
medium are discussed on RA pages 3-4. The amplitude variation along the ray is examined on
RA pages 5-6, which is based on Pierce.?¢ Conservation of energy along a ray within a stationary
medium is reviewed on RA pages 7-8. The short RA notebook is closed on RA pages 9-13 after
examining energy conservation of acoustic rays within a mean flow. Conservation equations of
mass, momentum, entropy, energy, and the constitutive relation are examined. The Blokhintzev
invariant is also found.

Computational Fluid Dynamics Notebook (Pages 1162 - 1170)

The computational fluid dynamics (CFD) notebook examines particular basics for numerical solu-
tions of partial differential equations that govern fluid motion. The year that the notebook was
started (1979) corresponded to the early era of using computers to solve fluid dynamics problems.
The CFD notebook contains eight pages.

The CFD notebook starts with some entries on the numerical solution of partial differential
equations on CFD page 1. An overview of the steps required to find a numerical solution are
summarized. Finite differences are introduced through the simple time-dependent heat equation.
The heat equation was programmed by Dr. Farassat in FORTRAN, and the code is reproduced
on CFD page 2. The solution is graphed on CFD pages 3-4. The solution is found by marching
through time, and an alternative approach is proposed on CFD page 5 that involves substituting
an assumed form of the solution. The last two pages (CFD pages 7-8) discuss the use of analytic
solutions to quantify the rate of convergence.

Airframe Noise Notebook (Pages 1171 - 1183)

The Airframe Noise (AN) notebook focuses on the lesser known Formulation 1B of Dr. Farassat.
The AN notebook is another short notebook that contains 12 pages. Notebook AN pages 1-5
summarize the derivation of Formulation 1B, which is used to predict the noise from unsteady
surface pressures. The derivation is based upon the movement of a large flat surface through a
fluid medium with a fixed frame observer. The final derivation appears on AN page 5 with a note
regarding the Kutta condition. AN pages 6-10 are extracted from Farassat and Casper.3” Using
Formulation 1B, a statistical approach for the auto-correlation of acoustic pressure is formed due
to pressure fluctuations on an airframe. Finally, AN pages 10-12 discuss Formulation 1B versus
Formulation 1A for airframe calculations. It is concluded for subsonic flow that Formulation 1A
remains simpler; however, formulations are not applicable for supersonic propellers.

Abstract Algebra Notebook (Pages 1184 - 1194)

Dr. Farassat, likely for intellectual reasons and curiosity, decided to study the field of abstract
algebra of mathematics. Generally, abstract algebra is the study of fields, groups, modules, lattices,
rings, and vector spaces. This short Abstract Algebra (AA) notebook has ten pages. Dr. Farassat
discusses his motivation for learning AA on AA page 1. Euclid’s algorithm is described on AA
pages 2-6, and some proofs are reproduced. AA page 7 discusses correspondence with professors at

36Pierce, A. D., ‘Acoustics: An Introduction to its Physical Principles and Applications,” Acoustical Society of
American, 1989.

3TFarassat, F. and Casper, J., ‘Broadband Noise Prediction when Turbulence Simulation is Available - Derivation of
Formulation 2B and its Statistical Analysis,” Journal of Sound and Vibration, Vol. 331, No. 10, 2012, pp. 2203-2208.
DOI: 10.1016/j.jsv.2011.07.044
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various universities regarding the countability of real numbers. The last section of the AA notebook
on AA pages 8-10 is based on Littlewood.3

Notes on Ffowcs Williams 1963 Journal Article (Pages 1195 - 1204)

Dr. Farassat studied many journal articles written by his contemporaries. One of importance to
technical readers in aeroacoustics is the article of Ffowes Williams.?® Dr. Farassat’s analysis of the
article is shown in his ‘Notes on Ffowcs Williams 1963 Journal Article’ (NFW1963) and is 10 pages
long. Some notational changes from the original paper are discussed on NFW1963 page 1. Relations
between the fixed-frame and moving frame are discussed. A number of relations are derived from
the Garrick triangle. On NFW1963 page 8 the FW-H equation is derived. The final two remaining
pages (NFW1963 pages 8-10) show the derivation of the auto-correlation of the acoustic pressure.

Final Derivations (Pages 1205 - 1210)

Near the end of Dr. Farassat’s life, he continued to produce excellent prediction theories for aeroa-
coustic problems. Here, some of these final derivations (FD) are shown and six select?? pages
are presented. They represent a formulation to find the aerodynamic velocity potential. These
last pages were produced by Dr. Farassat just two days before his passing. They are certainly a
testament to Dr. Farassat’s unwavering dedication to research.

38Littlewood, D. E., ‘The Skeleton Key of Mathematics - A simple Account of Complex Algebraic Theories,” Dover
Publications, 1949.

39Ffowes Williams, “The Noise from Turbulence Convected at High Speed,” Philosophical Transactions of the Royal
Society, Vol. A255, 1963, pp. 496-503.

4OThese notes were kindly provided by Mark Dunn.
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What is Acoustics?

The science of acoustics is the study of ali
phenomena associated with propagation
of small perturbations (e.g.,pressure,
velocity, displacement) in air, water or
solids.

We will discuss wave propagation in air
only. This subject is usually known as
general acoustics. Wave propagation in
water is studied in underwater acoustics
and in solids is studied in ultrasonics and
physical acoustics. Wave propagation in
solids is much more complicated and of
more varieties than in air and water.

20f3

Some Areas of Acoustics (From
Acoustical Society of America)

Acoustics is now a very broad subject
and is actively studied. Here are some

of the areas of acoustics: General Linear
Acoustics, Nonlinear Acoustics,
Atmospheric Acoustics, Aeroacoustics,
Underwater Sound, Ultrasonics and
Physical Acoustics, Transduction,
Acoustical Measurements, Instrumentation,
Applied Acoustics, Structural Acoustics and
Vibration, Acoustic Signal Processing,
Physiological Acoustics, Psychological
Acoustics, Speech Production, Speech
Perception, Musical Acoustics,
Bioacoustics, Computational Acoustics

¢h Center
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Lecture 1

—Acoustic waves in the air

Amplitude, frequency, speed of sound,
acoustic wave, wave length, period,
audible frequency range, wave number,
phase, useful definitions for acoustic
signals, types of common signals, the
decibel scale, loudness scale, finding
rms pressure for some common signals

'ch Center 4ofa

PRRE LA RTEEE 1 A LRI L e L R G R e T
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ACNSTIC WANVES \N AR (ComT’n)
THE PRLESSURE PATTERM \N THE FIGURE ON PRLEVIOUS OAGE
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ACONST\C WANES \N A (ComT/o)
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ACNSTIC WANVES \N AR (ComT/D)

MORE oN SPEEl oF Soudr) C \N The Mk
SCLEED OF SN OEPERDS OF TTMPELATWE OF TWe AR
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ACousT\C WAVES \N AR (conT’n)
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ACST\E WRAVES \N ALV (ConT’D)
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ARCNST\C S\GNALS \N AV (CONT/D)
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ACNSTIC SV\GENALS \N AV (CONT/D)
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ACST\C S\GNALS \N AR (ConT’/D)
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ACNST\C S\GNALS \N AR (ConT/n)
EXAMPLES (ConT’D)
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ARCNST\C S\GNALS \N AR (CoNT/D)

THE OEC\AEL SCALE (CoNT/D)
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ACNSTE S\GNALS \N AR (Cowt/0)
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ACASTIC SNENALS \N MM (ConT’n)

4
FEANOWE R Fot SOME COMMOM S\ENALS (cont’o)
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AN <Xwg epasS \§ 9\

=%, = B, =0 ,r.e. Twe TWo TNGNALL
WS
CoMPLEeTEL CANCELEACH OTRER . TWs \S TWE \DEA BewiNDd ANTI\NASE.

L ® ®
ACANSTIC S\GENALS \N M (ConTt’D)

FANOWGE "(’;M$ T SOME CoMMON S\GNALS (ConT/D)

4K)

WE WAVE SWowWAN TWAT For TWO S\GNALS OF COMMO™ FrEQu-
eve X

/
Pems

/

Prm&

\S MAXIMUAN \§ TWE TWO SNGNALS ARE \N VWASE

]
S MIWNLMUA \FT THE TWOo S\GNALYS ARE \B0O AT %

PWASE .
el

t
3 el el R)
E-’-?\‘\'Qz E:\E\—Ez\
\N PWASE \20° AT of PWASE
/ \

il =

\
'?Y\N\$ =J-Z—(E\‘\‘EQ_) MS_—J‘—T_T\E‘-EL\

42



- °® @ V2o

LOGARNTAMNM AHD Twhwe OEC\QEL SCANME

LOoGARATH M \S DEFINED For POS\TIWWE NUMBERS.
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SOME MATHEMATICAL TS _{"L.EA=
(’X,,)Ax; %fx)
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Y
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< N\ SeM T LARGE POS\T\WEC
e e il / NOM
For. examere 7 = S R Zeydt e
WS &
WE WAVE SWOWN TWE \WTECLAL '?/267)1 TAE SaUARE OF
oW TRE R\GWT . AcougTC @(L&&SQ\'LE.)/O

TAE CROSSED AREA

O (U,
‘3‘50 R Trydt

Lecture 2

— Plane and Spherical Waves

Plane sinusoidal waves, acoustic
velocity and displacement
amplitudes, acoustic intensity and
power, acoustic power level,
acoustic energy density, phasor
diagram, spherical acoustic waves,
amplitudes and radiation patterns of
monopoles and dipoles, moving
sources- the Doppler effect

NASA Lingley Régearén Center sof8
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2/)\
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PLANE ACHNSTIC WAVES f}t Aen
ANAWAWANARS
A VIBLATING PI\STON AT TWE v VU V U
THO OF A TURE ProDUCES T X T
L ad g » 0 I I —>
PLANE WANVES \N Thae TURBRCE : 8 : 4
We
OF TWE FouM ! veratws b §
cCast\C *\§Ton WAVE LEMGTH
\
P\Uassw.e}'? (%, t) = P svn (wt-%x +¢)
WHERE £ \S TWE AMPLITUOE N RASCALS
W \S 2TRX RADWAN/S , K \S N WMeeTZ (wz)
b =2 - 2T Gave NUNwer \N Wi, € Seeen of wund
e N w/g

¢ LACI\ARS \S A CONSTAMT, KHowN AS TRE PWALE .

0 TWIS \& A PURE TONE . TWE ABoVE PlCTURE OF NS0

'S FOUMD B USING MANY MICLOPHONES ON TWE WAL OF

THAE TOUBE AMD MEASVRIWNG f?’ AT A Tixed TwWe T .
® Toa A FAXED MCCROPRONE , A SUANVSADAL S\GNAL OF

TRERUENCY W/2T \S MERSWED E}—-/\ Fa /\ r
WATH TWE SAME A meuvTuoe P |/

"l AN \/R- sec

»® - ® -

PLANE ACousT\C WAVES (Comt/n)

@ THE PATTEAN OF PRESSURE Tor A T\xed Twme T, Pro-
PRGATES TO THE RASHT AT SPEED ofF IUNDS € UNCHANGED

TAME 'L-z> t|

LA AN I b
v VU (WY Y 5

T\ME 't‘ C (ta-ty)

® THRE AIR MNMOVES Mpack ANQ Forth ALONG TWE D\ReeT\oN

OF NOTWLN F TWE WAVE & O\SPLACEMENT
/
VeLoeaty /u- =W S (WE-kx+d) d = Qcaslwt-rx+p)
== -—>
AA\& LART\eAE AP\W- PART\C\LE

PLANE WAVE '€/= e Sva (WE-¥x+ )
MOV\NG To Twe R\ewmT
v =—E——- AMPLATUOE oF NELOATY TLOCTUATIONS WM/3

feC
A =\.2 k%/M QENBTY &F TNE AVR

AT 20%
Ao = 4\0 ¥g/wm*s or RAYLS (From Lorn LAWEIGW)
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PLANE ACAST\C WAVES (Cont/D)

TRE AMPLATUOE SF O\SPLACE MERNT OF PART\CLES oF AR \S
o =X _ £ = A
w foCcW ams w

& LET US SET SoME \DEA SN TWUE MASNMTURES OF TWREST
AML\TUOES AT 70, 4@ ARD

VWA

\20 43, re: 20 40, winen
ARE THE L“EVELS OF NokMAL CoNVELSATION ARD TRESWoLQ

OF PAW, RESPEcTWELY . WE TArE X =\ooo Wz, W= 4220 rad/s

70 AR ve: 20 AP

120 da re: 20 AP

/ q0/20)-¢ / (\20/20)- ¢
'Prwxs = 20 X \0 'erms-_- 206 X\o
= 063 Ro = 20 “fa
/
2 -_-,\}—z_-’e;w\5 L =JZ ®ems
- 28.2%
= 0.08% % 5 e
_28.2% _ .
v =—°Z‘\—°\—802—-_-o.oooz).w/s \/——___'—\\O = 0.068 W/q
O = NV __ 0.ooce2l O = 0.069
T W TTézeo 4280
= 3.35 X\~ WM = 1.10X\0~ W

-2
VoV DAY ww

® L @ 2/

PLANE BCSTIC WAVES (CONT/D)

WE SEE TWAT VTR AT TWE TRESWOLQ oF PAWN , TWE
AMPLATUOES OF veELeaaTY AND OWELACE MENT ARC T XTLCMELY

SMALL | S\ZC OF A MOLECOLE (OXN6EN on NTROGEN) 22 0.3%\0 8w |

® PWNASE \NFORMAT\ON

ACAST\C RRESSWE AND
A CoNST\C VELOAATY AVE

4
\ 7
\W_PWASE . TWE OWweLAcE- S \\v

MEnT LEADS 4/ Ano AT’
e ol SE% LD
Sy /2 ek 20° = T

Cecpuse B = :‘r_

® ACAST\C WANES TRANSFER. ENERSGY TRLOM TWE SARCE <o
TUE LORCE AROUND TWE SARCE . POWER = ENERSY/S
UNVE oF PowWER. \N S\ uNTS
Y OWRTT = \ Nw /s
\ WowlSE Powee. = THE WATTS

P CRIST\C. BERTRGY \S GENBLALLY NERY SMALL .

L WATTS (W)

<
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CLANE ACST\C WAVES (ConT/o)
BCNST\C EMERGY QUARTITICS

2
T: A cousTIC \NTEMS\TY = ACoUSTIC PoWER CHoSSWG A w® Area

2
I= —'Pf‘f—w‘—% wW/m?Z  (For PLANE WAVES)
[
(-]

£ C \S CRLLED CMMACTER\ST\C ACeNSTAC AMPEOANCE

o,
OF TwE NEOWM winer \s AR wewe. (40 eAtLs AT 20 )

P CoudT\C POWER. FrOM A Scance =W

N -:3 T8 wWATTS
S

WMELE D \S FAR EHOUGR TLOM TwE

SULTRCE

CoMce Suoh TwaT TWE ACASTI\C WAVES ook “\vE PLAMVE

WERVE S.
W ERERGY DERMS\TY = ACNST\C ENERSN /UNT NOLUME oF SPRL
2 Ton. PLANE WAVES
s WS iL N'“'yw\
= _P_c_’-_ == (Twas WAS TWE
[-3

UNIT S OF PRESSWRE)

] ® Y 2/¢

PLANE ACAISTI\C WAVES (Contd)

® “WE DLaalLE SCALE! Tol RACAAST\C PomCW
Lo L W
Lw=1o ?\o( W, 3

W I RCAST\C PoadeErR = S Idg

S
=\z
W, @ reFerence PaWEX =1\O WATT

/
W, 'S TRE PowE R TWAT B PLANE WAVE WATW 'Gms= 20 M P

TWLANSTELS ACLOSS A SWRACE WATW AREA \ wmZ.

® THE USE OF PwASowS (roTATWG VELTORS) <o SMow

TwE ReLATON BeTWeEER 7, v/ AnD A7 For PLANE

A CovsThe NSNS S D:teros P anoV wy 90°

\F WE LET TWE PuASors

LW AN ON TRE ®AGWT TO o
ROTATE WATW ANSGULAR VELOUTY ‘fg—'—'v /
W= 2& AND PLOIECT TWESE IN PHASE WATH A9

ON A VEWT\CAL o e\ ZoNTAL VNVE , \JE GET TWE S\NUSADQAL
coRNES Tow N, A A oN ev\0E 2/4 -
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PLANE ACASTIC WRVES (ComT/S)
Power (Watts) Power Level
(dB re 10712 w)
100 000 000 200+
Saturn rocket (50,000,000 W)
1 000 000 180
4 Jet Airliner {50,000 W)
10 000 160 4
100 1404
Large orchestra (10w)
1 1204 Chipping hammer (1w
0,01 1004
Shouted speech (0,001 W)
0,000,1 80 4
Conversational speech (20 x 1076 W)
0,000,001 60
0,000,000,01 40 4
Whisper (1079 w)
0,000,000,000,1 204
0,000,000,000,001 0
771111
Sound Power output of some typical noise sources
® ® ® /3

CLANE RACAST\C WAVES (COnMT/D)

Octave band

I

80 ——

Sound Level dB Machine noise (lathe)

63 125 250 500 1000 2000 4000 8000 Hz
Frequency

810946

Noise is an irregular combination of tones at all frequencies. The octave band
centre frequencies are shown on the scale (we Wi ©\scuss ©CTAVE
BANS LATER)

NEAR. A SONCET OF SOUMD, L\RE A NASY MASMNERY, SoUND
WAVE S ARE VERY COoMPLER AND UNLIKE A OLANE WAVE .
TR TULON TWE SAMRCSE AND \N Twe ARSENeE K SouQ REF-
LECTING SWVREACES , TRE SAUNMO WAVE \S PLANM. WMEHR WE
MANE RETLECTING SWERCES, TWNe SAMO T\EL-D \S Motc Com-
CL\CATED ¢ THS SVTUATION WALL BE O\SausseEd WARTeER:

- TWC TEYXMNMS | ANFLASAHD | SOUND WATH TREA. LESS TWAN 20 WZ
VLTLASAIND | SOUND WATH FREM. oVER. 20,060 N2
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@ ® & /g5
VES (ComT/Q)
PLANE ACST\C WA
Infrasound Audible region Ultrasound
STy q
PN - {
1Hz 10Hz ! 100 Hz 1.000 Hz 10.000Hz  100.000 Hz
Sound source i
:
:
:
'
ey sroser
Approximate limits for the audible ranges of dlfferent mammals and the fre-
quency ranges of different sound sources. "° . T
- ® @ 2o

PLANE ACASTIC WAVES (conT/n)

® TNE T\GURE ON TWE Rr\GWT
SHOWS THE RANGE OF FRLERVENCY
AR ACAST\EC LEVEL- OF \NTT-
WEST TO WUMPAMS . TWE AUVOWLE
YLANGE \S PRODUCED vy <wE
RESPONIE OF WUMAN EARS.

® Fo. PLANE ACoST\c WAVES
WEN G ALE CoM®BYNATAON
OF NMARY ToNES | WwE WAVE

ACAST\C \NTEMN\TY = SUM
OF A CoNST\C \NTEMS\T\&eS oF
<ne TonNes (W W/w?)

P CAST\C POWER = SUM oF
A CAST\C POMERS IF TWE
TONES (\N WATTS)

TWEW VeE L =\o '\og )




SONER\CAL ACAST\C WAVES

s 2/

MARY ACAST\C ot ALE SPRER\CAL . WE WALL STUQY

TWO MIDELS KrRowN AS MONOPOLES (PULSATING SONERL) ARD
OAPOLES (OSC\LLATING SENERE OR. FLUCTUATING Vvorces)

——
—_— SPNErieaL

SPNERNCAL
WAVES — f Fowee F&)

ACT\NG ©oN
TWE LADBIVS &

PULSATES WATH NS ES TWE LN
OSELLATES WP AND N < VERT

SAMALL AMPATURE e SR L QWL*E TieaL
A MPL\TUOE €cTIoN

A NM\oNovoLe

A ©\Po\t

WE ARE GAANG TO ASSUNE TWHAT TWNE MEASVWEMNMEWT O\ -
TARCE ¥ TAOM THE SGERNVERL TO Twe CENTEL & TWE SPnere
S MUK L ALGER THAN TWE MLAOIWS OF THE SPWEWECN .

SERER\CAL ACOISTIC WAVES (ComT’0)

—
2/|2_

WMONCPROLE SONCE - TUNE ACAST\C PLESLSWUWE \S SYMMETR\CAL
N /
\N AL DwecToNS ) L. e 7= BItnt), weenk, k=L

,\?/(r 't) o E SwA (wt—k\'\

. = Y a—— SOWER\CAL ATT TRVATON
WMERE D 1S A CONSTANT. Yoo MAY TwNk oF 2/r As
ANRLATLUOE .

\T cAM BE RELATEQ TO TRE AMOWTVUOC
OF PULSATION OF TWE LADWS OF SOPWELE - WE W\ NoT
NEEDQ To ©¢ \T MERE . WE WNOTE TWAT

'?'(zr, t) = £ sw (ut-2k0) ) AMPW\TU DL = I~

=

2r 2r

U. 2. DABLING TwE O\STANCE BAS REOVNCER Twe
B NMRLATLURE By WAL-F .

AVSO \"?/ =P $v§r~(b~3t— \AT) TWAS MEARNS TWAT
~ae QuanTTy R \s Lare A PLANME WAVE ARD
TOUAVELS WATWAONT SMARNSGNG TS SWACE .
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SPRER\CAL ACASTIC WAVES (CoMT/D)

NO NoROLE S ck (ConT/n)

L e

7 L=

;ﬁ— /R r:./f‘\:
\/

-
NoenoeoLe
\/
Y=Y, \s: A
’ ;(:’ ) ’
A CoaST\C VELOATY AT (vt) = (et) _ R(nt)
foC Lo
B CoISTIC VELOATY WEMAVES LIKE ACNSTIC PRESIWE
M CAST\C VELOATY AMPMTUOE = 257
£2 2
= GoeSs AS \/v
oy =
B CoNSTAE \NTERSVTY YT <
2
ACOANST\C PoOwWER. - Lt T X IE_\'-Z
2
2
= f—
\ C
® o e 2/\4

SEWERACAL ACNST\C WAVES (CONT/D)

MONOFOLE SourCE (ComT’/D)

771112

The propagation of spherical wavefronts from a point source

TME ACAUST\C \NTENS\TY &,
VAES AS \/rZ weeAuse "5

DOUBLNG <WE D\STANCE — N
TROM TWE SeArck ANCHEADES ‘
TWE AREA TWAT ENERGY

771113

The dispersion of sound from a point source
NWNST SOLE AD WY A FACTOL OF FToul @ TRERETOLE, S\NCE RACaUST\C

POWER = AC. \NTENSTY X ALEA , Twe Ac. \NTENS\TY MUST -
Towreps B A FRACTO 5 A4 .

51



SONER\CAL ACASTIC WANVES (cowmT’/0)

® %5

O\POLE SANCE

oORSERVER
Pcond S (WT-kr)
'S e
Pend sun (Wt-%r)
TN\

,?/(V/ e, t)
/U',(\'/ 6,t)

TS T\ME TWE A\ AT\oN oo e
PATTERN DEPEHDS ON ANGLE € AR
AC. PRESSULE AMPLTURE = Eeno

Ae. NELOSATY AMPLTUNE = g cm®
fo v

—TWE AMPLATUNE VAR\AT\ON ON
B SCRERE S8 LAD\NS ¢ ARD

AN A PLANE CoNTAWING TWE

OA\POLE PR\S \S SWEeWN ON TWE
RAGNT. T GET TWE FuLL Q) PATTISRA,
ROTATE TA\S FlUBURE RARAND THE O\eove

ARG TE GET TWO SPOnERES. OieoLE
AX\S

SPNTR\CAL ACANSTI\C WAVES (Cont’n)
DI\PoLE sAtCE (conNT/0)

@ NOTE TWAT TWE MPAX\MUM  ANPWTUOE (NASE) \s ON TWwE

DifoLE AX\S AMD \S EQUAL To —=— .

TRE AMPLTUDE \N THE PLAnE O = 30°%, r.8. TWE PLANC
NN NMAL TO TWE O\WWoL-e AX\s \S ZEeR0O .

2 2
®  ACNST\C \NTERS\TY = B con® W/wm?
LA R
Foe FARED © , Tvas FALLS AS V/r2. NPAX. Ac. \NTENS\TY
\S AGAR\N ON TWHRE DIPOLE Px\S

2
& PACnsT\C Powew = LB Conts 2 49

TWEREFOLE, \F A MONOPOLE AND OIPOLE WAVE TWE SAMC
RCAATIC PLESSUWE ANMPLTUOE ON TwE O\PoLE AX\S , TWEN
TOE MNMONEROLE WLADIATES ACASTIC EWNELSY TWREE TWMES
ART S8 B D\PSLE . A MoNofolLe \S s Te BE A Mence
ETTF\AAERNT SAHD XWADI\ATR .
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SRVNERACAL ACAST\C WAVES (ConT/n)
DI\POLE SoAtes (ComT’D)

@ MOTE TRAT A ©IPOLE, LIKE A MONOPOLE ) STILL SEWNN0S OUT
SERERACAL WAVES . BUT TWE AMPLTLURE

VARIES AS THWE CeonIiNE OF TWE ANGLE
MKR [ANeL.
S THoM TRE O\PoLE AX\S Pend
-
® O\PoLEs ARE MIDELS oF
46
FLLUCTUAT\NG Forces ON Zerk y o
TNE AL, TWESE FTovnces AMEL. AMEL.
ARE Proouce By ProPeELLE R
PHERNCAL
AMD NELLCoRTEW RoOoToRS . AN
<we Moheo WATH RADWL Y
MONOPOLE S ARE W —
OF TNE TWICKNESS OF AR\LTALS \POLE
AS TWENM MoVE N TWE A\R e TWE ARG
MO\SE PHLopuceEDd WY TwexkNeEsSS
\S CALEULATER VSWNG A NoNovoLE
N E .

MOVING SARCES — TRE OeRPLER EFFECT

SARCE GENMEMATING QURE TONE AT FREQUEMCY X ARD
MOWNG AT VELOCATY VvV ON A STLASWNT WNE

ORS . NEARS
NMO\SE AT Fred. Sfe

V VeEwaTY
—_

v<e
C: seeed
of S

M- = Saotet Mpey
NO. =W

p(

TS \S A PACTURE OF TWE WAVEEReNTS 7TaAkew AT <\meE t=0
WREM & \g AT POS\TION O+ S L SakeE . AT TIMES t=-\,-2,-.
TWE SAMCE WRS AT COS\T\ONS -\, —2,: . THE CoMRESPOVNONG
WAVEFHoNTS AT t=0 AfE MPerrEd B -\ ,-2,.. Twe TREQVENY
OF SN MEARD B AN oLSEwER AT ANGLE © \S

= i BT, & e DR SAMCE PRPROASKNG

S = /
© - en® \ = N\en® LR SAMCE RECENWG
g Ti\es 1S TWE Oogpr e EFFECT
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Lecture 3

— The Ear and Subjective
Effects of Noise

The structure of ear, how ear hears
noise, masking and critical bands,
octave and 1/3 octave band filters,
loudness and its determination, the
phon and sone scales, age related and
noise related hearing loss, subjective
rating using acoustic measurements,
the weighting network, equivalent
continuous sound level, perceived noise
level

NASA Langlej} Research Center 60f8

3
L Y o

TRE BEAR AHD SURIECTI\VE EFTECTS OF WOo\SE

TAE STRULTURE OF ©AR

® VUMK EAR \S A Vers
STNS\TWE \NSTROMEMT,
OVUR. MEARANG \S VIED For

Oval Window

emicircular Canal

— CoMMUNICAT\ON (SPEECH)
— EMICNMENT ( MUs\e)
— WRWYNING oF DANGER

® THE oUTER EAR \S Foxu
DIA\RECTING THE SO
Te ERR ORUM

¥——>" Scala Vestibuli

Scala Tympani

e TWE MIODLE CAR \S Ten
STRANSTFERING Twe ©AR
ORUM VIBLAT\ON MECKAN -
CALLY (\MOEDANCE NNTORNG)

Eustachian Tube

Ear Canal

A <
Ear Drum s Round Window

750530

® TWE \NNEr. EAR \S Forkl
SENMSNG TWE SeAr] ARD
CONVELTWNG \T TC A S\ENAL
TO SEND TO TWE BvipN
(Erectaores V)

The main parts of the ear

® SEM\CIRAVLAR CANAL Fou SENS\NG BALANCE
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TWE AR ANMD SURIECTWE EFTECTS OF MO\SE (comT’®)

THE STRNCTURE oF BAR (comT’Q)

Hammer

TWE EAR ORUM VARILATI\ON
'S TRANSMATTEQ To TWE
OVAL WANRGW BN TWE
&TARRV? (o STAPES) -

THE COCMLEA \S LLQWD
FWLED (AeeRex. \Seo WA /S
S SPEED) . A WAVE
TRANELS \N Thwe VUeCew
CRANARL (Scavh VvESTIRUW),
PAST WEeL\COTERT MA \NTO
Low B CANAL (SCALR TXMPAN ).
TWE RN WINDOW SERVES
TO REOUCE REFLECTIONS.

AS THE WAVE MALS TRRAGH
TWE CANALS, THE BAS\LAR
MEMBLANE QEFLECTS Wity
LOCAT\ON O MAX\ MUM DETLEC-
T\OoN OQECEUDING.oN EREQU-

Ear
Drum

!

Relative
response
~

SN
Round Window ™

Anvil SEE NEXT SL\OE Fol TWE

Y ostmn o wirgew  © 0SS SEETION ©F COCKLEN

Scala Vestibuli

Basilar Membrane

&

Scala Tympani Helicotrema

s (6m®)
"J:g %m‘ 5 10 15 20 25 30 mm

ol v b bev e laa b g v dyg

Response Frequency f (kHz)

2
?
10 15 20
Distance along membrane

0,3

: N

25 30 32,5 mm

/ P

BN L Mo Trea., NEAR oVvAL

— X 162218
1l

of the

1l P

WANOAW , Low/ FReh. NEATR
NELACOTREMNMA .

sponse maxima (<TwWE COCVLEA \S S

ing the of re-
MowN UNFURLED)

3/3

THE EAR. ANO SUBMECTWE EFFECTS OF MNO\SE (CONT/D)

TUE STROCTURE OF EAL ([Cont/ D)

e QEFLLCT\ON oF

EBASILARL MEMBLANE \S

SERSEN A MILTITURE
OF EXTWEMELY SENS\T\VE
WALR CELLS WH\eH CoNVERT
TRE ANRALOG S\GNAL \NTo
NERNT \MPULSES . Tuese
ARE TUANSMITED <o Twe

BLAWN RN PUO\TowY NERVES.

771159

ol

across the ¢

THE NERNE \MPULSES WAVE FRLEQUENEY AMN LouDNESS ANFMA -

TAON' THRT TRE L\STENER TESLS .

TRE  MEALTHY WONMAN AR CAN WEAL TaoM 20 W2 To 2o kw2

(A RAT\C OF \6v2) AMD THE \WTERHITY 2LATIO SF TWe LouREat

TO TRE AV\ETEST No'E \S \O\?'

\

LOVONESS OF Mo\SE \S A SUBIELTAWWE EFEECT TRAT \$ ART
DARECTLY RELATEQR TO TWE ACaIST\Cc PRESSVRE LEVEL.
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=ME EAR. AND SUBIECTAVE EFFELCTSOF NASE (Cont’n)

MRASKING ARD THe er\T\CAL BANNS

3

TWE BRACKLHLANT NASE CAN CPREVEWNT THE \WTELW\E\W\WTY ofF

SREELH . WE SAY TEAT TWE SPEECW
\S MASKTN BY TRE BACKELAIND
NASE (MASKING NASE ) \NSTEAD o%
DSCEECW ), WE MAN MAVE A WARNIWNG
S\GNRAL \N AN ARCRATT COSKP\T
WS \S MASKED .

S\NCE TUE BACKSERAIND NASE CAN

BE OF MANY VARAETI\ES ; MANY @PARA-

METERS \NFLVEWCE MALKANG . Tow NA-
LA BAarD NASE, WE WAVE TAELSE

Sound Pressure Lavel Ly (dB)

Level of masking noise L= 110 dB

100

80

\

80

TRLEE RUVES ¢

. A narrow band of noise causes more masking than does a pure tone of
the same intensity centred at the same frequency.

2. At low levels, masking is confined to a fairly narrow band around the
masking noise’s centre ‘frequency. As the level of the masking noise in-
creases so does the frequency range over which it has an effect.

3. The masking effect is not symmetrical about the centre frequency of the
masking noise. Frequencies above the centre frequency are more easily
masked than those below.

\
\
\

W\

Threshold of Hearing
!

a7

N\
\
) AN
>

50 100

200

500

Hz 1

Frequency ——

2 4

8 kHz 16
162222

Masking effect ¢.7f a narrow band noise centred at 1200 Hz at various
levels {af{er Zw:fker), A 50dB 4 kHz tone (marked +) can be heard if
the masking noise level is 90 dB, but is masked if its level rises to

100 d8

MASKANG EFFECT \s SOMETIMES OESIRED \N QUIET eff\egg
WYERE CECPLE CAN WNEAR CONVERSATION NEARRBY AND GET O\STRLACTED .

THE CAR AND SUBRIECTIVE EFFELTS OF MASE (ConT/D)

MASKANG ARD TWE CRAT\CAL BANDS (CowT’D)

3/s5

TME BEAR ACTS AS A SET OF OVERLAPPNG CoNSTANMT CERCENTASGE

BANQWARTH ARNDCASS FI\LTERS .

® A TILTER \$ A DEVCE WHISH ALLOWS
A LANGE Sf SRLELAVEMCY (BAARDWARTR )
OF S\EGNAL (NOASE , CURLENT, ETC.) To
CASS TWRAGW TWRE QEVICE .

RE SPOMSS

GANDPASS FLTE W

AR AANOWGTH

£

c

trReEQ. N2

%, ! CEMTER Frea.

Fol R CoNSTANT 7, BANDUWINTH BANDPRASS €\LTER ) A% /R = ConsT.
e \NCREAS\NG BANDWMDTA & A NZASE WEYONNR A SR\T\CAL VALUCE
QoES NoT \NCKEASE VTS MASKING ESTLCT OF A PUrRE TONE AT
\"TS CENTEL TRLEQLVENMCT. TH\S \S TWE CR\T\CAL Vo ANMDWARTY

@ TWE CRITICAL GAMDWASTH OF TWE EAR \ S APRREX| MATELY 237,

OF TWE ceEwmTew. Trea.,
L.e. \'3 T OCTAVE . Tw)Q |Centre Frequency (Hz)

SVUSTIFES TWE VWse oF Critical Band (Bark)
\ IS OCTAVE {sﬁ m " NP\\:( s‘ S Centre Frequency (Hz)

AN NASE MEASWEMEWNTS Critical Band (Bark)
® CriticaL ® ANOQS ALE OF - Centre Frequency (Hz)

Critical Band (Bark} 1 2 3 4 5 6 7 8
50 150 250 350 450 570 700 840

Bandwidth f (Mz) 100 100 100 100 110 120 140 150
9 10 1" 12 13 14 15 16

1000 1170 1370 1600 1850 2150 2500 2900

Bandwidth f (Hz) 160 190 210 240 280 320 380 450
17 18 19 20 21 22 23 24

3400 4000 4800 5800 7000 8500 10500 13500

Bandwidth f (Hz) 550 700 900 1100 1300 1800 2500 3500

S\GNATED AS BARK ",
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TYHE EAL AND SUWMIELTIVE EFFECTS oF NaASE (CoNT'D)

DAGRESS\ON | CCTAUE AMD 1/3 CETAVE BAND SALTERS

o OCTAVE BANMD FILTERS | TWE AUMBLE FRE@. LANGE \S OWREQ

ANTC TeEMN Contiguous (L.e. N6 6APS) ) AAMIS OF FREQUENCIES
CRALLED OCCTAVES SUcM TWAT

oY
X o VPPER FrER. _ o center FreR. =% = /X . BEF\NITION
%X \‘oweer Tred. . < RN

WE AN SVowW TRAT gq\_ = g\_: ) gvm= J'z—gvc

OCTANVE BAMNDS ARE \DOLRT\FIED BRY CENTER TRed.

EXAMPLE ! TWE X_= 560 Wz OCTAVE BAND WAS X =560/VZ
=354 Wz , &, =JZ xS = 707 Wz

=

\
<weeevere £5% _ L - o9\ er 7\ ¢ ¢.e. AN OCTAVE
= "7, \ V%
BAND FILTER \s A ConsT. b WLTew .

AX=BANDWIDTR = R o .= (H—%—)Qc:j‘&.
2

e \/3 CcTAVE BAND FiLTERS . AR /X =0-23

TRLEE ADTRCENT BAROS CoVER ONE OCTANE . TRE CEMTER FREQVEN-
ClES RRE SET BAY \WTERNATORAL A SLEEMENT -

Ela]
o o ; [
~WE EAR AND SURIECTIVE EFEFECTS OF MO\SE (CoNTD)
OLLRESSNON ! OCTAVE AMD \/3 OCTANE FWTERS (CONT'D)

Table A2.1 Standard frequency bands (Hz) and A-weighting

1 One-third octave Band limits
Gain practical Octave band centre ‘band centre _— A-weighting
ideal Band number frequency frequency Lower  Upper (dB)
,
0 ffc fv Frequency 14 25 22 28 —44.7
15 3Ls 3L5 28 35 ~394
s AAPAAAAARA i6 2 35 44 —346
Gai contiguous 17 50 44 57 —30.2
ain filters 18 63 63 57 71 ~262
S R 19 30 71 88 —ns
%t % & f5 % Frequency 20 100 88 113 —19.1
(log frequency) 21 125 125 113 141 —16.1
2 2 160 141 176 —134
TILTeER BANK < '?,M 23 200 176 225 —109
24 250 250 25 283 —8%6
1 - v\, —pe — 25 315 %3 353 —66
_ 2 400 353 440 ~42
Nease 2 - W —p22 — 27 500 500 0 565 ~32
_ 2 630 ses 707 -19
o —pg2 —
W2 | N 29 800 707 880 —08
L WMMW g2 30 1000 1000 880 1130 0.0
o0 4 N 31 1250 1130 1414 +06
Gl 5 - WMM\ — P2 — 2 1600 1414 1760 +10
L ! 33 2000 2000 1760 2250 +12
et 34 2500 2250 2825 +13
t 35 3150 2825 3530 +12
Frequency Frequency 36 4000 4000 3530 4400 +1.0
o 37 5000 4400 5650 +05
p2=Zp? 33 6300 5650 7070 —01
Dor? 39 8000 8000 7070 8800 ~11
Looa = 1010g10 [P__:; ]ﬁ Ly, NOTE ! 40 10000 8800 11300 -25
4 12500 11300 14140 —43
2 16000 16000 14140 17600 —66
NOTE Wow WE GET THE 200ND 4 ) 20000 17600 22500 —93
WO\SE ., Reproduced in part from Fundamentals of Noise and Vibration (Fahy and Walker, 1998) — see
PRLESIVRLE VEVNEL OF TwE Bibliography.

TROM . Ta Nt TART N TONDATIONS OF €W GINESRANG ACasST\CS Y 260\
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<WHE EAR AND SUBIECTWE EFTFELTS OF NASE (CoNT/O)

OVGLESION & GCTAVE ARND /3 OCcTAVE FuTens (ConT/n)

AN READING AN ATEUT oF AN OCTAVE oRr \/3 OCTAVE T\WTew,)

ONE. SWOULMD BAE AWARE THAT TWE SOUND PRESSVNRE VEVEL AT

TWE. CEMTER. FRLEAUENCY ©F A FILTER BAND \S OLAWN AceosSs
THE WAHD AT TRAT L“EVEL. TS WiLL GAVE THE WROME \MPLLSS\oN
TRURT TRERE \& LESS ENERSY \N THE /3 OCTAWVE SPCTCTRUM TWAN
THE OCTANE SPECTAUM TFor THE SAME ACoST\C S\GNAL .

NOTE T&ART \N AN OCTAVE
BAND WE wWwAVE Twee e
A\ CcTANVE VBANQSE SO TWAT @B

2 1/1 Octave e

(), =B, + B

\l3oeT,

13ectr.2 5 dBI

: /
a (ﬁe\’W\s) \/s oex. 3 1/3 Octave

AMD \T TWE LEVELS \N TWE TWREE
BANDS ALE AL\ MKRTEL CoNgTANT

Frequency

2
('?vms 3\[5 oeT ALNEERAAY Fig. A2.5 1/1 and 1/3 octave spectra of the same sigaal.
2
(’?f;s) = 3(®ens) o= (From Frank FAWT)
oeT \i30c

(\“'?>oc-r =(\—'e )\,3“__('\' 5 dR re:.zoMfa s DX \O \og\°3 .
(evnno oF overession)

® & PY 3/9

<VNE AR ANOQ SUBRIECTWWE TEFECTS oF NASET (ConT’'o)

LOVDNESS ARD \TS DeETeELMINATeN

TWE PHoN ARD SCNE SCALES

EQUAL LoUONESS COoNTOURS Fer i

PURE. TONES \S SHewWN ON TWE W

R\ GAT (FNR EXOE R\ MERNTALT)

TRE VERT\CAL SEALE \& Sound

PLesswe LeVveEL AR re! 20 U Qo -

WHER EQUAL ~AIDNESS CURVES

ARE AT \cTt V\Z , THRE\R Qtaawe

LEVELS DETINE TRE LaAQNESS \A

PReNS. s T T

Lt

SVBIECTWELT, A \0 & \Ncrepsc T

[
[T I HRITINEEN
AN TRE LENEL OF TWE SAME s s e .
MOISE \S PERCEWED AS DOUBLING OF LOUMME S0 . A S E
WS \NOLEASES WINERGLY WATW PERCEWEN VAQNESS CAN AT
DEFINED &x £-40
3 -2 ' SoNES
WRERE T \S LouDNESS \N PWONS - WE SEE TWAT Fer =40
Pwons, Q =\, Foo £ =250 PuoNg, R =2. Fou AN § , & -
CrERLES BY A FACTA OF 2 Tor. P+\0O €wens.

SEE TWE TI\GURE \N TWE NEXT SL\NE.

IR

8
3

3

a1

3

a1

/
AV mAVEAY
7

Vi

LY AR VYA

Sound pressure level {expressed in decibels) above 20 uPa

3

o
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TAE SRR AMD SVANECTIWE E FFECTS OF NASE (CQoNT’D)

LD NESS AMD \TS DULTER MANATI\ON (ConT’D)

TRE CWON ARO SONE SEALES (CoNT/D)

TH\S M\ETVWOD OF CALCUNLC-AT\NG
LUQNESS \& 6o Tor Pute
TONES . T Moe CoMeL-eX

NASE \NVOLVING BYomBANDINOGE 2 A

MAXED WATH PURE ToNE AN
NERLLA) BAMND CoMOONEMTS
TUELE ARLE WO METWNING
BN ZW\ekErR AWD STESVEWS
TRAT ALE WADELY VIED .
BOTN TRESE METRONS AT
ACCESTED X \SO . Th\eY Use
OCTAVEX\ /3 GEeTANE SETCTRA

]
T
Loudness A
=—tat 1000 H

o o E
™

Loudness (Sones) _

k=4
z

7
4

w

eo
1Y

e

20 40 6C 80 100 120
Loudness Level (Phons}
162219

The relationship between loudness in Sones and loudness level in
Phons

OF TWE MNO\SE . TRE STEVEHS METHON \S AMFPLER BUT MoRE
RCSTRACTED THAM ZWICELER METHSD. TWESE METWRADS Are
QESCLARERN \N AMY ACsT\CcS WARNR oK .«

& Tok SWoRT OURLATION SOUMNS oF LESS TRAA oNe SEcem
QULATION ; THE LAUDNESS DEPEHNS ON TRE EWER EY \N THE
PULSE + TWE SWoLTER TWE PULST /, THE LELS Twe LouQNESS.

3/4

TAE EAR AMD SURJIECTIVE EFFECTS OF NASE (CoNT/D)

AGE RELATERDR AMO NOo\sE RELATED NEARING 05

AS WE AGE , cur MEARING L0&S
\NCREASES AT ALL FRLEAQVNENCIES.
WE LOSE MaME NWEARIWNG AT
Y\GWN TRAN o) FREQUERC\ES.
THS PRENOMENMON \S K¥NowN Ag
PRESBRYENS\S .

MO\SE EXROSULE CAM CAVLE RoTH
TEMPOAWLY AMND PERLMANEWNT
NEARING LOSSES . PERMANEWNT
NEARING 058 CAN Cca vk \©
ONE \S exPose To vl NASE
ONER. A LONG PeEr\ON ef T\ME.
THE NASE RELATEQ WEARING
LoSS ALWAYS ARPPEAR AT ABAT
L KNZ » NOTE TWRT TME MosT
SEVERET WEAWRINSG VoSS \S \N
TRE WANGE ©F UNQEWSTAND\WNA
OF SPCEECH
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a b

B

6k
30, / 2

0
4k
2 kHz

3k
20]

1000 2k
1000 16

-
//snn

60 Years 70 ) a0 50

==

of
20 30 40 50

of
60 Years 70
50540

_ . Average normal age-related hearing loss
aj According to Spoor b} According to Hinchcliffe

STUDY OF IWTE WEAUERS \y SCOTLAND

o

Exposre Y 7
1- 2 Years \ /-

5- 9 Years S

_____ 15- 18 Years| =
........ 25 - 29 Years|

Median estimated noise induced threshold shift dB
—
N
\
~

—  |35-30 Years

I

1
Frequency kHz

0125 025 o, 2 3 4 5

8
71188

The development of noise induced hearing loss



TAE AR ARD SUBIELTIVE EFEFECTS OF NASL (ComT’o)

SUBRNCETWE RATING USING ACAISTIC MEASYRTMENTY

MANY PALAMETERS ALE \NVOLVED \N TWRE LANONESS EVALUATAON ©oF

' o

WO\SE . WE CAM VSE COoMMON ARCAST\C MEASVREMNEWI ANSTRUOMENTS
TO G6ET A GooD \OefA IdF TRE WAIONESS LEVEL . LET VS Leook

AT A WAS\C SOUNNA LEVEL METER SwowWN ae\Low.

Overload
detector

Preamplifier ; Amplifier

Weighting
networks

Time Constants
«p/ug?

Hold Circuit

THE SouUND PRESSURE LEVEL WE WAVE NETWEDN SO BAR \S

SAID TO USE VNEAR SCALE. Twis WAS PRACTICALLY No RE~
“ATAON TO LoBNESS. To GET A SURIECT\WVE B VALV AT\ON oF

NASE ; WE LVSE TWNE WEVGWT\NG NETWenXS .

THNE EAR AMD SURLECTIVE EFFECTS OF NASC (ConT’d)

THAE WEAGWTING NETWAKS

3N

WE Knaw TRAT AT Lo AND AT o
CLEQUENCIES ) TRE CoONSTART “aUONESS
CONE S (SVW\BE 3/9) Curve UP So TWAT
ON TRESE CURNES ) TRE SYL \S W\énewr
TWAN TRE PWON LEVELS . TWereTont,
TO G6ET AN \DEA oF LD NESS AT TWNESE
FRLEQUERCIES WE SNULD &\WE €SS
WENZCWT TO THElR. SPLU/S 0 Tes \ S
VONE AN THRE WE\ELNNTWE NETWRKS
A,R,C ARD D . NoTE TKRAT A curnve
S V\kE AN WVERTEND EAQAUAL LOUONESS
CORNE AMDO \T \S TWE MOST W\oeELY
VUSED WEAGNTI\NG NETWALK . NOTE ALSO
TRAT Tae A GUrVE \S LAKE AN \NVERTED
EQURL LABNESS ONVE BT \ow SPLU

™ \e L\LE AN \NVERTED EAQUAL LoUD NESS CURVE AT MEWBIVM
SN\ R0 C \S v\kE AN \WNVERLTEND TAUAL- e NESS GurVE

BT W6 SPL . THE O curve WAL DEVELerED T AARCHATT
NASE MEASUREMENTS . WE \NO\CATE TWESE Levers As AB(A),

A% (&) ), eTC.
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TWE EAR ARMD SLUBIELTWE EETECTS ©F Nast (CONT’B)

3N
PS &

SOME OTHNER \MLATART OETINTONS

s 1 EQVAVALERT CoNTINUANS SaUND LevEL
eq

\C THE A-WELLATEN LEVEL S8 NASE \S TWME DLOENDEWT ,
Taew ’?P\G:) TRE  A- WEAGATLN \NSTANTANEANS  ACoSTIC PRESSWME

- ABNY /20
1S TIME DEPEHDENT. TS \S DESWED AS 20x\o‘>: \0o /?c.‘

1 S QETAEQ AY
\ =X 2
Leq = o tog [ | (B®)aT]  ae

T U MEASWE MEWNT TWE , /eo = 26 MV¥a

TUE TRWNVALERT CONTINUNS SouND “eveL L,

THS \S USED Fo QERNING CoMMUNTY NAST STAMARMAS Suem
S \_‘3"J LORNE OAY-NIET AVERAGE SAUND LEVEL , ANY

\_.W ©TRE MASE POVIITION LEVEL -

\N \..DN MALE WELAGWT \S GAVEM TO Twe NALE BETWETN TWwe

Wos 22:60 To 116D \N Lpp, THE ETTELT oF FLOCTUATIONS
\N TWE LEVEL OF SAUND \S ADREN TO L“eq -

3
&® ® NS

TRE EARL AMD SURICCTIVE EFFtets ©F Nast (conT’n)

PERCE\WEDND NASE LEVEL . PNL

PNL WRS DEVELSPED Totl A SINGLE AARCHAAFT TLXOVER No\S\NESS
EURLURTAON - \T REAQUILES EXTENSWE CALSULATION PrOCEDNE
US\NG \/2 OCTAVE VBAND MEASMEMENMT EVERY V2 seceming R

LESS. TWESE MEASWE MERTS ALE WEIGHED ARD SUMMEQ
<O GET VeRCeWE NASINESS \N NONS AT EASH TI\ME \NTER-

VAL . TWS VALUE \S TREN CONVERLTED <o YERCEAVEQR
NASE LEVEL \N YNAR . AFTTIER CorRELTIONS For DURAT\ON
OF TAMOVER ArQ TONRL CoNTEMTS (TRom TAMS, Fo exXAMALE)

THE ESTTLECTIVE CeERCEAVED NASE LEVEL ' OBTRNEN .
TS \S TONE- CottecTed EONLAR(or EENAR).

LN ] as
SEE ACAST\C No\SE MEASURE MERNTS WY BROEL %
IRER
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Lecture 4

— Some Acoustic Phenomena

Superposition and interference,
standing waves in a tube, resonance,
the beat phenomenon, plane waves
traveling at right angle, the Huygens
principle, reflection of plane and
spherical waves, diffraction,
scattering, refraction by wind and
temperature gradients

7of9

&
* e
SOME ACANST\C PNT NOMENA

SVUPERCOS\T\ON AMD \NTERFERENCE

ACAST\C. WAVES FrROM OIFFERENT SoURCES ADO WNEARLY AT
EACY PO\NT OF SPACE ANMD AT ANY T\ME . <as \S SALVLEDR
TRE SUPER.POS\TION PRINCAPLE « TH\S CAM PLOONCE A DISTRIBUTION

OF PRESSURE \TN SPACE WKHOWN AS \NTERFEREMNCE PATTERN .

ANTERLFERENCE PATTERRS ARE MOST \WTITEREST\NG T P r\o0\c

PLANE OR SPHER\CAL WANES. WRAVE LEHGTY
b e

PLARE WAVES

A

MOVANG WAVES
RA\GWT ARD VEFT e ~ —>C
RAGuT 'P_:: s o (i -Ykx) x
e W, = Br ol (Wt -¥x) = s (wt-kn) E pl_¢
: ) AC AC. PRESSVRE Tow A gxe O t
K AHD A ARE \N PRASE ) R\ GWT MEeV\NG WA VE
/
{ 'z Peawn(wt+kx)
ALz = Bm el (Wt akx) = oTev (W) f=g
foc = £
) v
R ARD A ARE 180° ouT oF PWASE Y Ny ¥
l \// e
Ww=2w g red/s, TAN=C W/S gy
b oo bl e 2 g AC. PLESSURE For ATWwERT
S =S LETT MoVING WAVE
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SOME ACAST\C PWENOMENA (CONT’D)
SUPER.POSNTION AND \WTERFERAMCE (CONT’O)

STARDIING WANES \N A TUBE

CLOSEQ TURE W\TH AN EXD WAL

’ , RAE\D END
’e.\. = ?+ $\I.V\@|)t—k"() RAGWT MNVING /?*_’ AT =0
/ MoV Xl — x
P = C_ sv(wtxkx) SE N
/ -
nr o)=L e, t) /he) _®lety/rel x=0

=_f:_c(g+_e,)sgwt N

Pnty = R utye L nt) = B[S (0T -k )+ Sua (1o + k)]
= 2P coskxont  [Ame. = 28, lenkxl

(b)) = _’?_g: Y_s\;.(wt_h)_s@wtwn]
(-]

]!

=28+ etk nConwt = 2% Liknscn (wt+3F)
hc hec

)

2V, s kX sla@t+E)  [Ane =2vilalen] |

‘ 4/3
CLOME ARCASTIC PHENOMEMA (CoNT/O)
SUPERLOLTION AND \NTERFERENCE (ConT/D)
STANDING WAVES \N A TURE (conT’D)

PLESSULE AMO VELOAGTY AMPLITURE SISTLIBWTION W A TOAE
WATY AR EXND WALL

/\)F—\. CPMeL. B3e

MNMOTE @ AT ERCA %, TRE ACASTIC fRESSUAE AMD VELOSATY
ARE PERAOB\E WATW FRLERUEMCY W/2R . Twe AMPL\TVOE oF
OSCALL ATION NVARIES ALONG TWE TUBRE AS A FUNCTION oF X .
TWE  ALOUET\C NELOGATY LEADS TRE RCoST\C Presswee Ao
A0° AT ARNY PANT ALONG THE TUBRE . THE MAXIMUM & fLEsSSWE
POMCLATURE OCEARS AT ZERS Ac:. VELOCATY AMPUTURC: A P\SToN
VASLATING AT A O\STARCE &8 A MULT\YLE ©oF A/2 FLOM X %E
END WALL (2. AT COWTS WMERE VEL: AME. = 0) EASILY EXAATES
PCNSTIC WAVES \N THE TUBRE | TS \S ThE RESONANCE

CWE NOMETON .

— WE CAM 00 A S\WWLAR ANRWISS For oRER WD TURE WMERE
’?’(brt) = '?+(°it)—\-'€_(0/'t)=° = E_\.=—E_ ) BTC.
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SOME RACANST\C PRAENCMENA (cont/D)
SUPER_QOSTION AMD \NTELTEREHCE (CONT/D)

TWNE BEAT CWENOME™ON

LET VS TALE TWO R\GNT MoVING WAVES ofF BUMEL TURE UNATY

WATR ANG: FREGR. W, AME Wz Such TAAT W - Wa\= &AW SMALL.
TWE SUPLERPOS\TION OF TRESE WAVES \§

olix,t) = 'P\’( x,t) 4 ’(’;_ (xt) = SUn (B, T - ¥x)aSun (Wt -¥x)

—
—

pyayTe] p
2 coﬁTt $\~.~(LOAV":_\4«)
W+ W2

Fo A\ FWEDQ X, WE

sin 10m{t - x/c)

%/\/\/\/\/\/\/\/\/\/\/\
MERR A PERAAS\C SeUND - VVVVVVVVVVN
o Treavency Lav/ER NN NNDNNNT
WHOSE  AMRLTUBE VAMES »XVA\/ V VAN VIV V V V

WATY, ERE A . AL\)/A-TC' TN\ Envelope o 3‘35’\“"/” )

ERAR SEWSES TRE WA , ,(’//\ /\,\

Frea. Way /2t weacs o

\ vz
wepTs AT Fre®. aw/aw. 7 m n \\vn'v// n
BeTY FLEALVLEW g AE sin 10m(t—x/¢) +sin B (t— x/ ) =2 sin 8ar{t —x/c) cos @ t
LENIED \T TREY RreEe \ - The formation of beats. (WANE PATTELN SwowN Fot A TED
AVD\BLE Y-ANGE . T \N SeRcE)

. . “(‘/5
SOME ACONST\C PRENOMENA (conNT’D)
SUPERLPOS\TION AN \NTERTEREMCE (CoNT/O)

ANTERTELENCE CATTCRANS 8 TWO PLANT WAVES LANELNG
AT RAGWT ANGLES TO ©ACH OTWER

xe 1=z k
(=K R= (&, ka)

Proes 6 AT\ON
$gl QD\recTioN

\

s —
k‘-“ R = \(\9(\'\' X2 %2
k -

o =\é\"(\+¥,z."(z.
B2 B sualt-k-X)
'9;: ? s@(“f--‘z";)

{a} Initial condition -=-Trough

(b) Half a period later
WE WAVE A 6\ PATTERMN

Two identical wave motions crossing at right angles.

OF LINES ®ARALLEL O X, AND X, A KT DISTARCES aF A /2=

JZTC /K WHERE THE PRESSURE AMELITUOE \S ZERD . TWE PRESSWE
\S PERAOHNC WATW TREQR. /2T . TRE MAXIMUM AMPLTLAE oCceAS
AT TWE CERNTER S8 TWE SAUARES FORMED ay ZERO PrRESSWE

“ANES .
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SoME ACST\C PHNENOMENA (CoNT/Q)
S UCERROS\TION AMD \NTERTERENCE (coNT/0)

SONCTRACAL. SANLES

CESTLVLTWE ANTERFERENLE

WO SPNER\CAL WAVES
'Q‘/u?,-t) ARG R (K1) Wi
SURERPOSE \N SPACE &\WING

e wavE R(X,t) = R/F 1) « ) (Zit)
TS EFFECT \S S\MULATED \N

A RAPPLE TAMK ON TWE ®\GT

AN TWO OSAANL-ATWNGE SAMLCESDS

AT A TIW\TE OWTANCE RAPOART .
NOTE =<HRE CONSTRUCTWE ARD
OETRVCTANE \WTERTEREWNCT

PATTERRS .
“% . A two-source interference pattern in a ripple tank.

—RAGPLE TARK CAM BE USEDQ TO SOURCES MOVINA \N PWALE

STVWOY NMARNY WANE PROPAGAT\GN PRENCMENA .

® A7,

SOME ACVST\C LWENOMENA (cont/0)

TVWE MU GENS PRA\WNAAC\LE
L L) ERSM POWT ©ON TWE WANEFRLONT

— TS PRANCAPLE STATES
ACTS AS A SARCE OF NEW SPWER\CAL WAVES , LU) TWE New

WAVETRONT 1§ THE EWNVELPT OF ALL THE SPOWERI\CAL WANES

AT A GWVEN T\ME .
THE EHVELERE \S A SUAFACE TANGEWMT TO TWE SOVeER\CAL
WANES ZADLIATING AT FroM A WAVETLONT .

_ TS PRANCARLE \S A VERY USEFLL Todl Fo O\SCcoVERWG
MARS ACASTIC PRENOMEMA (AS WELL AS OTWER WRVE

PRLOCA GATION PRENGMERA)
g New position
of wavefront —
g::;:pve // X K < X “\Secondary
wavelets

Original position s———e————e———s———s—

of wavefront

{a) A circular wavefront (b) A plane wavefront

Fig.3.3
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SOME ACAST\C PRENOMENON (ConT/D)
TUE MUNGENS PRANCAPLE (COoNT/D)

REFLECTION PWENONMENOH

e FICURE ON <WE LEST Swows A PLANE WAVE @
B RAGD SWFACE . TWE ZAY \ TC 3 ARET NEWMAL TO TWRE PL-ANE
WANE - WE WRART To FINQ Twe WANETLOM AT THRE MOMEWT WAY 3

REACHES TME SNMERCE . WE ©O0 TWs WY FINDING WWERE <WE
SURFACE OF TWE SOPWELE LADIATING AUT FRoM PaANT B \S waeEwN
R 2 REACHED THE SMFEACE + THE WADILS CF TWE SPRERE WAS
<o WE E®UAL To cle’,re. wr’=ce”
SAMIL ALY TWE WAVE LADIATE D
FLeM A ) WHEH WY 3 REACHES TwE
SUWMEACE TAMM A SPRERE CF MNADIVS
MR = e . TWE ENMVELOPE \S TME
PLANE A"YS"C v, .

\&"‘:g\-\'(

Direction of ® < Direction of
travel of travel of
incident

reflected
wavefronts wavefronts

SFLECTING TROM

Huygens’ principle applied to reflection.

A plane wave reflected in a ripple tank.
B TRE RBROAVE CoNSTWUCT\ON WE

Cpr\ S ANGLE F \WaADEMCE t =

PYMALLE OF WETFLECT\ON ¥ o

®
SOME RACAST\C PUENOMENA (conT/D)
TWE WU GEMS PrNaAPLE leonT/D)
REFLECT\oN PYENC MENON (ConT/D)

SPNERACAL WAVES

VUM GERNS PRINCAPLE CAN e
USEQ To STUNY TWE STRUCTWE
OF TWE WAVETRONT Prouce WY
TWE REFLECTION OF A SPWRERACAL
WRVE TULoM A X\ PLANE oo
CARLARSIL\C SUWEACE .

(b) The reflection of circular waves from a parabolic
reflector; the incident waves are formed at the focus of
In the lower photograph part of each wavefront has been

(a) The reflection of circular waves from a straight barrier.

the parabola and the reflected wavefronts are plane.
reflected.
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o L] -

SOME ACASI\C RXENOMENA (ComT/D)
TNE MUNGENS PRANAACLE (conT/0)

O\TERACT\ON OF WAVESKY A BLE A AW ATEL  ARD \TS ANALNS\S

B WULGENS PRANCAPLE

°® L/
SOME ACNST\C PRENOMENA (conNT’/R)

O\TELACTION OF.A PLANE WANE ®Y AN AfEwTIRE

NOTE IWAT For Low FRLEQUENCN
(XA>Ad), Q& Twe WD oF TWE
APERLTURE , THRE O\FERACTED
WAVE CoNERS A WINEW. ANGLE .
For. W\ew Tecauercy (XN<L4d),
WE WAVE BLMOST A SWAWP
BRERM . THE WNUNGENS PrNaAP
EXOLFINGS SOME OF Twe TEATWES
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t 1

HUNGERNS PANCARLE

(©

Fig. 12.8 Diffraction of a plane wave by an aperture in a screen: (2) low frequency; (b) medium
frequency; (c) high frequency (source unknown).
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SOME ACST\C CRENOMENON (ConT’/0)
SOATTELNSG B A R\AD OBIELT

AN ORIELT /S LEWMETW SCANLE -

DETERMNES How MUCKH VT AFFECTS
SCATTERANG OF SoUMD - \F L < A,

N THE WRVELEMGTH OF Twe SAND,

THER TWE WANVES &6 AAND TWE

ORIECT AFHD WE RPAVE L\TILE SCATTERNG.

AT L > N\, THEN THE SCATTERWNG EFTECT

\S MovE PROMINERNT AHD WE WAVE A SwAOew
ZoNe .

HNOTE THAT TWE BAROALY ReTwWEEN
THE SHACAW ARD RADIATED RE &\ o

\S VERN COMPUCATED ARD \s NoT Oh—- SMALVL omyeeT
SRARLE . X \S STUO\ED WY O\FFwLAcT\oN Lxd
g on - b - LARSE ovyECT
TS ERPLAING WRY TWE MICLOPRONE CAP - >d

AWELUEHCES TRE MEASWEMERNTS AT Wi FREQLENRC\ES.

SOME RACSTIC PWENOMENA (CoNT’/D)
SOUND PRODUCTION B A SPEAKER WATHAT AN EHcroSWWE AT Low
TReaveme

Sound wave trom

My, back of cone tends ; :
to cancel the wave
] from the front. Pmasursmirom
back of cone.

T
e

s,
i
",

Prassure wave fmﬁ
front of cone.

BT Low FREGUENCY (LORNE WARNVELERTR
CONSALAKBLE To SPERKER O\AMETER )

TRE WRVES TLoM BASK. A TFLONT

OF TWHE SPEAKER WMICH ALE ALWAYS
90° T OF PWAST ALMOST CANCEL EASA
OTHER . TWRE LADIREAKE \S, TRERETeLE,
WERY \NESRIOAEWT AT Lol FLEQUERCIES \F T & NET \N AR Ev-

CLOSWNE . ALSO, ALWRYS MAKE SWULE TWAT Yo \WoDTFeRS ARE
WARED CorrecT( TO REMARE \N WASE .
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SONME ACAST\C PRENOMEMNA (ConT’D)

TRESNEL AN FRAYNRNROFER. ZONES
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SOME ACSTNC QUENOMENA (ConT/D)

REFALACTION EFFECTS BY TEMPELATLLE AND WIND SLADIENTS
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SONME ACMNST\C. PRENOMENA (ConNT’0)
<WE WIND ETFECT (ConT/D)

Weow CAN WE FlEURE TWE R BREMDING

4 /e

WAND SLRED)

-
<
= C\T}
_______ RAY 3
WAVE FronT ENpE SRS
[ e .
find Direction Wind Speed
v (h)
Sound Rays
A h
R
g /Gmund Level
Sound refraction in a boundary layer
& P 4)\9
SOME ACUSTAC. PRENOMEWA (Cont/o)
THRE TEMPEELATINE CLADIENT EFFEcT ON REFWALCT\ON

Ci b S0 R SamD

AT T, NEW ROS\TON
cq . Sen of seund
AT T.L -
MMOWER T Tv\ n

e

Height

ANAT\ AL ROS\T\ON

AR

——— Increasing temperature

OF WAVE. FUONT

<

1 Decreasing Temperature

Sound Rays

! i =

T Increasing Temperature

Sound Rays

Ground Level 4

Shadow Region Source Shadow Region Source

771124

Fig.2.12. Refraction of sound in an atmosphere with
a) a normal lapse rate .
b) an inverted lapse rate
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CURVATURE OF @NIC BOOM RAYS
IN THE ATMOSPHERE

Upward Curvature

Rays Under Flight Track

Real /
Atmosphere >

A Fa ol .
Uniform 4 7T
Atmosphere

Rays Across Flight Track

Lecture 5

— Microphones and Noise
Measurements

— Principles of Noise Control
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MACROPHOMES AMD NMO\SE MEASVREMENT

CoMDENSER. M\CAOPWONES
BRE CoMMOMLY VSED
ToRk. HNO\SE. MEADWNE ~
MEMNTS. BELECTRET
MACROPRONES ALE
CHERP, eASY TO MAWM-
VERCTUWE ARD VELS(
LVAGWT « \T \S RECOMNMNG
MaLE PR VLPR. FTor
NASE MEASWEMEWNTS.

Types of Microphones

Sound Level Meter

Amplifier

>))>O-

[\/
V-

Amplifier Meter

o~ O H

>
®

Rectifier

Converter [DC Log

é Lin/Log
AN

External o Internal Filter ete.

Assermbly

i
Amplifier {may include weighting network and connect to external filter)——»

" |
&———Frequency Analyzer (includes weighting networks and fiiters for frequency analysis)— s
760961

DC Lin Outputs to
AC _ Recorders

Block diagram of a noise measuring system

Sy 2

ANCALONONES BN ANTASE MEASWE MEMT
: The Microphone in the Sound Field

The type of microphone and its orientation in the sound
field also influence the accuracy of measurements. A
measurement microphone should have a uniform fre-
quency response, that is' the microphone must be equal-
ly sensitive throughout the frequency range.

A microphone is normally characterized by one of three
types of frequency response characteristics — free-
field (usually at 0° incidence), pressure, and random-
incidence, and is named after the response that is the
most linear. Thus, the response curves shown in the di-
agram are for a random incidence microphone.

It is important to note that any microphone will disturb a

sound field, but the free-field microphone compensates
for the disturbance it causes in the sound field. The

pressure microphone however, responds uniformly to
the actual SPL, including the pressure disturbance
caused by the microphone itself. The random incidence
mlcrog"hone is designed to respond uniformly to sounds
arriving simultaneously from all angles, as is the case in
highly reverberent or diffuse sound fields. (For most mi-
crophones the pressure and random incidence respons-
es are very similar so a pressure microphone may also
be_used for random incidence measurements).

In general, when making free-field measurements (most
outdoor measurements are essentially free-field), use a
free-field microphone. In a diffuse-field, the microphone
shiould be as omnidirectional as possible.
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M\CAOPHONES AND NASE MEASULE MENT
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Typical frequency responses of different pressure microphones
kit
[
dBre 1 V/Pa mV/Pa
—20 I I i |
"Types 4145,and 4165 L] ates T
T § 1
—30 i Haras i »
. Flimp
—40 T 4133, 4149110
i
ﬁﬁ | mi
—50 H2
i
_60 N
05
-70
% 0.2
—80
0,01 Hz 0,05 01 05 1 5 10 50 100 500 1 kHz 5 10 50 100
Frequency 1725022
. Typical 0° incidence frequency resp of the diffe free-field
. e
microphones —————

5
o

MACLOPRONES AND NASE MEASUWEMENT

RETCHME SELECTING A MCLOPWONE , ONE MUST WAVE A \DEA ©OF
<AL THRE OF TWE SourD Tl @ O\EFuse o el S\e-Q.

— I

Free Field Microphone

Free Field Measurement

(Recommended)
T e
Direction of _—
propagation of
Sound Wave
Pressure Presssfre, rar}dom, smaller
—_— ’ free-field micraphone, or
Microphons 1" free-field type with random
(Alternative)

U //

incidence corrector UA 0055

Diffuse Field Measurement

7am‘

~ Orientation of microphones in the sound field
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Mot oenoMES AND NASE MEASWE MEWT

/5
® . »

The Practical Room . . i

In practice the majority of sound measurements are
mMmade in rooms that are neither anechoic nor reverber-
ant — but somewhere in-between. This makes it diffi-
cult to find the correct measuring positions when the
Noise emission from a given source must be measured.

When determining emission from a single source, sev-
eral errors are possible. If measurements are made too
close to the machine, the SPL may vary significantly
Wwith a small change In sound level meter position. This
Will occur at a distance less than the wavelength of the
lowest frequency emitted from the machine, or at less
than twice the greatest dii i of the hine,
Whichever distance is the greater. This area is termed
the near-field of the machine, and measurements in
this region should be avoided if possible.

Other errors may arise if you measure too far away
from the machine. Here, reflection from walls and other
Objects may be just as strong as the direct sound from
the machine and correct measurements will not be
Possible. This region is termed the reverberant-field.
Between the reverberant and near-field is the free-field
Which can be found by noting that the level drops 6 dB
for each doubling in distance from the source. SPL

¥ Measurements should be made in this region. However,
itis quite ible, that the itions are so reverber-
& ant or the room is so small that no free-field exists. In
iy Such cases some standards (such as ISO 3746) suggest
an environmental correction to  account for the effect !
of reflected sound.
—_—
——

5
- ® e

MACROPRONES AMND NASE MEASULEMEWT

AT W SLeRUeEney (WAVELEHGTH { S\ZE oF M\C LePwonE o
WADER )) Twe OWMECTIONAL CHALRCTERNST\C IF A ML WoNE
CAN CMANGE OWAIT\CALLY .

RS ==
RN @‘e‘é’@ gﬁe'p::ﬂ\’g\
e (/4SS LN oSN o
iy zl((l(fo"m\‘g {0
52 s EUR Rt 1A MG et TP
:."‘4‘%" O % X %
o I

%% '\\‘Q
SIS

of A

e

Directional characteristics of complete sound level meter in a free
field
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MG CRWONES ARD NASE MEASWEMENT

Selection of the most appropriate microphone may also
be influenced by applicable national or international
standards. For example the International Electrotechni-
cal Commission (IEC) specifies sound level meters with
a free-field response, whilst the American National
Standard (ANSI) calls for a random incidence response
to be used.

If a random-incidence microphone is used in a free-field
environment, the most accurate measurement is ob-
tained when it is oriented at an angle of between 70°
and 80° to the sound source. If pointed directly at the
source, the resulting measurement will be too high.
Conversely, a free-field microphone used in a diffuse
field under-estimates the true SPL.

The response of a free-field microphone can be
changed by fitting an acoustic resonator. The resonator
increases the pressure in front of the microphone at
high frequencies, modifying the response to one that is
closer to a flat random response. Such a resonator cap
should be used when measuring indoors (i.e. in a pre-
dominantly diffuse field). In other cases and when mea-
suring outdoors, -remove the resonator cap and point
the microphone towards the source. Some sound level

Py meters can change from a correct free-field response to

o a very accurate random-incidence response by simply
switching-in specially incorporated circuits.

/8

@ ®
MACALOPHRONES AND NASE MEASUWE MENT '
© The Microphone in the Sound Field

) ; Should y
. (C_Comply with L -
Standards =

i ree-field Free-field Random Incidence
Ranmz;:ﬁf:: 9 h‘l’ltruphone d Microphone Microphone

Type of
Sound Field
2

Microphone e 1 : Microphone
at 70° - 80° to | pointed towards
Noise Source i\ Noise Source

Optimum Reduced Reduced 2 Optimum Optimum
accuracy accuracy s accuracy accuracy accuracy
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MA\CROPHONES AMD NAASE MEASWUWE MEWT

ELECTEET MICOPWONES ARE VIED \N ERTERTANAE™NT
SNSTEMS AMD CAM WAVE 60200 SRXALACTERI\LT\CS . TWE T\GURE
Berow \S T LECTROSOH\CS MASO M\CAoPWONE. .

M150 Electret Microphone

The M150 is a high performance microphone
with heavily suppressed mechanical noise for
critical applications. A wide, flat frequency
response is augmented by a 2 or 3 dB bump in
the upper octaves to add a crisper sound. The
mic capsule should be positioned in the center of
the talker's chest, not to either side, as high up
as is practical. In windy conditions, it can be
placed undemeath a coliar or thin clothing to
reduce wind noise, although this will dull the
sound somewhat.

FREQUENCY RESPONSE
{Measured free field with standard preamplifier, 1.3V supply and high
impedance amplifier)
T

= — B -
e ! 5 3
£ ! p
2 0= 0 £
e ] H
2 .65 T 45 8
g ! a5 &
! f i ——
et 1 I 1 — T ;
20 Hz 50 100 200 500 1000 2000 5000 10000 20000
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4 Applied Acoustics (Course)

Applied Aeroacoustics
MAE 692 — University of Virginia
Slides of Lectures
F. Farassat

NASA Langley Research Center

Summer Term 2004

F. Farassat- ME - 692, Appl. AA lof2
NASA Langley Research Center
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Typical sound pressure levels of common noise sources
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SOUND POWER., RANGE

Power (Watts) Power Level
(dB re 10712 W)

100 000 000 2004
1 000 000 180 4
10 000 160
100 1404
1 120
0,01 100
0,000,1 80
0,000,001 60 4
0,000,000,01 40 4
0,000,000,000,1 20 4
0,000,000,000,001 0

Saturn rocket (50,000,000 W)
4 Jet Airliner (50,000 W)
Large orchestra (1ow)
Chipping hammer (1w)
Shouted speech (0,001 W)
Conversational speech (20x 108 w)
Whisper (10-° w)

Sound Power output of some typical noise sources

CHANGE IN LEVEL
dB

SUBJECTIVE EFFECT

3
5
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just perceptible
clearly perceptible
twice as loud
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. —
o= P+, LETe. NMowW \F £, AnD W, SATSEY we cover.

N\NG EQS. of AEPISTACS , L\KE £ ArD '\7\‘. =
HOoTE : we
2 -, - e Orop YL e
- u
- Y Ao N, =0 , fo%;’ + V. =0 FfL/N\Af"AHQ
LA

2t
T \S AT TIMES EAIER TO SOLVE TWS PRCELEM Fot £, Anp O
[

ARD Tree - -
WE REAL- ¢ART S 'Pr AMD W, AS TWE SoLuTioN To

THE SRS \WWAL PLORLTM , <Tw\g MET®eNQ \s caLLen COMPLEX\ —

TACATION  oF TWE PROWLEM . TWE MOST UVSTEuL TeMM oF Com.-
cot -~ — (wt

PLEX\FEeATION \S BY TAXWG Pc = P e , R.=Ue

—

WHERE P ARD U ARE COMPLEX AMPLITURES . TS WAS
INTHoOWee D WY wAYLElSY (Taeowry o SEUND) . P Aanp

: 2 = -

twP + /" U=0| P- P(x)

. o — - -
cewYU + YR =0 U = U®)
TSTEAOCY STATE ComtvtoN

—
U SKT\Sv~y

SOME VUSEFLL- RESVLTS

cwt
, /Pccof,t)= Ee”:\?\e

P _\P|e?

P=® = Re® =\Blcen (wt+e)
ewnAse o8 £

z | A , \ 2 \Pl
Jo eet = B L
t

(me: efi con Q4L S0 e)

\B\ & Amenrver & R, @

Pwe = 5

vt LW

LET == X e , 4 =X e
\ - _ *

\S <“T"3r> = -f-\_— S »xr\a‘_ dt = 7 Re(x\( )

, TRE TWME AVELASE % XY

N e
ALSO wWRTTEN Xcdr ° X
=1 \Y\ con ¢ AL ~
PHAS R
\¢ ¢ = 90° Q\RSLAM

(/x,,‘a,> =0

=0 - *,
<’>(r; Be> \s MPOAMUM - ot ¢ ‘('K.—,%r>=_|£ze(x‘()
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STEAOY STATE ConO\Tio™

WE HAVE S.S. Comd\ToN \F

L) THE RoUrDAKY COoHOTIoNS ARE CTrAOD\C \N TIME
L) WE ALLow ALL TLAMNK\ERTS TO ™€ ,v.e. T—>s0

—A PO\ FuNcTionw X)) cAr e weATTeEN A S

0o ’ 't'
@)= 2 &, e

N= -00

\ 2« _rwwt
Co= o= | sma ™At

L 3
— ?\'(‘_t), W GEMERLAL \S REAL — C = C = ANO
RYAY Unw

Re,(c_“e, 5 = Re (Cv\e

Twe PLewLEM Foro V>0 BOT

t
) => WE CAN COMELEX\EY

vse ®me zc, "Wt

— BY SUeER.osiTioN PEINCARLE , wE CAW SUM Twe ESFeeTs oF
-\ ceneweaL L K&)>=0

ALL VWARMOM\CS OVER N=1\,2,3,-

so <whtY Cy=0 -

e
\ Sz

TA\ME QOMAW VS TREQUVENCY OoMmAa\N

cwt
for. <WE STEADY STATE case , WX vswe ©=FPe | e

2 -~
getv seom TP =0 , HP =V E+4 €-0,8-8).
N CEMERAL , US\NG TARER TWANRSTor Y\ \N TWME , T—ow

~ - > - -t
T (x,w) =J Sx,t) e At
— o

WE TLARSTot vA GL'P-_—Q(&",'t) <O

A 2 A 2 A N =
HWEL MWOLTZ 3{ /P(’X;w)': V ,‘) & % ?:— Q('K,u)

OPEXATOR

THE RBC'sS ARE ALSO TLANSTRMED TO FUNCTIOWNS of (?,u))-

A - -
WE TWEMW SowVE Feow P (X,w) Fer AvL W) Loe - Trom ¥

N = — S X, w
we WD P, t) = —— P (x,0) e
- o

TWS \S FREQRUENCY OOMAW WMETWOR . \§ WE SoLve OI\RECT-
W Tow (¥ t) oM TO*P =@ 1)+ BRe’s |, we Arc
WO K- \NE AN T\ME OOoMAIWN . TREGQUEWNCSY QoMAW ME THeR \S

NOSTLY{ APPLI\ED TO STEAQY STATE PROWVLEMS.
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TI\ME VS Fre@uevrcy QO MAW (cownT’n)

TA\ME QOMAAN AMD FREQUENMCEY QO MAW APPROACHES AR T
COMPLEMEMTALY ¢« NEITHER METHAN \S SUWER\OX To TWE
OTHNER . WE LEAR™ SOMETHING MEW FROM EACK METHEND .
OFTTEN THE METHOQ ONE USES NEPEHNS ON THE EXPERi\EwmcE
ANDO THE TXAOIVTION \N THWE F\eL.

CWESE ARE SOME CMARACTERISTIcS & T.0O. AHD T. Q. MEtwopg !

— MANY PHORLLCMS SF ENGWEERWG ARE STEARN STATE <o
TUNRT ©.0D. METWID \S AN o®T\ON,

— MANY S\MPLE SARCE AND PROPAGATION MODELS A €
ARVAILABLE VUsS\Wa F.0, METRAY ,

— AN ©.0. METRAN ; B USWGE T W, WE WAVE ESSEMTIALLY(
A A DMEHNSIOHAL LSBLEA . SOME PECPLE FTEEL MeR T CoM-

TOALTAVSLT To Work A 30N TWAN FAaAR OWMEOCNMSIONA L
T.O .. METHAD . AoWEVER , RECAUSE SF THE PART\CULAR Y
S\MPLE GREEW'S FUNCTION oF THE WAVE SRER AT, OME CAN
ALSO LEARM TO WorK IUST A EASWY N 1.0 .

. - . ‘/6
N -2/6

TIME QoMW VS FREQUENCY QoMMmA (ConT’o)

— VT APPEARS TUAT MORE AMALITIC (CLosen Form) SoLuTions

ALE AVAILAWLE USING F.0. AePromcH . MOST OFTEH , TWS
HAS BEEN ACHEVED AN SoMEC A PPLexX\ MAT\OANS. APeR ex\ -
MATIONS \N GEOMETRY , OBSERVER O\GTANCE AND source
MO T\OW MAY NoT BE ACCceOTAWRLE N SOME AEROACAST\C
PLOBLT NS .

— Tt SOWME CPRLORLEMS % ATrROACIUST\CS /€., \énseee D
VELICOPTER ROoToR NASE ANHD QCReRELLER wmosE PLe D\cTioN,
Aoty T N.AHD F.QO. METAINS CAN WE TIWME CoNSUMWN G

ON A COMPUTER . WOWEVER , EXECUTISN TWME ON A ComM-
PUTER \S VERY MUK DEPERDEWNT ON TRE SKiLL ANN
BEXPEM\ENECE SF CONDE DEVELANRERL . SO ATTER YN SELECT

A METWID ;, SPEWD A LOT ©OF TVME TWWNKIWWE AR LT ALSORATHMS

N VSE \N YR CoNE . Tt OIFFEREMCE RETWEEN A
GooD ARN A BAR ALLGORITHM Courd BE A TAcCTeR <§F \6O
AN EXECAUT\ON T\ME ©OA A CoMPuTER \.

— T.0. ANALYSIS 1S MOtE RECENMT \N ALLO ACAISTICS . EXPERIEWNCE
NERE \& vimvTted |
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ENMERSGY ®ReuaTioms ( sTAT\oNARY MERIUM )
STARLTING WATW MOMENTUM EQR. A PN _
coTe "'9.;; + V% =0, Tare

—
OF TS WATW W\

A (L aut)+ VHR)-PT.R =0
Q)

OCoT LoV eT

—_ - -
pov“.——??‘; + X<

WRELE W = | (X,t)) vec.wewm )
-— e \
‘ —\_ + . = — . - — ——
MRSS cownT. EQ @ =7 7L fo V- w=0 = PY.n-= chfgtﬁ
- _ 2
22t

T 2pC

\N () To GeT

2 \ 2 -
+2&C2f ] +V-Q€\A)=

SVUS T\ TUTCE

|
e L= %
@ . pcsTNC I : AcovsT\C
L AcnsSTNG
ERERSY ety ANTERS\TY VECTeR
UN\TS of &  SoLes
T 2
W /wA

3 - _
‘gt ~V-1=0 UNTS ef I
\N Twas Course |

—
NOTE ¢ T \S ALWAYS A REAL QUANTITY
Do = Avwnts

“£eC. 2./8
7 2/3
ENEROY RELATIoNS (conT’n)
\N € 'S TeE \NSTANTANEOIS KIWET\C ENERE~ /UNT vol.

2

T Av
2
2._%3_ \N & \S THE \NSTANTANMEOUS POTEMTI\AL EHEREY SToven
©
Ry Ccomeress\oN /uNT vol .
ANOTHER VIEW OF EMNERSY RELATION A ounT
ANTWALD
NORMAL
-
Q—J e dv -_-..-J I-ndS
S (cresen

bt ~ S
V-V—~_/
SOREACE)

RATE OF \NCRERSE RATE OF esnaao(
N
oF emersy \N V' LEAVING
= L p E\ Fot WARMOMIC wWAVES

where P ARD U P«Le_ COMPLEX AMELITURES oF £ 4 W

(T> = + e (RTY)

- 2 2 2 FA
\U \ = U'U, = \Ul\ * \_Uz\ * \Us\ )
VEC. 00T ProoveT

Uy, Up Uy CoMeLex.

NeTE
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7 - ~z2/9
T NERSY RELAT\ONS (comT’/0)
Coma\DERr. AGAIRN STEANY STATE CASE ! %—E— +.I=
2 5 _ ) (T2e g4+ _ e-e© _ |
< 2t > - T jo 2t = < =0 .

L2 N STEARN STATE CASE NO ACCOMUILATION oF AceusT\C
ENELSEY ON AVELAGE \S PosswwLe | = 4 9.I> =0

——>[4jr ndg > = i<f>.ms=:) @)

ON_AVERAGE , TWHE EMELSY EWTeWLNG A clLostn
SULEACE \S EQURL To EWNERSY LEAVINGE TWE SWEFACE

NO ACCOMULATION OF ENERSY \N VoruML W wATwN/
TaEe SWERCE |

(%) NOTE XWAT, \N-GENERAL ,

L<I>#0O

i«Diqggk

-—

m [NO Sources WSIGE S|

——t &=y N
2 /0
S\MPLE MONELS ©oF waveS

L) PLANE WAVES

Plx,t) = =
E(“) = Ae K-’X . ASSUME k

2 2
To sAT\SEY VP 4 -‘*Z’: P-0

2 2 z 'y
@ - Kokl =k
-—
of k \& AcwmTrArY . LEeT

s )\e(;lt) = A e

t.e. WE WAV A PLPANVE WAV
TLAVELLING WATA SPEEN C

MORMAL To TWL PLAME - K \S
TWE UN'T Nt M AL TO TWE CLURAC |
TYNE PLANE WAVE wATW Tg
REAL \S A PRLOPAGAT\NG
WAVE WATRAT DECAY .

PLANE WAVE

\ THAS \S A sweEnce
ofF COoMSTART PUASE
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S\MPLE MODELS oF WAVES — PLANE WAVES (ConT’n)

-2/
TeOMN L'fbw\—;'-\-VE =0, we GeT
P-det] <[ - \

~C
— = —
Twas MeAns Twat U || & AnD comeonents oF U VIEWED
AS PWASORS ARE \N fwASE wtw T

—
“~

k

-
~

k

2

| £\

A
Pems
fo C

\

2/’3C

-—
—3

k-

U,
X
ACVST\C EWNEYSY Oews\TY 2 2 —
- 2 2 — \E\ - IP"MS _\<I>‘
{e> =4 %Vl +,:zzz\f\ T ZAmc* R T T C
2 <
2\ vewe O =4k
= rEC \B\ (os £ )

WE BAVE EQUIPART\T\ON ©F xINET\C AMD PoXemT\AL
Exew gl NERNS\T\ES .

—
.\4 I>| =cdle>
A C L NREL oF _WMT aren (\ W) AND LENSETH €, wATW PX\S_|
PALALLEL TO K, CrosSES A SURFACE ©F \w? AnO A <ok

e A

MEARS TUAT TWE ACST\C ENMERSEY \N

| N

L)EVARE SCENMT WAVES

—_——

“—7 \&

2/NZ

S\MPLE MODELS OF WAVES = PLANE WAVES(cont’n)

= A eL' (Ld't-TZ.z;‘(')

—_— - -
TWEST ARE ALSC PLANE WAVES —RUT K = \(R“’Ll K wmere
[ 2 S

-— —
K A Ky RLE VECTORS WATW REAL COMPONEWTS .
TY RYELMHOLTZ EQR. , WE MUST WAVE

<o SAT\S -

2 2 L2 - 2 = .2 .= wz
\,<z\ + k?— * K3 = \kf‘ -—\k"l e Ztk"_'\(t- = —C?;"
REAL VMR AN AR E:L_
— — —
= \4\.-\<L'—O L.e \‘r-A-—\‘..w
- 2 2 2 =2
\\—zr\z"\\(f\ = _33_; >0 L'-€~\E\.\ = % 'ﬂk..‘\

\

PROPAGAT\ON
QieectioN

COoNST. PHASE PLAANE

PLAANE WA VE
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- 2/3
S\MPLE MOBELS oF WAVES - CLANE WAVES (conT/n)
EXAMPLE OF EVAMESCEMT WAVES O\rEgeTioN
—h OF OecaY
WAVES \N TKRE V\SAN\TY OF A VI\RWATWGE \4‘, R .
PLANE Fo WWIEW WE WAvE ‘1"_11&;_- N
z 2 2 Nl RN
Kirkz > 82 - weee (ko kpodek, =k, i, TN 2
—_— v
WYRERE K, TWE WAVE MIMLEX. VECToL oF

VBT \N G
TWE VWWAT\ON .

v \S PARALLEL TO X, -Px\S CPLANE .

PRLOCAG ART\ON SPEEQ o©F EVAMESCENT wWAVE

L. €. BEVAN. WAVES THLAVEL AT SUBSOM\C Seee D v

\N TwE O\RECT\oN &

r
T o= £ % =B (Kak) ,BAnn T ac
- T AW W
—
NO LORGER \N PRASE , U ALSO DecANS \N TWE ODirec-
~<\oN —Ti. (see NEXT SVIDE) \E\Z—*
- — k
— {T>-= _\_ae@v) 255

ENERSY FTLows AN Twe O\weEcT\oN e k onLY ‘

BECAVSE of THE DECAT, enMErGY O0ES AMBT  PROPAGATT Yo
INFINITY BUT STANS \W THE VICIMTY OF THE VIRRAT\NG PLANE

Ny

-

bl A b |

: - 2/4
S\MPLE MONELS oF WAVES -

PLANE WAVES (cownTt’n)

EVART SCTRT WAVES (ComT/0)

V.
3
\vJ
MOW LET US DEFINE X,- AX\S ALONG P ‘,M,wn
1 - o\RseaM
K, R-Axs ALoms =K. ARD X2-Paig
W SUSM A WA TWAT TWE X-FRLAME
2
\S RV\SGWT RAHNEN . TWER
U P \—\ Y, f ConeT.
= %, .4 PRASE
' hw 2 PHASOR D\AGRAM — :""‘”"
kK. &K,
—-— v ¢
A<LI, > = \E\ 1k .\ » <I,”» =XI> =0 REAL VECTORS
) 2P0 v
-

US = fE \k \ L, P | =¢Iy>- + Re(P 'U;)=0

PAASOR DI\ACHAM

MO VELOo ety

_ A COMPOMENT \N I.b=0
U, = 0 X, oirection =<1,

EMERGY Flows \N X,

swecTion on. | | Pl Al e ‘k %3

e

Twe amevitune Pl DEcAts W X3 DirecTion
— THE EMERGY OEMS\TY QECAYS \N ARy DINECTION ALSO.
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SIMRLE MOOKLS OF WAVES — RLANE WAVES (ConT’D)

PV ASE VELOCATY . g
9 = -\2-97— wl s cAaLLed /
<WE MASE oF TWE 9\-0\ _.wA:/tE),

'(3(0(.1.) = A e gkl
Foe. <w\S 9\.AN€ WAVEL , wE. QEFWE Prx\s
€ AvonG k , TARWE £ = gQ k k/\k\

© = k.kg_w‘t = \K\E-wt . New we ean STUOY TWE
VELoC\TY OF THE SUKFACE £ _CONSTANT fwASE © = consT,

PLONG E£-PX\S © § =O = \k\g W, é:w/\K\.Fm

A g@g&w 2 WE VWAVE THLoM WELMWOLTZ
k2= wie? § = wW/\k\ =c] seeeq oF sounn

Fot AN EVANESCEMT WAVE : P(X,t) = Ae X fReR-0t)

—

= K n-wt = k.. \2; wt = \%,\£- ut
"_. ._ = ) --—— k .Q—
o=kl f-w , §-Tﬁ7\ k2= 25 |>

U

£ <C €. THE QWASE VELOGATY OF AN EVJANESSEWT WAVE
\'S svasown\c

- _2N6
S\HMEOLE MOOELS oF WAVES. PLANE WAVES (ConT/D)

TRACE VELOCATY

NowW QERNVE A FWED
ANS 7wy svwcﬁwé <N\
TWE UNIT VECTOR € ALeNsG
\T. WE wAVE
-—
6 = k- x-—wt = ke.z wt

(K en )z -0t

6 =0 =K\ en8) Z-w , ”2='é°—‘>\% o
L -

TWLS 1S TWE mag_rmg_:.ﬁ TWE PLANE WAVE H=Re
[}
- . = . < <w
ALONG 7- AX\S 2 3 NoTe AT WE ARE Fovlanlg

IME SAME PLANME WAVE \NtersecTwWG Z—PX\S AND 'Z HWES
VUSE THYE SPEED OF THE POINT ©F \WTERSICT\ON For AN CUWSERVER
FIXED TO THE UNDISTURKBEND MERIVUM . NOTE ALSO TWAT Cod g

|S TWE OILECTION COSIWE oF Y weT Z- Ax\S

(. %= wt
TRACE SPEEQ ©oF =RAe ¢ w )A\.oua Ky, Kz ANQ X3~

AXRES - =

X = _fé__ , k= TZ/\E\ UNIT VES. ALoNG K.
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SI\MPLE MODELS ©F WAVES — PLANE WAVES (comT’/n)
RELATIONS RETWEEN WAVELEMNETH AND WAVE NUMWeve,

XA =cC seecer so\n-u:
k = = _3.%- = -——- WRAVE NO.
>\
& = <we No.cok fears//sec. erss\NG
OVE® A COWT = X ©cts NoT

CHAMGE ANMY{WHERL Tt AN SRSERVER
FT\XED To THE UNDIASTURARED MENI\UM

t=t, e\vxen
From <we F\Gure

}\\ 2w _ _ 2w W = W
Q\ Y | N3 o\g)/ﬁ' /R, T &,
wWheet «\ \S TRACE VELOCATY AWNG K= PeX\S wE
WaVvE N 27¢ w -
A e ke = N % k =Ck ok, k)

THELST RELATICNS ARE T AN ORSERVER T\ XEQ <o ~<WE

MEOCILVM .

ree . D /)

SIMOLE MOBELS oF WAVES _ @LANLT WAVES (conTt’/D)

PRLOYAG AT\N G SLANE WAVES

AN T\ME DOMAW

° fr(v\.-&)—ct

-ﬁ PRLOPAGAT\ON M\ EcT\ON

W\ = | & ALBMTLARY FuncTion 3
—_—

Lex £=n.%X => £-ct=

ANx—cT = consT. \s A

PLANE SurREFpCL

—FeoM MoM. S®.

)

l

SURFACET oY
CownsgT. PLEesSsSWwW e
(Aovane) AT t=T,

‘2"" - == "X - c.'t)V\

%o 2t - ve X‘(

\_; = _._Y_‘_- X—(v\ x-ct) + %—(&') ; G AESTLARY . S\Nee

. Yy

X = &-ct

Dt=o WWER /€=Oﬁ%(><)=o. \A_&c X (n.x-ct)

I vy
— HOTE TaAT ®oth @ ARG W Pm.s_ 7c

FuNetierng o £-ct , £= X (SEC ABE TG.)
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S\MPLE MoneLS OF WAVES — PLANE WAVES (ConT’D)

PROPAGATING PLANE WAVES \N TIME OOHAW (ConT/D)

—
TWE \NSTANTANEOLS A CoVST\C \WNTEWS\TY I (x,t) \g

— - AN — - < -
I 'f(’(/t) % =><I> - ?rm& n
fo C fo c
— SOMETWING TO REMEMBER
Y :‘ t-= t| t= ‘tz_>t|
k> c
N £ o~
§5 N4 N_ SCATIAL £
da PULSE W\QXW=\_ W\
——C(t-t)) L v
THE SPATIAL QETR\AUTION OF A PRESSURE
PULSE AT TwWo T\MES T, AND t,5+,
oy ACOUSTIC PLESSURE
%‘3” +taaL/e . ‘s;(mu\\_ P\EP\?;J'-EY)E
T\ME A MicrROPHOM
og’t’-\_/ TEMPORAL AT <WE POWT £
aSl—1\v/c —=] PuLSE win™ 2
L/C SEcomDs

“Ec. 32/3

3/3

S\MPLE MOBELS OF WAVES - PLANME WAVES (Cont’o)

— =
PART\CLE O\SPLACEMENTI : - °d

- - o cwt
> & =0OW)e

FROM MOMENTUM BQ., WE GEeT i STEAD( STATC

- \
KX) = —
OE) ’szVE - _
sl PR k=L
For gQuemg weves P = A E€ » VP =-1¢ s =
- ' = P
- L k - -
AK) = - —— F A k
D( ) rew y O, =1,2,3 \( =T
. e\ WU PuASOR DIAGILAM A
0\ = 225w
ORDER OF MAGHITUNE OF ACOUSTIC GUANTITIES (PLANE WAVES)
Freaueney fLevel derveizouta | \P\ea | \OVw/s | \D\ wv | NMove
1 kW2 éo 0.028 [6.88%\65 1\ x\g8 | VE®Y
TRESWOLD. =2 = SHMALL
| knz 120 oreawn | 28-Z  |6-838x10° |\-\x 10 VALVES
\o knz €0 0.028 |6.38 x\d%[\.\ %1073 | oe®d\t
\o kwz \20 28.2 |¢.38 x\0 2|1.\ x\0~6
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3/4
CONBINATION OF ACHSTIC PRESSURES \N STEARY STATE
WE NEEQ TO EVALUATE '\92 TO FINDQ TWE NTSUBEL LEVEL oF SounD.

L) ~<we w:wes av <we $A\-\€ FrEQUENEY
8

°= Ae -\-66 -(A-Hs)e wt <7 R

YN
(‘?3):-%—\?\:-2—\5*‘5\?5_-[\A| B %4 21AN8) en @] SOR D\RGRAM
\E\ 'S MAX\MUW \F g =0, e DA, >0,k LEAL
P\ 'S MWIMUM \F =Tt ,c.e. B=XA , X<O , & REAL
\\=0 \¢ a=-A,0.2. |Al=\B\ AND ¢ =
TH\S \& <Twe 10EA BEHIND ANMT\-NO\S € -

.o Y t ‘wt . t
i) '?c = P\\ e Pu P An e,mw = PR )+UR(TL)
4fp > _.LZ |A, , . ~vE REASOM 1S AS Foriows :
l=|
- @S RSy + 2 <RE>]
4?\' 7 = <(P +P )> I;L[ °> v (G-t
R AR I A L Z: Lrghe >
=) k ‘-——\(————’_
WE CAN SWow (P2 > = et =a. 9* °
TW\S FollawS FroM (e""‘“t> o,m#0.
“eEC:. D/
- . - 3/5

COMBANATION OF ACOUSTIC PRESSURES \N STEAS! STATE (cont’o)

WE SUMMARAZE TWE ABRAE RESULTS, 6IVING A NVEW RESVLT) :

() Fok Twe WAVES ©F \CEWT\CAL EREQUENCY, (¥ > Oerenns
ON THE OHPASOR AODITION OF COMPLER AMPLITUNES wwHeEw
TWE PNASE BETWEEN TWE TWO WAVES \S MWW .,

L) From TWME SERES ANALYIS\S, \'T CAM BE SHoWN TRAT wHer
TYE PVAASE AETWEEW TWO WAVES of \DEWNT\CAL FREQUEMCY

2 2 N
\S RAMDoH , Twen (P D> = —-\i-(lA,\z-\- A2\ ) e
OoF TWE TwWo WAVES AQD uP .

lil) Forn WAVES oF DIFFERENT FREAVENCIES /) Tue MEAN SQ.
OF TWE RESULTING PRESSURE \S THE SUM O©OF TWe MEAN SQR.
oF‘ THE. COMPONENTS!

4?\' > = "’Z\P‘c\z Z('PVMS)

z (XX ¢=\
> = S
= (I > =S 2R/ =3 (I;) PLANE WAVE RRoPAGAT WG
foc N t'z)
\'N THE O\WRECT\ON N . :
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3/6

S\V\PLET MMONELS OF WAVES - Soner\caL WAVES

TI\ME QOMAIN : £ SeWCR\ cALLY SYMMETR\C \¢ P (X,t)=Plr,t)
r OISTAWNCE FLoM OR\G\WW . WE CAN SWow TWAT N Twg CASE

2 2 1 22
e 55 -Vr= B 5 vea (=0 =

Z
o pre) _ 2%(re) =0 |=|P(rt) = fle-ct) i(;_’fi)
c* ot ar? —r L
ONTLANG \NCOM WG
.ﬂ— ARD 9 ALBITRARNY FUNCTIONS WAVE wAaVveE

— WE WI\LL CONCENTRATT ON ONTSANG WAVES -

— |HTCROLETATION ©F X (r-ct) NOTE : Fo v = CoNst.
WE WAVE P = CoNST.
t.e. SURFAcES &%
£(r) f(r-cty) ,t.50 ComsT. £ ARE SRMERES
’t°= (o}
el »

— TWE r N TWE DEMOMINATOR & £ \S THNE SPREr\cAL

ATTEWNUATION . A FWITE QRESSURE ATTERNUVATES TO ZERO ASY—r 20,

el A
3/7

S\MPLE MODELS OF WAVES - SPHERICAL WAVES (ComT’/D)

T\HME DowmN (ConTt’/n)

7.
WE MOTE TWAT SWEE VEL. POTEWMTIAL AlLse SAT\sT\ES Tl ¢=0,

WE WAVE @F(r,t) = ﬂ;’_it_? ;) % AwwrTAns 3
Peot) =—p 28 _ RE g/ ct)
. ot T r = sewcre
wie,t) = v¢ _.___\E__ ;,(\'—C—'L)——rn_z %(r—c't)
\.—-v——-—/
'5 _ -’)-(‘ _ ’-)-(. (#) ek R e HEAR FIELD
} l&.‘ r P = WE wave
- A
WE MOTE TWAT \N TWE FAR TiRLBe— W = o T - AN
ComeomENT

TS RELAT\ON \S LocALLY V\KE PLUANE WAVE PROCAGAT\NG \N TWC

-—
DILECTION § . BUT MOTE TWAT \N TWE TAR TieL wety

P AMD WX FALL OFF AS \/r , 2. BOTH WAVE SPWER\CAL
ATTERNUAT\oN .

— WE CAM LEARN Mottt FLOM TroRuenNcy ANALYSIS . 1y
PARTICULAR TWE EHERGY OEHS\TY AND ACUST\C \WTENMSITY
RELAT\ONS CAM BE STUNDED MorE TASNWY \N FREGQ. DOMAW,

- -
@) — vovTe \Fl=\,0e. F \S UNT UTWARD NSKMAL To SPMERET I =const.
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LeEC. 2/ 8

3/8
S\MPLE MORELS OF WAVES — SPHER\CAL WAVES (ConNT’/D)
Freguency Do'v-\\:\v\ : Rlet) = A ec (wt-wr)
-l \ g z-rc
E‘(r)= —e— C ) k = % WAVE WUMAER |, \‘: -——x—':

A = WAVE LEWMSGTH WA , FROWM MOMEWTUM EQ. WE GET

T e O\ L \Z é o |
= - )Y T >
. =

Ur - (\ - -E-r—) <o GET TW\S ngsu\:\-, (‘;M;M‘sek T“N‘_
&) = X—(\')vr ) Jr = -1-" = r
FoRr cUTGOWGE WAVES , U ALWAIS LAGS P B @ = Yo' () /xr).

T —
¢_’T \$ kr=0 , g—=>0 ¢ kKr— oo

Kr—=20 \§ =0 (LB. w=>0) Fo A F\xeQ ¥

Kr =0 \F vr=0 For A Fwed K (or w)

Kr— 00 \§ W—00 (€. Wmse WOW EREQ.) Fo A FAXED *
Kr—% \§ r—po Tor AV FWATE K

2 v
=U. ¥ . PHASOR OL\AGHAM

e 2/9

i 3/9
SIMPLE MOBELS OF WAVES — SPHER\CAL WAVES (ConT’/D)
A\I&ﬂ.hé& ACNST\C \HTEP\ﬁ\T‘( ,:

<I> = -%Rﬂ. (EU‘) =;\'_:L—-—z VAR\ES AS \_—Z

(-] r - - 2
O A SPWELE OF WAD\WS ¢ KI>- ?AS = _2%&\-&1-=cous'r.
c

AS EXPECTED - S ° 2

Acaosf\c. EMERSY OeEwS\T{ (AVE.) Led> = 4;- W ‘,>+ <’i%l>
.€.0ENS. ve (w13 1 8
s
& fb“ 7 —£7—\c_';i \"'k:.rz)

<

By - wE Tk au> = (e gm)dnd

hpctr

— AVE. POT. ERMERSY DEMS\TY VAR\ES AS \_—2.

— AVE. X .. DERS\TY = AVE P.E. DENS\TY AS Kr —»oe

— \F Krdl\ =5 AVE. K. .E. DENSITY S>> Aave. £.E. DEN\TY
TWS MAKES SENSE BECAUST P —»TC/Z AND LARSE vVELOAATY
\U.) 'S MEEDED To SEMD oUT ANY ACOUST\C EWERSY.

WE WILL LEARN MORE FroM THE FoLLowWWWG PROWLEM .
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veC. 310

] 340
S\MPLE MONELS OF WAVES = SPWER\CAL UAVES (ComnT’n)
P\ PULSATI\NG SPWERE . ADIVS a0
LET TWNE RAD\AL VELOGATY AMPLATUDE v.ma\h\\.*
veLvoe\T
Bt U, (ReaL) suem TumT TWE D\SPLACK- AP TURE
MENT AMPLITURE \Q,) = -%ﬂ ZLen . U, (REAL)
LETY | F k) = \ = 5|, TveEw Twe 5=q-\1a"
RESVLTS ©OF TWC PREWIOVS SLA\NT CpW BE VSO To SWOW TWAT
- k(r-a) \
P> = fecd Vo ‘_
r Fike) ‘ker=a) O kr
Ty = ATy S 32 comerex
Yy E(ka) ~°

— 2T meaw
LI> = AR A '_f\ = WDz Aec S, _ ﬂ-ﬂg\l\'\'eo
T 2 v?\F(ka))2 2\ ¥\ Acostic

2
LW > =5 selka) Usd  \F kel P
LW Y Q—’-—%— @CU:S \F ko 3> -p = O

TMUS L W) TUE TOTAL AVE. ACASTIC PowER RADIATED \$ A Func-
TloN ofF ko . Fer smavt \ealk<)), r«e“\m\.sa-r;_sxss SeWERE \S A
VERY \NEFFICAENT LADI\ATER . 4W>nm='i‘f‘&°v°

LEC. 3 /1)

, ] 3/11
SMPLE MONELS OF WAVES — SPHERICAL WAVES (ConT’0)
STATICNARY MONOPOLE: ASSUME Kadl |

. z .
o) = L/:,c‘;fka U, e-ck(r-q)

U P 2 -c'\dr—cd__‘_‘_/;,_wé_\_rq - ck(r-a)
= L\»:'cr (q:_a ) e *Tawr ©
LW
\F 7)) = ASU,e }3_"_‘?\\5 WATE OF MASS \WIECTION,
<wew 02(1;) =tAwd U, é_ s e CAWSU, =2=Q=twR \s Tw
CoMRILEX ANMRLITUOE ©F Z2(t) . NewW LET a— 0o KEEP\NG

Q. FWW\TE TYEW
. kr ke |- : —¢kr =
Q LW _LWAF(kr) st¥r 3
Pe) = ™ re =Et-‘-: e Vcr)_-‘-‘_m%c\_ e ¥

\S TWE sSevuT\oN ofF TRE RELMMOLTZ EQUAT\ON
\DEKL OoR’

< 2 2 . - . ry
:'\oo\:o’\’o\,\z A4 L~ 'g'a'_ E -.-.-—l-wQ‘;L%):—QSL«)

\N T\ME DOMAIN THE SOLLUT\ON ofF - oRs,
v — .
e = ZA)SK) ARSRA)
Z‘I-qc)
\s Pt )= = Q.: vexE oF 3‘__ o
RAILEIGH'S SovvuTion 2&33&'3&%““
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L€c. 3/ 2
3/12
S\MPLE MODELS ©F WAVES — SOWEwr\CA L W AVES(CoNT’D)
STAT\ONARY MONOPOLE (CownT’/D)
‘) \eW\ = corsT. \T(r )| = comsT. ©ON sewerc ¥ = ComsT,

(.€. A Po\NT HONOReLT wAS Seder Ca LTSy MMET 2\ &
DI cT\WVITY
.. o 2
(L) Foro Xaa D>\ e, ad>> X\ , wdx L £2c USS wmenes
THAT EASM PART o8 TWE SPHERT oF LADWS & AeTS N
A\ PV AMAR SUREACE + we AR Swow TWAT TS RESULT

\S TROE Tort AN PULSATING SWAPe \® L D> XN\ wwerne
\S TWE LENSTH SCALE oF THE BeoOY:

~
. 2 2 & & Q
VZ(%)a—-?%—z(—é'-)—v% AT r N = _jx’_.<<%

Y%
TS MEARS TWAT For  adr &L , ko <<\
SAT\SEY LAPLACARN  ©as. < =0
\MCOMRLESS\BAL_E viLaw EAQS.

J ’P AHRD W (;/t)
Z—:

, N W =0 ,..e.

THYAS MEARNS TWwiT wE oA

TRERT THE PLOWMLEMNM AS QRUAS\-STEANY WATH T AS A PAMLA-

METER K TWE PlownLe M .

(=T P4

a4/

ACAST\C SoUrRCES

MOMOPOLE SoURCE (1DeAL) . BY CONVERTION, Twig \& DEFWED AS:

Gz’? = Z (t)S(’:) ne = Qg@‘?) STeEARY $‘t:1t
?(t—VIC) - Q e“-.k" W= Vz-\' k
“K’?(;lt) = _—'.—"_ 4WE(X)=- = w/c

THESE ACE (OeAL) PO\NT HMONOPOLE o ES . EroM <THESE
WE T\WWQ <TWE SOLUTI\ON TO THE FOLV-aWING TWO \MPATAWT

foe’s . Igz'?z Z(E’,'tﬂ , [RE = Q(:ﬂsrem;-( I INI

we p ) = | 28 ag
v

STASE

s =tkr
ng(:):_j ah €7 4G smeas
r

AV

TAESE ARE VERY \MPORTAMT RESULTS . MoNe eoLE
D\STRABVTION
WE GAVE THE MoBEL OF AN INEAL PO\WT MONOPOLE \N THE LAST
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ACNST\C SoURCES (ComT/D)

RAYLE\GH P\STON \N THE WALL ForRWMULA

WE WAVE B NorRMAL VELOCATY O\STR\BUT\oN
ON AN \NFIN\TE WAL -

TWAT 7 ARND Q

Foe. AN ELEMME™T

OF TWE SURLFACE AREA S Anc

Z = 2?,'0'“(;'*)A$
Q = 2 £, N4

WA \L-E\GW REASCHEQ

RATE OF MASS \NIECTIoN

AMP.cF LATE oF MASS ‘M),

- Ty L

4/2

ALL (INEWITE)

J¢ (WE RRT US\NG TWE NOTAT\ON Foc PULSATING

sewewe Aasaw !

)

r

tw /’o

NN W B ACA R
(R, t) = ”Js " as

ckr

f(o?):

j V@a as

NS B A Va8

Q=28V,d8 | 1=247ndS

Look\N G EOGEW\SE
AT THE WAL-

STEANQY STATE

THESE ARE ALSO VERYX \MPORTANT RESVTS .

ACAST\C SoVRCES

(cComT’0)

———rTis O

4/3

VELO AT POTERTI\AL  For RANLEAGW'S P\STON N THWE wWALL

T WAV A
@ (X, t) VE-: POT.
& (X) NeL.eoT.

FroM FolMULAS

= e=-r%%

(STEAN( STATE) =5 P .- twrH &

©ON PrEeEVIasS ?Ach.

- oy, 'l:—r/ )
ke
Y j MDET a8 | srenr
27T 3 STATE
Feom Tr = F.-'\:/r- , F e &"_q,we e~

ﬁ(’;{lt) = V,¢ = ow

\ S (Ut

Q C\'

nln‘\‘

V(XY =%, 2

n

—\—}Vca) e “a g

A<eADY

STATE U(';):

= L {5
Lk j FCe) 7 HFeTds.
A14

v (kr) =\-L/\<r
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/4
ACNST\C SARCES (ConT’D)

A LELGY P\STOMN \N THE WALL FalHuL-A (conT’n)
LET US COMS\DER A P\STON \N AN INFI\W\TE 1. 3%
WALL,0.2 X0.3 Wy AS SHewN ON TWE R\GMT. I 0.2 M=\,
LET X =3cto WZ AND

Vo Ot a) = S () sl )
1:';\;7'/--' 1‘&:\;1,...,

Wl P (X) NUMERCALLY - TAKE
c =340 w/s -

/)(3 = CoNST.

o

3IwA
=2

orox B\ \Nv fLANES
SWLOM SMALL TO LVARGE X3

PLoT \P\ \N Twe PLAMES K =0, -\/2, \_‘ ARD PLANES

Ky z0,\z2/2 ARD L2 . PLoT vecTors U(x) \N TWESE

PLARES ALSO . STuny

WHAT WE ARE LooK\NG oL : ERESNEL & FLAUNWCRFER ZOoNES ,

DIRELT\VTY PATTERN ;, EVANESCENT WAVES ) EDGE AN

CORNER. WAVES ; P\sSTor L/AOWE / EnesY OEMTY D\STRA\WOT\ON
NEAKR TAE P\sToN

/7T

ACAST\C ENERSLN QENS\TY NEAR TWE @\SToN.

LeC. %/
“/5
ACAST\C SaURcES (ConT’/D)

(\oEAL) POWT NO\PoLE

MAETRENKT\CA OE SA\MTA\ON

S\NCE —3—- Commu'res \:J\T\-\ D
ARG W= T2+ k%, AND 2 (t-re)/umr ARD o &% umr Ane
SoLVTions & TR =0 ARD NE =0, RESPECTWVEL =

- 2@ -rle)
”(’('Xr't) = -92;: ———"‘4_“'_"

9 LQ e—:.'\tf

x \S A SeWNT\ON oF WP =
E( ) = e Pade } ©
PHNS\CAL OES\N\T\ON

2
\S A SeLUT\oN oF QAP=0

ons,
<meE U=\ %2
WE WAVE A SeurcE ANRD A v
SANK NME PR ERCA OTWER. ALONG -9 o-Q g
Xi= PX\S CLOSE TO TWE SRAG\W <S\WX x SoURCE- X,
_-I ,[ I._ SMALL
Mooe\u

AN OSCALLATING SOHELE OF NADIUS A 4L N OSAUALLATNG
\N Tee OILECTION X WTH  § = = (Fotce ACTING oN TWE Fuuin)
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LEC . "_‘/‘

PCNST\C soances (Comt/n)
(\DEAL) POINT DIPoLE (Cont/D)

ons,
GENEWRL\ZAT\ON : A START\ONARY
Fotce X (E), ok T STEAS(STATE v
AXMPLATURE , ACT\WNG ON TWE LD —
- S 9 RGE re_] £7 %)
’?('x,-t)—_-_-q—_m—;\ =

,, {_Y-;- rl.ikﬂ—'\' _\_‘.g( f;l.‘_‘\'} ;:?/r

FAR FIELD MEAR F\ELD

E(o‘(‘,‘t):—-—‘—s _9__[ .,e““']

Wt £ 2R s
T kr ¢
STeAoY PR L) = ‘k \:(\u)\'-‘ e FTlke) = \ = 5
STATE (X, —_ v o= i S

vz

veo .2/

- 5/1

ComeracT (sTAT\ONARY ) Soarce

ces .
A SOVRCE \S COMPACT \F \T AN RBc

TREATED AS A POWT SAURCE Fen TWE Fmin
CETECRHINATION OF —Twe ZADIATION FIeLd .- 3\

COMPACTNESS Con™D\T\ONS

LET L BC TRE MPXIMUM SARCE DIMEWNS\ON,

Sovrc €
Coanin PE TRE MINIMUM D\STAMCE oF TWE (staTio AR Y)
OBSERNVE & TRLOM -c\-\e SARCE +© WE MULST

S

YAVve l\_ L& Comrn |+ THS MEANS —TaAT wE
CAM REPLACE T = \R- G\ B Y5 AS SwownN

O™ TWE RAGWT (NoTE POS\T\6N EF OR\GN O).
WE MUST ALSO HAVE  MAXIMUM O\EFE -
REMCE SF RETALDED (€ MSS\ON) TIME

|
OF <we POWTS oN TuE SecE x L /C ZL fewion T = _i-

WS G6WES, VSW6 A&k =C ‘\__. <<>\,.-<ms cComMO\T\ON \S
EQUIVALENT <O |\<\_ <<\| wwere k= 2

c
L 4K Cwmin oRr. L <L fain COMPRETNESS
L LN kL <L) ConITIONS
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) _s/2

SOME WAVE KANEMAT\CS

—
FRLERVEREY AND WAVE NMUMWE R OE
RE LTINS For OoWwserveEwr \N R ..\:

~

= _— —

MOTION WATW VELOATY V Fer = vy
PLARNE WA VES = z:&

REL . VELOUTY OF T;\EMN%’:’Q_M
\N TWE oweeTioN kK1 e —V.k = c-vese SweenceS

-OF ComsT. @WwhSE

NO. o Remrs Crossen /)| sec. = _9_'.‘_;’\_."‘2-9— =% ®rc@uenmey
DeTecTED YAY MoVING OWSERVEWR
_ C -Vemb = (\ — M 0 Vv
N ( ) % M= L
\— MCon® \s KnowN AS DofPer. TACTOR . \F |\ — M es e L\

= Ko L X - NOTE THAT £ 1S THE FREQUENCSY SGSEWLVED
By AN ctseever. STATWONARY \N Twe MEDIUM.

THE WAVE AMMwEw K DOES MOT CMANGE Fol MANG JWSEEWX

\4 - 2% _ 2T X - 2w kg
c

A c - V.con®

el .2/735

, ' 5/3
SOME WAVE Y\NEMAT\cS (CowmT/D)
TAE FTLTRVERCY ATRD W AVE NUMwew
RELAT\AS \N WANQ TUNNEL TULAME =
FTor. PLANE WAKS ek . -
L)
OmsErVER \S FAXED \N TONNEL \4'-‘--\&

ELBAME . TWE RACASTIE WAVES RANE ‘A

-t -
TWE FLoW W\TW VELoaaTY /.,

(TONMEL FLow
REL: VEL. F A PANT ©N SUWEAcE oF veroaaty)

ComET. PRASE \N OweeTioN R = ¢ +Veen®

g = c+Venb _ C+Venb _(y x Men®) §
Y N c/%
k _ 2w _ 2% = ZTC%T
— X" e C + V. en®

MOTE @ THE WAVELEHETH X NDoES NOT CHRANGE RBRECAUVSE \T
\S THWE OI\STAMEL WBETWEEN CTONSECLVTI\VE PEAKS WWEW wWE
Tereez© T\ME.\_
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LEC. D/ “

5/4

SOME WAVE KA\NVEMAT\CS (ConT/D)

A POINT SOWRECE \N MNMOT\ON ), OBSERVER

STAT\ON ALY — Scatce MOTI\ON RECT\W\NEAK

—

V ! SORCE VELOGATY ) ConsT. Slt-at) S&) ';/" o\ecTioN of
Souvr.ce

s C QA CE SX:\,:\_’&L Mo T\ON

S@t) Sowce Pos\TioN AT TWME t X \ . EMSSION

& k-at) » " 1 EMUSSION T\ME £ OreTANCE
O VASLVUA

VS\NS CosS\WE LAW Fol TRE TR\ANGLE SwawN

Yez: \"Z+Q\lat)?’+ 2y vatcene

DNeTANCE
OownsS.
———

z 2.
(\,...-Ml)rc _.z(rn\cooe)re _—r =0 , M=v/e
r =—F | Memex ‘/Mzw"e-\-\—M’—]
e \— M\Z
S -+ - 2a 2.9
= 1 | Meen® = J\=-MTSW
\-M?Z
\'¥ N <\ ) WE Y“AVEe ONMLY OME SOWVT\ON ' >0

o = — [Meme « fiTwsire ]

N ‘EC.D /5
) , 5/5
SOME WAVE KANVEMAT\CS (comt’/D )
A PAANT SoCRE \N MOT\ON , cssenvel
sTRToMA Y (CowmT /D)
2 .%
\F M >\, wWE MAVE NO SoLOTION wMeN = M 2wl <0
o s\Mze > -—LMZ . wWE ARE \N \
ZoNE OF SwLeNCE s
- o\ectioN
\F - MPslZe >0, we Are ~ Y, oF s
oN
ANSI\DE TWE MACH CONE Z Sovomens M>1
Ye
ARD W YAVE TWDS SANTOMS ZONE &
To. Y - S\ence
MACH
comNe
EMSSIoN Twme T.= t-re/c

TWE TRIANGLE SWwowN ON PRLENVIAS PAST \S ¥NAWN AS TwE
OLR\CK. TYAANGLE -

QESCR\CTION OF SYMGAS, L SP0 &F SN D

A sewree AT TwMme T _
3 . ” " " t =B/

c: SN L A

O8s. GETS TWO S\GHMALS FLoM g AmD & AT T
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“eC.S5/6

: _5/é
SOME WAVE ¥ \VEMAT\CS (conmt’/0)
SOWLE AHD OBSERMER. \N MOoT\ON
RECT\LA\NEALLY WATW TWE SAME
vVeLoeATY
- -at) &) > S\necti o
AGAN US\NG GARR\CK st s 59 Vs N N

& . OF ScAamce
TRAANGLE , WE 6ET Twe ra } Fixeo MOTWOA

A (=)
LA ME RELAT\ON For Yo . Ve ﬁ:n.ec-nou
ows.(t) OF onsEnved
ALVS O t& - t -— \’&/C— . N N MaT oy
e = \/o =V

BT r&/c \S A ComSTAMNT For,

r (VSUAL DISTARMCE )= FIXED =
twt, —ilre/e  (wT
= e . e

THAS MEAMS TWHAT TUE OWSERVER WEARS THE SaKRCE

FRERUENEY WATHAAUT ANY CHANGE | WoWEVER , NoTE TWAT

THE SIGNAL RECEWED \$ NOT Thwe SAME AS WMEN V =0 RE-

CAVSE (o AMD Q, OELTELMINE TwE EMISSION OISTAMCE AMD ANGLE
BOTH cF WMCH ALE VELOCITY OEPENOENT.

ec .5/ /

. s5/7

A VERY \MPORTANT SOLVTI\ON OF WAVE SQUAT\ON

2
<we sewwToN oF [T P = QX t)
C AN B WR\TTEW AS

3
- 4 o]
4T 'e('x,t):j 1___:_, J Qo)L

- 0o rzc (t-7)

wAeeE ALl \S THE ELEMENT o¢
TNE SWEPACE & TWE SOverE

-
L.t r=c (t-r) cewTtee AT X

(X, £) OWSERVER UARIAKLES FXED -

¢ Sovrce T\ME
SowRcE TWME T —elz Lt T, L. LT3t

THAS \S A VERY \MPOLTANT SOLUTION S8 THE WAVE TRUAT\oy.
WE NMOTE TWAT Q(KX,t) CAN BE A SARCE \N MoTioN . we

WILL VUSE THAS RESULT Fore MANMY PLOSLEMS LATER ,€.%.
COMEACTNESS CoNcEPT T MaWE SAXRLCES .
- L

\S CALLEDQ TWHE COLLARS\NSG SPHNERE .
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——— ey

, -5/8
COMPACTNESS CONMNDI\TIONS For A MoVING  SAREE
ASSOME AN EXTEMNGED SamCE oF TYP\cAL LEMGTH 4
AN FrEauENEY ¥ MoVING AT VELOUATY . we ArE
LooK\NG Tol ConOITIONS TWAT ALLowW US To CoNSIBER
ons.

TWE SALCE AS A PaNT Sowret Tot 1 Lt LT, , wiere
4 \o THE OGSEWVEL TI\ME . Fol BACK ocwsdwuvew T\ME , /r-;
Y.

F\'JQ THE %M‘&- T\MES Q‘f‘ ANRD tz_

wrer TwE COLLAPS\NG SPvewt EmTewrs 2
ARO LEAUVES TWe SAMCE ,RESPECTWET  \goouce otz
L. LET L. RBE Twe O\STAnNCE swewN
NESS @
W Twe S\EURET . TREN TWE CoMPeACT - ‘Cz.
: L
T,

CornOITIONS AwE

voe A L LELEL
L &Ln _ NOTE: T, Tz L
T,-7, KT = T | Are FoNcTioms ex (X, t)
oms.
TRE S\TUAT\ON N LoThksS vige Twe
FAOWE ON THE »\amT AWD )
— M, = \Wiene /e e .3
’:/\\—M‘_l LT Sowce oF \.r-_nen\{i
LEC. &/

NO\SE AO\AT\ON FLOM MoVING BRemES

AT PRLESEMT WE WAVE TWO GERMELAL METH) Fa CALCOLANTWNG

THE RNASE XADIARTED FUOM MANNG SoDe§

(.: ) TRAE ACAASTC ARALOGY TEAICS WALLABME = W AWEANGS (F\U—\"\)

ERVETIOY,  WATY PEMNETLAMLE OATA SWERCE

Dz‘ /__ & g T )(\)r’
(B T Ve
CED

({) CYD-8ACED COMOUTRTIOMAL. AERS ACASTICS (CAA)
NAVIEL- $SToRELS , ETC.

.
.

LANEAN\ZED BEVLER.

cEFO >R>
[ AABT.N \
M x

C¥O

== TRE ACASTC ANMALOSY BASED oN Fw-y ER. CAM BT A ASE T A

AS YACMWOTET METRaD .
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v, F/L

6/2
MOVSE LADIVATION TROM MAVING BoDIES (cont/D)
TVWE _TW-Y EQ L WATWY PENETLARLE ONTA SUEACE
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Things to Know About Green’s Function

of Wave Equation

* The Green’s function of the wave equation in the unbounded space is

8(g)
N Y hre— S
GO, t % 1) =4 Anr Tt
0 T>t

r .
g = T—1t+ - outgoing wave
c

Observer
X

Source

F=thr Radiation
direction

(9, T) source space-time variables

(X, t) observer space-time variables

FE. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

55 of 95, September 1996

e/
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Thing: to Know About Green’s Function |

of Wave Equation

* There are many methods to derive G(39, T; %, ¢) rigorously. It is easy to show

| that Gdependson -y and r— 1. Using X -3 = 7,

| Fourier transform of @2(? MG = O6(#)8(M) to get a simple problem involving
finding the Green’s function of an O.D.E. in A. The inverse spatial Fourier

transform of the Green’s function of the O.D.E. gives Green’s function of the
wave equation for both the outgoing and incoming waves.

A = t—1, take spatial

Y
F=2-9, r=l2-3l, F=

Useful things to remember

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Rescarch Center
Hampton, Virginia
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Things to Know About Green’s Function

of Wave Equation

The support of d(g) is on the surface g = 0.

The surface g =0is r = |2 -3 = c(t-1).

This is the characteristic cone of the wave

I equation with vertex at (%, ¢). Since 02 isa
differential equation with constant coefficients,

g = 0is also the characteristic conoid with vertex

at (%, t). This gives us the picture on the right. Note
that we have drawn the 3D space Q as a plane in the
figure. Therefore, this figure is a 3D illustration of
what happens in 4D (3D space + time).

* Note: g = 0 is a cone because if the

4-vector A = (-9, 1—1) lieson

g=O:>0c;\\
0.

[o(Z - ), ou(t—1T)] also
lieson g = is

This is the property of a cone.

Time axis

Characteristic cone (Conoid) at
X, t). Q is the unbounded
-space. DOD is domain of

dependence of (X, t) which

depends on t

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

Fix (3, ) andT=7r = c(t-1) isa sphere with
center at % and radius c(¢ - 1). Any source on
this sphere at time 7, contributes to % at time ¢.
As Tincreases, the radius shrinks, hence we
have a collapsing sphere. Radius becomes zero
at = 1.

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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Visualization of domain of dependence of (%, t) in four dimensions.

~ Things to Know About Green’s Function
of Wave Equation

DOD of
(x, t) at
time t

Q:
Surface
of sphere

/19
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6/20
The Collapsing Sphere Concept
Equation of collapsing sphere: r = ¢( - 1), (%, t) fixed
Collapsing sphere
at source time ©
Blade position at 1 r=c(t-1
Observer
position X
The Z-surface is the locus of I"™-curves in space. If the blade surface is described
by f(9, 1) = 0, the equation of the X-surface is:
FOid0) = [0y = fOr1=r/c) = 0, (3, 1) fixed
- ) 59 of 95, September 1996
F. Farassat, Acroacoustics Branch
TFluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
R R SV AP
6/2]

Construction of X-Surface for a Helicopter Rotor Blade |

Observer
position

WS

In this construction, we have taken a rotor blade of zero thickness rotating with
rotational Mach number 0.67 and forward Mach number 0.15. The observer is in
the rotor plane. The circles are the intersection of the collapsing sphere with the
plane containing the rotor. The circles are drawn at equal source time intervals.
The observer time is t = T + r/c where r is the radius of the collapsing sphere at 1.
Note that 7 is fixed for the above Z-surface.

60 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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The Two ) Forms of the Solution of V;V;veiEquationiT
(Volume Sources)

We want to find the solution of [12¢ = Q(3, 1)

4T3 1) = [ 1003, 13(g)dbdr

All volume integrals are over unbounded 3 space and all time integrals are over

(=00, ).

. dg _ N N PN r N
D Let tog=35% = 1 and 4m(, 1) = J;Q(y,g+t—; )6(g)dgdy

Integrate with respect to g to get

[Q]retdj;

r

4m9(3, 1) = | IQ(f;,t_f)d)A, - |

r C

| Retarded Time Solution

" 630t 95, September 1996
F Farassat, Aeroacoustics Branch

TFluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

| e

-

" The Two Forms of the Solution of Wave Equation
(Volume Sources) (Cont’d)

.. g 1,
ii) Let y3—)g:>a—yg ==
5 dy,dy
N , T 1772
Amd (3, 1) = jc——Q(ry )5(g) dg ke
dyldY2

Since in the inner integrals (%, ¢) and T are fixed, then

— = dQ element of
7

ig
surface area of sphere r = ¢(¢ —1). Integrate with respect to g to get:

4T (R, 1) = j’ t—‘f‘—T j (3, 1) dQ
- r=c(t-1)

Collapsing Sphere Solution

64 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

116

G123

4/2%



vee. 77

7/\

NO\SE GENELNTNON FTLOM MOVWWNG SaArRSES

Lowsom /S TOMMULA (SWE SOUND FLoM A MaVING O\PoLE) - \346%

ASSUME. TWAT A COMPALT (PANT) Fomce oOF STrem6eTy V(‘t) MV
su&ﬁcﬂ\%\,Mﬂ LET TWE QONTION OF TWE For ok W S\VET™ W ’Xs('b)

WMOTE TWAT ::(—t) WS TRE Saoh ACTING On TAE MEOWM + Lowsom

PROPOSED TWT WS HO\SE TLOM TS SARSE \S OESa\weQ B

- _/ 7] - N
O/ - 2 {r.®) S 15X -xwlf
/ DR L
WNMERE R \s TAE ACNSTIC PLESSURE . w& OAaN VSE vEcTove
WOTATION Tol TS TRUATION AS Fovlow S !

O = - - L@ (K- Xy}

THWE VS TRE GENELAMZATION OF LAMG/S O\FFECERTIAL BQUA-—
TAON WARCH WE DEDICE FLOM Yi\S SOLOTIoN OF TWE SO Fom
P STETWONARY CoMenc T Feot-Ca

.

- —n
n2e’ = - v.IF@® S00] &)
LEME DELWED TRE FollLowN & oL VTGN B STUDNIWGEG TWwE Ao —

T EAELD OF AN OSCALLATING SPRELE ARD Tatw “CTTWE \TS
CRAMA\NNS 60 To Z2e%O

awR/(x,t) = — Y- [F& r/C)]

TS 1S TWE SowNTION OF Twe PO 4)-LAME D\0 NOT SVA TWe Perl

7/2
MNO\SE GENELATION FLOM MANNG SANCES (ConT/D)
Lowason/S FauMuL A (conT/0)
- -
SOLVTION OF TWE WAVE €Q. EZ’G/= - V-{_F(t)gl’x—;s(‘tﬂ} @

CRELE ALE WMANY WANS TO TIND Q7 SoME (MAN{ 1) oF Wik RERuV e
A LOT OF ALGEWRLA\C HMANIPUVLRTIONS: Wi VST STVERAL TN S O
GET TAE SOLOTION Mot AL & ARTUY -

-— \F¥ ZZ>\ (K1) \& TwE SO TN oF E&%Z:S(o?,t) =
¢, (X, t)= <- c,_b“ \& we SOWNTIeN o ¥, = T7.-Q

— 2 - - -—

otons . w-0%P, = QAYT.1= V-& . =V

+ p, weere TP, =0 - e SoWTieN & 2@, =0 \s Pa=o!
TaE QWLVTIWN oF EQR.G) \S TRELE T e
que (%) = = Y- j.’ TS L49- «5@)18(‘3)0\% AT
vex 7 = 3-X@ T6‘='z+m(r) = 43 =47
a4 = -t L\ K= 7= %) Je

/.
L (X, t)

H

_ g LRy S@) Sl Ers FpIaTeT

~<,- \H——— F(z’)%(‘é)]:

W\

117



LEC.7 /3

7/3
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NO\SE GENEWATION FROM MAING SAMCES (ConT/ D)
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NOSE &€ MEMATION TUOM MoVING SAMCES (Comt/0)
GOTWW/S RESVLT (cont/ D)
. 2 2
vz (k- men®)alxe —L S ®) + x3T, RIRN =1,

PUT  TUE RSN ON K X2 —PLANE - Tws O0TS MT AFRLT Twt
WELWEHCSY. WA ST .

= roz_\. e 2 (X en® + X 5un8)
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7/8
The Governing Wave Equation for Deriving T
Kirchhoff Formulas
We consider the exterior problem here.
Q: The exterior unbounded space
- X,1) eQ -
Let ¢(%,1) = (%) ¥ = 02§ = 0 everywhere
0 2Q
ap 0o, of o
AL T - 29 68
@ o = sr 0=b(f) = 5=, 08(f)
of . ; _ n=vf
where v = —=L is the local normal velocity on f=0 a
n Jat 02 =0
f(X,t) =0
A moving deformable
surface
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F. Farassat, Aeroacoustics Branch
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NASA Langley Research Center
Hampton, Virginia
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Next take the second time derivative of &):

32 _ 0%p a9 of ) _92%%
2 *a?JrE Eﬁ(f)—a—t["n(bﬁ(f)] =2

v, 08(f) = Sy, 48()]
Similarly for the space derivatives we have:
Vo = Vo+ond(f), V= V2h+0,0(f) +V - [9n3(f)]
b

The above results give:

92 - m%—(i"% . ¢,,)6(f)
C

1 9
-3 -a—t[vnq)é(f)] -V - [ond(f)]

52

-1

0%¢ =

1
o2

D
[\

t

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Since E]ztf) = 0,and using M, = v, /c,we get

F26 = — (b, + 2M,0,) (9 - 7 S, 8()1=V [0 2 8(/)]

We now solve this wave equation for stationary, subsonic and supersonic
surfaces.

F. Farassat, Aeroacoustics Branch
I'luid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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The Kirchhoff surface f(%) is now stationary so that M, = 0. The governing

wave equation is I:_'IZ&) = - q>n6(f) —V - [ond(f)]

4m(2,1) = - [ q%é(f)é(g)dydr—vﬁ [ Bs(r)8(8)dpan

. g _
where ¢, and ¢ in the integrands are functions of (, T). Now lett — g, Pl 1,

and integrate with respect to g, to get

S8

. b, (¢ Jt—r/c)
s, ) = — [ 2 ey v, LDy
We have dealt with these integrals before. The integration of S8(f) gives
a0 = — [ Lo,Grimr/e) =Yy | §¢(9,t~r/c) as
f=0 =0

L

85 of 111, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

, , L gy,
‘Derivation of the Classical Kirchhoff Formula (Cont’d)

Taking the divergence operator in and using subscript ret for retarded time, we
get the classical Kirchhoff formula

[c1dcosh - O

r

coso

Am(, 1) = ds+ [ =—L0]edS
f=0

=0

In this equation cosO = A - 7. Again, our method tells that ({)(k, t) = 0inthe
interior of f = 0 which is not obvious from classical derivation.

98

Note: Only r is a function of % in the integrands of the integrals in previous

vugraph. We assume X is not on S and S is piecewise smooth. The justification for

bringing the divergence operator inside the integral follows from classical
analysis.

86 of 111, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
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Hampton, Virginia
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NO\SE GENEXNTION FLOM MoVING SOWRCES (ComT’/0) 8/2

METR D OF ESCENT (ConT /D)
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THE AcosTe ARALoasY (AA)
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